1
|
Łaszczych D, Czernicka A, Łaszczych K. Targeting GABA signaling in type 1 diabetes and its complications- an update on the state of the art. Pharmacol Rep 2025; 77:409-424. [PMID: 39833509 DOI: 10.1007/s43440-025-00697-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/04/2025] [Accepted: 01/13/2025] [Indexed: 01/22/2025]
Abstract
Type 1 diabetes (T1D) is an autoimmune disease that leads to the progressive destruction of insulin-producing β cells, resulting in lifelong insulin dependence and a range of severe complications. Beyond conventional glycemic control, innovative therapeutic strategies are needed to address the underlying disease mechanisms. Recent research has highlighted gamma-aminobutyric acid (GABA) as a promising therapeutic target for T1D due to its dual role in modulating both β cell survival and immune response within pancreatic islets. GABA signaling supports β cell regeneration, inhibits α cell hyperactivity, and promotes α-to-β cell transdifferentiation, contributing to improved islet function. Moreover, GABA's influence extends to mitigating T1D complications, including nephropathy, neuropathy, and retinopathy, as well as regulating central nervous system pathways involved in glucose metabolism. This review consolidates the latest advances in GABA-related T1D therapies, covering animal preclinical and human clinical studies and examining the therapeutic potential of GABA receptor modulation, combination therapies, and dietary interventions. Emphasis is placed on the translational potential of GABA-based approaches to enhance β cell viability and counteract autoimmune processes in T1D. Our findings underscore the therapeutic promise of GABA signaling modulation as a novel approach for T1D treatment and encourage further investigation into this pathway's role in comprehensive diabetes management.
Collapse
Affiliation(s)
- Dariusz Łaszczych
- Faculty of Medicine, Collegium Medicum, Nicolaus Copernicus University in Torun, Jagiellońska 13, 85-067, Bydgoszcz, Poland.
| | | | - Katarzyna Łaszczych
- Faculty of Pharmaceutical Sciences, Medical University of Silesia in Katowice, Jedności 8, Sosnowiec, 41-200, Poland
- Ziko Pharmacy, Plebiscytowa 39, Katowice, Poland
| |
Collapse
|
2
|
Spezani R, Reis-Barbosa PH, Mandarim-de-Lacerda CA. Update on the transdifferentiation of pancreatic cells into functional beta cells for treating diabetes. Life Sci 2024; 346:122645. [PMID: 38614297 DOI: 10.1016/j.lfs.2024.122645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/19/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
The increasing global prevalence and associated comorbidities need innovative approaches for type 2 diabetes mellitus (T2DM) prevention and treatment. Genetics contributes significantly to T2DM susceptibility, and genetic counseling is significant in detecting and informing people about the diabetic risk. T2DM is also intricately linked to overnutrition and obesity, and nutritional advising is beneficial to mitigate diabetic evolution. However, manipulating pancreatic cell plasticity and transdifferentiation could help beta cell regeneration and glucose homeostasis, effectively contributing to the antidiabetic fight. Targeted modulation of transcription factors is highlighted for their roles in various aspects of pancreatic cell differentiation and function, inducing non-beta cells' conversion into functional beta cells (responsive to glucose). In addition, pharmacological interventions targeting specific receptors and pathways might facilitate cell transdifferentiation aiming to maintain or increase beta cell mass and function. However, the mechanisms underlying cellular reprogramming are not yet well understood. The present review highlights the primary transcriptional factors in the endocrine pancreas, focusing on transdifferentiation as a primary mechanism. Therefore, islet cell reprogramming, converting one cell type to another and transforming non-beta cells into insulin-producing cells, depends, among others, on transcription factors. It is a promising fact that new transcription factors are discovered every day, and their actions on pancreatic islet cells are revealed. Exploring these pathways associated with pancreatic development and islet endocrine cell differentiation could unravel the molecular intricacies underlying transdifferentiation processes, exploring novel therapeutic strategies to treat diabetes. The medical use of this biotechnology is expected to be achievable within a short time.
Collapse
Affiliation(s)
- Renata Spezani
- Laboratory of Morphometry, Metabolism, Cardiovascular Disease, Institute of Biology, Biomedical Center, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro H Reis-Barbosa
- Laboratory of Morphometry, Metabolism, Cardiovascular Disease, Institute of Biology, Biomedical Center, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carlos A Mandarim-de-Lacerda
- Laboratory of Morphometry, Metabolism, Cardiovascular Disease, Institute of Biology, Biomedical Center, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
3
|
Lafferty R, Tanday N, Dubey V, Coulter-Parkhill A, Vishal K, Moffett RC, O'Harte F, Flatt PR, Irwin N. The glucagon receptor antagonist desHis 1Pro 4Glu 9-glucagon(Lys 12PAL) alters alpha-cell turnover and lineage in mice, but does not cause alpha-cell hyperplasia. Mol Cell Endocrinol 2023; 570:111932. [PMID: 37080378 DOI: 10.1016/j.mce.2023.111932] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/24/2023] [Accepted: 04/16/2023] [Indexed: 04/22/2023]
Abstract
OBJECTIVE Glucagon receptor (GCGR) antagonism elicits antihyperglycemic effects in rodents and humans. The present study investigates whether the well characterised peptide-based GCGR antagonist, desHis1Pro4Glu9-glucagon (Lys12PAL), alters alpha-cell turnover or identity in mice. METHODS Multiple low-dose streptozotocin (STZ) treated (50 mg/kg bw, 5 days) transgenic GluCreERT2;ROSA26-eYFP mice were employed. STZ mice received twice daily administration of saline vehicle or desHis1Pro4Glu9-glucagon (Lys12PAL), at low- or high-dose (25 and 100 nmol/kg, respectively) for 11 days. RESULTS No GCGR antagonist induced changes in food or fluid intake, body weight or glucose homeostasis were observed. As expected, STZ dramatically reduced (P < 0.001) islet numbers and increased (P < 0.01) alpha-to beta-cell ratio, which was linked to elevated (P < 0.05) levels of beta-cell apoptosis. Whilst treatment with desHis1Pro4Glu9-glucagon (Lys12PAL) decreased (P < 0.05-P < 0.001) alpha- and beta-cell areas, it also helped restore the classic rodent islet alpha-cell mantle in STZ mice. Interestingly, low-dose desHis1Pro4Glu9-glucagon (Lys12PAL) increased (P < 0.05) alpha-cell apoptosis rates whilst high dose decreased (p < 0.05) this parameter. This difference reflects substantially increased (P < 0.001) alpha-to beta-cell transdifferentiation following high dose desHis1Pro4Glu9-glucagon (Lys12PAL) treatment, which was not fully manifest with low-dose therapy. CONCLUSIONS Taken together, the present study indicates that peptidic GCGR antagonists can positively influence alpha-cell turnover and lineage in identity in multiple low-dose STZ mice, but that such effects are dose-related.
Collapse
Affiliation(s)
- Ryan Lafferty
- Centre for Diabetes, Ulster University, Coleraine, Northern Ireland, UK
| | - Neil Tanday
- Centre for Diabetes, Ulster University, Coleraine, Northern Ireland, UK
| | - Vaibhav Dubey
- Centre for Diabetes, Ulster University, Coleraine, Northern Ireland, UK
| | | | - Karthick Vishal
- Centre for Diabetes, Ulster University, Coleraine, Northern Ireland, UK
| | | | - Finbarr O'Harte
- Centre for Diabetes, Ulster University, Coleraine, Northern Ireland, UK
| | - Peter R Flatt
- Centre for Diabetes, Ulster University, Coleraine, Northern Ireland, UK
| | - Nigel Irwin
- Centre for Diabetes, Ulster University, Coleraine, Northern Ireland, UK.
| |
Collapse
|
4
|
Sarnobat D, Moffett RC, Ma J, Flatt PR, McClenaghan NH, Tarasov AI. Taurine rescues pancreatic β-cell stress by stimulating α-cell transdifferentiation. Biofactors 2023. [PMID: 36714992 DOI: 10.1002/biof.1938] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/05/2023] [Indexed: 01/31/2023]
Abstract
The semi-essential ubiquitous amino acid taurine has been shown to alleviate obesity and hyperglycemia in humans; however, the pathways underlying the antidiabetic actions have not been characterized. We explored the effect of chronic taurine exposure on cell biology of pancreatic islets, in degenerative type 1-like diabetes. The latter was modeled by small dose of streptozotocin (STZ) injection for 5 days in mice, followed by a 10-day administration of taurine (2% w/v, orally) in the drinking water. Taurine treatment opposed the detrimental changes in islet morphology and β-/α-cell ratio, induced by STZ diabetes, coincidentally with a significant 3.9 ± 0.7-fold enhancement of proliferation and 40 ± 5% reduction of apoptosis in β-cells. In line with these findings, the treatment counteracted an upregulation of antioxidant (Sod1, Sod2, Cat, Gpx1) and downregulation of islet expansion (Ngn3, Itgb1) genes induced by STZ, in a pancreatic β-cell line. At the same time, taurine enhanced the transdifferentiation of α-cells into β-cells by 2.3 ± 0.8-fold, echoed in strong non-metabolic elevation of cytosolic Ca2+ levels in pancreatic α-cells. Our data suggest a bimodal effect of dietary taurine on islet β-cell biology, which combines the augmentation of α-/β-cell transdifferentiation with downregulation of apoptosis. The dualism of action, stemming presumably from the intra- and extracellular modality of the signal, is likely to explain the antidiabetic potential of taurine supplementation.
Collapse
Affiliation(s)
- Dipak Sarnobat
- School of Biomedical Sciences, Ulster University, Coleraine, UK
| | | | - Jinfang Ma
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, UK
| | - Peter R Flatt
- School of Biomedical Sciences, Ulster University, Coleraine, UK
| | - Neville H McClenaghan
- School of Biomedical Sciences, Ulster University, Coleraine, UK
- Department of Life Sciences, Atlantic Technological University, Sligo, Ireland
| | | |
Collapse
|
5
|
Klempel N, Thomas K, Conlon JM, Flatt PR, Irwin N. Alpha-cells and therapy of diabetes: Inhibition, antagonism or death? Peptides 2022; 157:170877. [PMID: 36108978 DOI: 10.1016/j.peptides.2022.170877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 11/22/2022]
Abstract
Absolute or relative hyperglucagonaemia is a characteristic of both Type 1 and Type 2 diabetes, resulting in fasting hyperglycaemia due in part to increased hepatic glucose production and lack of postprandial suppression of circulating glucagon concentrations. Consequently, therapeutics that target glucagon secretion or biological action may be effective antidiabetic agents. In this regard, specific glucagon receptor (GCGR) antagonists have been developed that exhibit impressive glucose-lowering actions, but unfortunately may cause off-target adverse effects in humans. Further to this, several currently approved antidiabetic agents, including GLP-1 mimetics, DPP-4 inhibitors, metformin, sulphonylureas and pramlintide likely exert part of their glucose homeostatic actions through direct or indirect inhibition of GCGR signalling. In addition to agents that inhibit the release of glucagon, compounds that enhance the transdifferentiation of glucagon secreting alpha-cells towards an insulin positive beta-cell phenotype could also help curb excess glucagon secretion in diabetes. Use of alpha-cell toxins represents another possible strategy to address hyperglucagonaemia in diabetes. In that respect, research from the 1920 s with diguanides such as synthalin A demonstrated effective glucose-lowering with alpha-cell ablation in both animal models and humans with diabetes. However, further clinical use of synthalin A was curtailed due its adverse effects and the increased availability of insulin. Overall, these observations with therapeutics that directly target alpha-cells, or GCGR signaling, highlight a largely untapped potential for diabetes therapy that merits further detailed consideration.
Collapse
Affiliation(s)
- Natalie Klempel
- Diabetes Research Centre, Biomedical Sciences Research Institute, Ulster University, Cromore Road, Coleraine, Northern Ireland BT52 1SA, UK
| | - Keith Thomas
- Diabetes Research Centre, Biomedical Sciences Research Institute, Ulster University, Cromore Road, Coleraine, Northern Ireland BT52 1SA, UK
| | - J Michael Conlon
- Diabetes Research Centre, Biomedical Sciences Research Institute, Ulster University, Cromore Road, Coleraine, Northern Ireland BT52 1SA, UK
| | - Peter R Flatt
- Diabetes Research Centre, Biomedical Sciences Research Institute, Ulster University, Cromore Road, Coleraine, Northern Ireland BT52 1SA, UK
| | - Nigel Irwin
- Diabetes Research Centre, Biomedical Sciences Research Institute, Ulster University, Cromore Road, Coleraine, Northern Ireland BT52 1SA, UK.
| |
Collapse
|