1
|
Hussain MS, Prajapati BG, Gandhi SM, Sharma M, Kapoor DU, Elossaily GM, Garg S. Overcoming Obstacles: The Role of Lipid Nanocarriers in Therapeutic Approaches for Pancreatic Cancer. BIONANOSCIENCE 2025; 15:262. [DOI: 10.1007/s12668-025-01873-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2025] [Indexed: 05/04/2025]
|
2
|
Li P, Pang KL, Chen SJ, Yang D, Nai AT, He GC, Fang Z, Yang Q, Cai MB, He JY. ADORA2B promotes proliferation and migration in head and neck squamous cell carcinoma and is associated with immune infiltration. BMC Cancer 2025; 25:673. [PMID: 40221657 PMCID: PMC11992813 DOI: 10.1186/s12885-025-14102-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Accepted: 04/07/2025] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND Adenosine A2B receptor (ADORA2B), a G protein-coupled receptor, is implicated in tumor progression and immune regulation in various cancers. However, its specific role in head and neck squamous cell carcinoma (HNSC) remains largely unexplored. This study aims to elucidate the expression profile, prognostic value, immune modulatory role, and therapeutic potential of ADORA2B in HNSC. METHODS Comprehensive bioinformatics analyses were performed using TCGA and GEO datasets to evaluate ADORA2B expression, clinical correlations, and prognostic significance in HNSC. Weighted gene co-expression network analysis (WGCNA) and functional enrichment analyses were conducted to explore ADORA2B-associated pathways. Immune infiltration was assessed via ESTIMATE and single-sample gene set enrichment analysis (ssGSEA). Immune checkpoint blockade (ICB) therapy sensitivity and drug sensitivity were analyzed using the IMvigor210 and NCI-60 databases, respectively. In vitro experiments, including siRNA-mediated ADORA2B knockdown, CCK-8 assays, colony formation, and wound healing assays, were performed to validate the oncogenic role of ADORA2B. RESULTS ADORA2B was significantly overexpressed in HNSC tumor tissues compared to adjacent normal tissues, and its expression correlated with advanced clinical stage as well as poor overall survival (OS) and progression-free survival (PFS). Functional enrichment analyses revealed significant downregulation of immune-related pathways in high ADORA2B expression groups. High ADORA2B expression was associated with a more immunosuppressive tumor microenvironment (TME), characterized by lower immune and stromal scores and reduced immune cell infiltration. Immunotherapy response analysis demonstrated that patients with high ADORA2B expression exhibited poorer outcomes following ICB therapy. Drug sensitivity analysis identified several agents, including Ixazomib citrate, Masitinib, and others, as potential therapeutic candidates for high ADORA2B expression patients. In vitro experiments confirmed that ADORA2B knockdown significantly inhibited HNSC cell proliferation, colony formation, and migration, underscoring its critical role in tumor progression. CONCLUSION ADORA2B is a key oncogenic driver in HNSC, contributing to tumor proliferation, migration, and an immunosuppressive TME. Its high expression is associated with poor prognosis and reduced immunotherapy efficacy. Targeting ADORA2B may enhance therapeutic outcomes and overcome treatment resistance, highlighting its potential as a diagnostic, prognostic, and therapeutic biomarker.
Collapse
Affiliation(s)
- Pian Li
- Department of Oncology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Ke-Ling Pang
- Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Shuang-Jing Chen
- The PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Dong Yang
- Department of Oncology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Ai-Tao Nai
- Department of Oncology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Gui-Cheng He
- Department of Oncology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Zhe Fang
- Department of Oncology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Qiao Yang
- Department of Oncology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Man-Bo Cai
- Department of Oncology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China.
| | - Jun-Yan He
- Department of Oncology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China.
| |
Collapse
|
3
|
Mortoglou M, Lian M, Miralles F, Dart DA, Uysal-Onganer P. miR-210 Mediated Hypoxic Responses in Pancreatic Ductal Adenocarcinoma. ACS OMEGA 2024; 9:47872-47883. [PMID: 39651070 PMCID: PMC11618397 DOI: 10.1021/acsomega.4c08947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/11/2024] [Accepted: 11/14/2024] [Indexed: 12/11/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one among the most lethal malignancies due to its aggressive behavior and resistance to conventional therapies. Hypoxia significantly contributes to cancer progression and therapeutic resistance of PDAC. microRNAs (miRNAs/miRs) have emerged as critical regulators of various biological processes. miR-210 is known as the "hypoxamir" due to its prominent role in cellular responses to hypoxia. In this study, we investigated the multifaceted role of miR-210 in PDAC using miR-210 knockout (KO) cellular models to elucidate its functions under hypoxic conditions. Hypoxia-inducible factor-1α (HIF1-α), a key transcription factor activated in response to low oxygen levels, upregulates miR-210. miR-210 maintains cancer stem cell (CSC) phenotypes and promotes epithelial-mesenchymal transition (EMT), which is essential for tumor initiation, metastasis, and therapeutic resistance. Our findings demonstrate that miR-210 regulates the expression of CSC markers, such as CD24, CD44, and CD133, and EMT markers, including E-cadherin, Vimentin, and Snail. Specifically, depletion of miR-210 reversed EMT and CSC marker expression levels in hypoxic Panc-1 and MiaPaCa-2 PDAC cells. These regulatory actions facilitate a more invasive and treatment-resistant PDAC phenotype. Understanding the regulatory network involving miR-210 under hypoxic conditions may reveal new therapeutic targets for combating PDAC and improving patient outcomes. Our data suggest that miR-210 is a critical regulator of HIF1-α expression, EMT, and the stemness of PDAC cells in hypoxic environments.
Collapse
Affiliation(s)
- Maria Mortoglou
- Cancer
Mechanisms and Biomarkers Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, U.K.
| | - Mutian Lian
- Cancer
Mechanisms and Biomarkers Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, U.K.
| | - Francesc Miralles
- School
of Health and Medical Sciences, City St
George’s, University of London, Cranmer Terrace, London SW17 0RE, U.K.
| | - D. Alwyn Dart
- UCL
Cancer Institute, University College London, Paul O’Gorman Building, 72
Huntley Street, London WC1E 6DD, U.K.
| | - Pinar Uysal-Onganer
- Cancer
Mechanisms and Biomarkers Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, U.K.
| |
Collapse
|
4
|
Lv M, Li X, Zheng C, Tian W, Yang H, Yin Z, Zhou B. Exosomal miR-130b-3p suppresses metastasis of non-small cell lung cancer cells by targeting DEPDC1 via TGF-β signaling pathway. Int J Biol Macromol 2024; 275:133594. [PMID: 38960258 DOI: 10.1016/j.ijbiomac.2024.133594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/25/2024] [Accepted: 06/29/2024] [Indexed: 07/05/2024]
Abstract
Exosomal miRNAs have vital functions in mediating intercellular communication as well as tumor occurrence and development. Thus, our research was aimed at exploring the regulatory mechanisms of exosomal miR-130b-3p/DEP domain containing 1 (DEPDC1)/transforming growth factor-β (TGF-β) signaling pathway in non-small cell lung cancer (NSCLC). Here we indicated that exosomal miR-130b-3p expression decreased in the serum of NSCLC patients, and it was of significant diagnostic value. Moreover, elevated miR-130b-3p levels suppressed the proliferation and migration of NSCLC cells, and enhanced their apoptosis. Conversely, miR-130b-3p down-regulation led to an opposite effect. As the upstream of DEPDC1, miR-130b-3p directly bound to 3'UTR in DEPDC1 to regulate its expression. DEPDC1 levels affected the proliferation, migration, and apoptosis of NSCLC cells via TGF-β signaling pathway. Exosomal miR-130b-3p was highly expressed in BEAS-2B cells, besides, BEAS-2B cells transferred exosomal miR-130b-3p to NSCLC cells. Finally, exosomal miR-130b-3p suppressed NSCLC cell growth and migration, promoted their apoptosis via TGF-β signaling pathway by decreasing DEPDC1 expression, and suppressed epithelial-mesenchymal transition (EMT) in NSCLC cells. In conclusion, exosomal miR-130b-3p has the potential to be a predictive biomarker for NSCLC, thereby stimulating the exploration of diagnostic and therapeutic approaches targeting NSCLC.
Collapse
Affiliation(s)
- Meiwen Lv
- Department of Clinical Epidemiology, The First Hospital of China Medical University, Shenyang 110001, China.
| | - Xuelian Li
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang 110122, China.
| | - Chang Zheng
- Department of Clinical Epidemiology, The First Hospital of China Medical University, Shenyang 110001, China.
| | - Wen Tian
- Department of Clinical Epidemiology, The First Hospital of China Medical University, Shenyang 110001, China.
| | - He Yang
- Department of Clinical Epidemiology, The First Hospital of China Medical University, Shenyang 110001, China.
| | - Zhihua Yin
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang 110122, China.
| | - Baosen Zhou
- Department of Clinical Epidemiology, The First Hospital of China Medical University, Shenyang 110001, China.
| |
Collapse
|
5
|
Xi C, Zhang G, Sun N, Liu M, Ju N, Shen C, Song H, Luo Q, Qiu Z. Repurposing homoharringtonine for thyroid cancer treatment through TIMP1/FAK/PI3K/AKT signaling pathway. iScience 2024; 27:109829. [PMID: 38770133 PMCID: PMC11103377 DOI: 10.1016/j.isci.2024.109829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 03/12/2024] [Accepted: 04/24/2024] [Indexed: 05/22/2024] Open
Abstract
Homoharringtonine (HHT), an alkaloid isolated from Cephalotaxus, is an effective anti-leukemia agent and exhibits inhibitory effects in various solid tumors. However, the impacts of HHT treatment on thyroid cancer (TC) remain unclear. Our findings demonstrated that HHT exhibited remarkable anti-TC activity that involved inhibiting cell proliferation, invasion, and migration, as well as inducing apoptosis. Proteomics analysis revealed that the expression of the tissue inhibitor of metalloproteinase 1 (TIMP1) was downregulated in TC cells after HHT treatment. TIMP1 overexpression promoted TC progression and partially reversed the anti-TC effects of HHT, while TIMP1 downregulation inhibited TC progression and enhanced the anti-TC effects of HHT. Furthermore, TIMP1 re-expression attenuated the enhancement of anti-TC effects of HHT induced by TIMP1 knockdown. Mechanistically, HHT exerted anti-TC effects by downregulating TIMP1 expression and then inactivating the FAK/PI3K/AKT signaling pathway. Taken together, our study demonstrated that HHT could inhibit TC progression by inhibiting the TIMP1/FAK/PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Chuang Xi
- Department of Nuclear Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Guoqiang Zhang
- Department of Nuclear Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Nan Sun
- Department of Nuclear Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Mengyue Liu
- Department of Nuclear Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Nianting Ju
- Department of Nuclear Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Chentian Shen
- Department of Nuclear Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Hongjun Song
- Department of Nuclear Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Quanyong Luo
- Department of Nuclear Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Zhongling Qiu
- Department of Nuclear Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| |
Collapse
|
6
|
Ullah A, Razzaq A, Zhou C, Ullah N, Shehzadi S, Aziz T, Alfaifi MY, Elbehairi SEI, Iqbal H. Biological Significance of EphB4 Expression in Cancer. Curr Protein Pept Sci 2024; 25:244-255. [PMID: 37909437 DOI: 10.2174/0113892037269589231017055642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/03/2023] [Accepted: 09/15/2023] [Indexed: 11/03/2023]
Abstract
Eph receptors and their Eph receptor-interacting (ephrin) ligands comprise a vital cell communication system with several functions. In cancer cells, there was evidence of bilateral Eph receptor signaling with both tumor-suppressing and tumor-promoting actions. As a member of the Eph receptor family, EphB4 has been linked to tumor angiogenesis, growth, and metastasis, which makes it a viable and desirable target for drug development in therapeutic applications. Many investigations have been conducted over the last decade to elucidate the structure and function of EphB4 in association with its ligand ephrinB2 for its involvement in tumorigenesis. Although several EphB4-targeting drugs have been investigated, and some selective inhibitors have been evaluated in clinical trials. This article addresses the structure and function of the EphB4 receptor, analyses its possibility as an anticancer therapeutic target, and summarises knowledge of EphB4 kinase inhibitors. To summarise, EphB4 is a difficult but potential treatment option for cancers.
Collapse
Affiliation(s)
- Asmat Ullah
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Hangzhou, 310014, Zhejiang, China
| | - Anam Razzaq
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Chuanzan Zhou
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Hangzhou, 310014, Zhejiang, China
| | - Najeeb Ullah
- Department of Biomedical Engineering, Louisiana Tech University, Ruston, LA, 818 Nelson Ave, 71272, USA
| | - Somia Shehzadi
- University Institute of Medical Laboratory Technology, The University of Lahore, Lahore 54000, Pakistan
| | - Tariq Aziz
- Westlake University, School of Engineering, Hangzhou, Zhejiang Province, 310024, China
| | - Mohammad Y Alfaifi
- Department of Biology, Faculty of Science, King Khalid University, Abha 9004, Saudi Arabia
| | | | - Haroon Iqbal
- Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences Hangzhou, Zhejiang, 310022, China
| |
Collapse
|