1
|
Iwata H, Toshito T, Omachi C, Umezawa M, Yamada M, Tanaka K, Nakajima K, Tsuzuki Y, Matsumoto K, Kawai T, Shibata Y, Ugawa S, Ogino H, Hiwatashi A. Proton FLASH Irradiation Using a Synchrotron Accelerator: Differences by Irradiation Positions. Int J Radiat Oncol Biol Phys 2025; 121:1293-1302. [PMID: 39549758 DOI: 10.1016/j.ijrobp.2024.11.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 10/10/2024] [Accepted: 11/03/2024] [Indexed: 11/18/2024]
Abstract
PURPOSE To establish an ultra-high dose-rate (UHDR) radiation system using a synchrotron proton beam accelerator and to compare the effects by irradiation positions on cultured cells and chick embryos. METHODS AND MATERIALS Protons for UHDR were obtained by applying high-frequency power at much higher levels than usual to extract all protons within approximately 50 ms. Subsequently, monitoring with a Faraday cup was performed immediately after synchrotron extraction and the waveform was adjusted accordingly. Four cultured tumor lines, 2 normal cell lines, and chick embryos were used. UHDR radiation therapy (UHDR-RT) at 6 to 18 Gy (200-300 Gy/s, single exposure) and conventional dose-rate radiation therapy (Conv-RT) at 6 to 18 Gy (3 Gy/s) were administered to the 1-cm spread-out Bragg peak (SOBP) and the plateau region preceding SOBP. After irradiation, disparities in cell growth rates and cell cycle progression were assessed, and cell survival was evaluated via colony assay. Chick embryos were also examined for survival. RESULTS UHDR-RT was achieved at a range of 40 to 800 Gy/s, encompassing both plateau and peak phases. In vitro studies demonstrated similar cell-killing effects between UHDR-RT and Conv-RT in cancer cells. Significant apoptotic effects and G2 arrest were observed during the cell cycle under peak UHDR-RT conditions. The FLASH effect was not observed in normal single cells under normal atmospheric conditions. Stronger cell-killing effects were noted in V79 spheroids exposed to peak UHDR-RT than peak Conv-RT. Moreover, in chick embryos, an increase in survival rate, indicative of the FLASH effect, was observed. CONCLUSIONS The FLASH effect was also achieved with UHDR-RT using a synchrotron proton beam accelerator in chick embryos. The cell-killing effects in cancer cells were higher with peak UHDR-RT that may be due to the higher linear energy transfer at the SOBP.
Collapse
Affiliation(s)
- Hiromitsu Iwata
- Department of Radiation Oncology, Nagoya Proton Therapy Center, Nagoya City University West Medical Center.
| | - Toshiyuki Toshito
- Department of Proton Therapy Physics, Nagoya Proton Therapy Center, Nagoya City University West Medical Center
| | - Chihiro Omachi
- Department of Proton Therapy Physics, Nagoya Proton Therapy Center, Nagoya City University West Medical Center
| | - Masumi Umezawa
- Therapy System Business, Healthcare Business Group, Hitachi High-Tech Corporation, Kashiwa, Japan
| | - Masashi Yamada
- Therapy System Business, Healthcare Business Group, Hitachi High-Tech Corporation, Kashiwa, Japan
| | - Kenichiro Tanaka
- Department of Proton Therapy Technology, Nagoya Proton Therapy Center, Nagoya City University West Medical Center
| | - Koichiro Nakajima
- Department of Radiation Oncology, Nagoya Proton Therapy Center, Nagoya City University West Medical Center
| | - Yusuke Tsuzuki
- Department of Radiation Oncology, Nagoya Proton Therapy Center, Nagoya City University West Medical Center
| | - Kazuhisa Matsumoto
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences
| | - Tatsuya Kawai
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences
| | - Yasuhiro Shibata
- Department of Anatomy and Neuroscience, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Shinya Ugawa
- Department of Anatomy and Neuroscience, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Hiroyuki Ogino
- Department of Radiation Oncology, Nagoya Proton Therapy Center, Nagoya City University West Medical Center
| | - Akio Hiwatashi
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences
| |
Collapse
|
2
|
Han L, Xiang X, Fu Y, Wei S, Zhang C, Li L, Liu Y, Lv H, Shan B, Zhao L. Periplcymarin targets glycolysis and mitochondrial oxidative phosphorylation of esophageal squamous cell carcinoma: Implication in anti-cancer therapy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155539. [PMID: 38522311 DOI: 10.1016/j.phymed.2024.155539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/28/2024] [Accepted: 03/14/2024] [Indexed: 03/26/2024]
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) is the predominant histological subtype of esophageal cancer (EC) in China, and demonstrates varying levels of resistance to multiple chemotherapeutic agents. Our previous studies have proved that periplocin (CPP), derived from the extract of cortex periplocae, exhibiting the capacity to hinder proliferation and induce apoptosis in ESCC cells. Several studies have identified additional anti-cancer constituents in the extract of cortex periplocae, named periplcymarin (PPM), sharing similar compound structure with CPP. Nevertheless, the inhibitory effects of PPM on ESCC and their underlying mechanisms remain to be further elucidated. PURPOSE The aim of this study was to investigate function of PPM inhibiting the growth of ESCC in vivo and in vitro and to explore its underlying mechanism, providing the potential anti-tumor drug for ESCC. METHODS Initially, a comparative analysis was conducted on the inhibitory activity of three naturally compounds obtained from the extract of cortex periplocae on ESCC cells. Among these compounds, PPM was chosen for subsequent investigation owing to its comparatively structure and anti-tumor activity simultaneously. Subsequently, a series of biological functional experiments were carried out to assess the impact of PPM on the proliferation, apoptosis and cell cycle arrest of ESCC cells in vitro. In order to elucidate the molecular mechanism of PPM, various methodologies were employed, including bioinformatics analyses and mechanistic experiments such as high-performance liquid chromatography combined with mass spectrometry (HPLC-MS), cell glycolysis pressure and mitochondrial pressure test. Additionally, the anti-tumor effects of PPM on ESCC cells and potential toxic side effects were evaluated in vivo using the nude mice xenograft assay. RESULTS Our study revealed that PPM possesses the ability to impede the proliferation of ESCC cells, induce apoptosis, and arrest the cell cycle of ESCC cells in the G2/M phase in vitro. Mechanistically, PPM exerted its effects by modulating glycolysis and mitochondrial oxidative phosphorylation (OXPHOS), as confirmed by glycolysis pressure and mitochondrial pressure tests. Moreover, rescue assays demonstrated that PPM inhibits glycolysis and OXPHOS in ESCC cells through the PI3K/AKT and MAPK/ERK signaling pathways. Additionally, we substantiated that PPM effectively suppresses the growth of ESCC cells in vivo, with only modest potential toxic side effects. CONCLUSION Our study provides novel evidence that PPM has the potential to simultaneously target glycolysis and mitochondrial OXPHOS in ESCC cells. This finding highlights the need for further investigation into PPM as a promising therapeutic agent that targets the tumor glucose metabolism pathway in ESCC.
Collapse
Affiliation(s)
- Lujuan Han
- Research Center, the Fourth Hospital of Hebei Medical University, Jiankang Road 12, Shijiazhuang, 050011, PR China; Department of Pathogenic Biology, Hebei Medical University, Zhongshan Road 361, Shijiazhuang, 050017, PR China
| | - Xiaohan Xiang
- Research Center, the Fourth Hospital of Hebei Medical University, Jiankang Road 12, Shijiazhuang, 050011, PR China; Key Laboratory of Tumor Gene Diagnosis, Prevention and Therapy, Clinical Oncology Research Center, Hebei Province, Shijiazhuang, 050011, PR China
| | - Yuhui Fu
- Research Center, the Fourth Hospital of Hebei Medical University, Jiankang Road 12, Shijiazhuang, 050011, PR China; Key Laboratory of Tumor Gene Diagnosis, Prevention and Therapy, Clinical Oncology Research Center, Hebei Province, Shijiazhuang, 050011, PR China
| | - Sisi Wei
- Research Center, the Fourth Hospital of Hebei Medical University, Jiankang Road 12, Shijiazhuang, 050011, PR China; Key Laboratory of Tumor Gene Diagnosis, Prevention and Therapy, Clinical Oncology Research Center, Hebei Province, Shijiazhuang, 050011, PR China
| | - Cong Zhang
- Research Center, the Fourth Hospital of Hebei Medical University, Jiankang Road 12, Shijiazhuang, 050011, PR China; Key Laboratory of Tumor Gene Diagnosis, Prevention and Therapy, Clinical Oncology Research Center, Hebei Province, Shijiazhuang, 050011, PR China
| | - Lei Li
- Research Center, the Fourth Hospital of Hebei Medical University, Jiankang Road 12, Shijiazhuang, 050011, PR China; Key Laboratory of Tumor Gene Diagnosis, Prevention and Therapy, Clinical Oncology Research Center, Hebei Province, Shijiazhuang, 050011, PR China
| | - Yueping Liu
- Department of Pathology, the Fourth Hospital of Hebei Medical University, Jiankang Road 12, Shijiazhuang, 050011, PR China
| | - Huilai Lv
- Department of Thoracic Surgery, the Fourth Hospital of Hebei Medical University, Jiankang Road 12, Shijiazhuang, 050011, PR China
| | - Baoen Shan
- Research Center, the Fourth Hospital of Hebei Medical University, Jiankang Road 12, Shijiazhuang, 050011, PR China; Key Laboratory of Tumor Gene Diagnosis, Prevention and Therapy, Clinical Oncology Research Center, Hebei Province, Shijiazhuang, 050011, PR China.
| | - Lianmei Zhao
- Research Center, the Fourth Hospital of Hebei Medical University, Jiankang Road 12, Shijiazhuang, 050011, PR China; Key Laboratory of Tumor Gene Diagnosis, Prevention and Therapy, Clinical Oncology Research Center, Hebei Province, Shijiazhuang, 050011, PR China.
| |
Collapse
|
3
|
Xia X, Pi W, Chen M, Wang W, Cai D, Wang X, Lan Y, Yang H. Emerging roles of PHLPP phosphatases in lung cancer. Front Oncol 2023; 13:1216131. [PMID: 37576883 PMCID: PMC10414793 DOI: 10.3389/fonc.2023.1216131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/12/2023] [Indexed: 08/15/2023] Open
Abstract
Pleckstrin homologous domain leucine-rich repeating protein phosphatases (PHLPPs) were originally identified as protein kinase B (Akt) kinase hydrophobic motif specific phosphatases to maintain the cellular homeostasis. With the continuous expansion of PHLPPs research, imbalanced-PHLPPs were mainly found as a tumor suppressor gene of a variety of solid tumors. In this review, we simply described the history and structures of PHLPPs and summarized the recent achievements in emerging roles of PHLPPs in lung cancer by 1) the signaling pathways affected by PHLPPs including Phosphoinositide 3-kinase (PI3K)/AKT, RAS/RAF/mitogen-activated protein kinase (MEK)/extracellular signal-regulated kinase (ERK) and Protein kinase C (PKC) signaling cascades. 2) function of PHLPPs regulatory factor USP46 and miR-190/miR-215, 3) the potential roles of PHLPPs in disease prognosis, Epidermal growth factor receptors (EGFR)- tyrosine kinase inhibitor (TKI) resistance and DNA damage, 4) and the possible function of PHLPPs in radiotherapy, ferroptosis and inflammation response. Therefore, PHLPPs can be considered as either biomarker or prognostic marker for lung cancer treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Haihua Yang
- Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy, Department of Radiation Oncology, Taizhou Hospital Affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China
| |
Collapse
|
4
|
Chemotherapy to potentiate the radiation-induced immune response. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 376:143-173. [PMID: 36997268 DOI: 10.1016/bs.ircmb.2023.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
Chemoradiation (CRT) is a conventional therapy used in local cancers, especially when they are locally advanced. Studies have shown that CRT induces strong anti-tumor responses involving several immune effects in pre-clinical models and humans. In this review, we have described the various immune effects involved in CRT efficacy. Indeed, effects such as immunological cell death, activation and maturation of antigen-presenting cells, and activation of an adaptive anti-tumor immune response are attributed to CRT. As often described in other therapies, various immunosuppressive mechanisms mediated, in particular, by Treg and myeloid populations may reduce the CRT efficacy. We have therefore discussed the relevance of combining CRT with other therapies to potentiate the CRT-induced anti-tumor effects.
Collapse
|
5
|
Deycmar S, Mara E, Kerschbaum-Gruber S, Waller V, Georg D, Pruschy M. Ganetespib selectively sensitizes cancer cells for proximal and distal spread-out Bragg peak proton irradiation. Radiat Oncol 2022; 17:72. [PMID: 35410422 PMCID: PMC8996402 DOI: 10.1186/s13014-022-02036-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 03/20/2022] [Indexed: 02/03/2023] Open
Abstract
Objective Hypersensitivity towards proton versus photon irradiation was demonstrated in homologous recombination repair (HRR)-deficient cell lines. Hence, combined treatment concepts targeting HRR provide a rational for potential pharmaceutical exploitation. The HSP90 inhibitor ganetespib (STA-9090) downregulates a multitude of HRR-associated proteins and sensitizes for certain chemotherapeutics. Thus, the radiosensitizing effect of HSP90-inhibiting ganetespib was investigated for reference photon irradiation and proton irradiation at a proximal and distal position in a spread-out Bragg peak (SOBP). Methods A549 and FaDu cells were treated with low-dose (2 nM resp. 1 nM) ganetespib and irradiated with 200 kV photons. Proton irradiation was performed at a proximal and a distal position within a SOBP, with corresponding dose-averaged linear-energy transfer (LETD) values of 2.1 and 4.5 keV/µm, respectively. Cellular survival data was fitted to the linear-quadratic model to calculate relative biological effectiveness (RBE) and the dose-modifying factor (DMF). Additionally, A549 cells were treated with increasing doses of ganetespib and investigated by flow cytometry, immunoblotting, and immunofluorescence microscopy to investigate cell cycle distribution, Rad51 protein levels, and γH2AX foci, respectively. Results Low-dosed ganetespib significantly sensitized both cancer cell lines exclusively for proton irradiation at both investigated LETD, resulting in increased RBE values of 10–40%. In comparison to photon irradiation, the fraction of cells in S/G2/M phase was elevated in response to proton irradiation with 10 nM ganetespib consistently reducing this population. No changes in cell cycle distribution were detected in unirradiated cells by ganetespib alone. Protein levels of Rad51 are downregulated in irradiated A549 cells by 10 nM and also 2 nM ganetespib within 24 h. Immunofluorescence staining demonstrated similar induction and removal of γH2AX foci, irrespective of irradiation type or ganetespib administration. Conclusion Our findings illustrate a proton-specific sensitizing effect of low-dosed ganetespib in both employed cell lines and at both investigated SOBP positions. We provide additional experimental data on cellular response and a rational for future combinatorial approaches with proton radiotherapy. Supplementary Information The online version contains supplementary material available at 10.1186/s13014-022-02036-z.
Collapse
|
6
|
High-Throughput 3D Tumor Spheroid Array Platform for Evaluating Sensitivity of Proton-Drug Combinations. Int J Mol Sci 2022; 23:ijms23020587. [PMID: 35054773 PMCID: PMC8775525 DOI: 10.3390/ijms23020587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/25/2021] [Accepted: 01/04/2022] [Indexed: 12/18/2022] Open
Abstract
Proton beam therapy (PBT) is a critical treatment modality for head and neck squamous cell carcinoma (HNSCC). However, not much is known about drug combinations that may improve the efficacy of PBT. This study aimed to test the feasibility of a three-dimensional (3D) tumor-spheroid-based high-throughput screening platform that could assess cellular sensitivity against PBT. Spheroids of two HNSCC cell lines—Fadu and Cal27—cultured with a mixture of Matrigel were arrayed on a 384-pillar/well plate, followed by exposure to graded doses of protons or targeted drugs including olaparib at various concentrations. Calcein staining of HNSCC spheroids revealed a dose-dependent decrease in cell viability for proton irradiation or multiple targeted drugs, and provided quantitative data that discriminated the sensitivity between the two HNSCC cell lines. The combined effect of protons and olaparib was assessed by calculating the combination index from the survival rates of 4 × 4 matrices, showing that Cal27 spheroids had greater synergy with olaparib than Fadu spheroids. In contrast, adavosertib did not synergize with protons in both spheroids. Taken together, we demonstrated that the 3D pillar/well array platform was a useful tool that provided rapid, quantitative data for evaluating sensitivity to PBT and drug combinations. Our results further supported that administration of the combination of PBT and olaparib may be an effective treatment strategy for HNSCC patients.
Collapse
|
7
|
Matsumoto Y, Fukumitsu N, Ishikawa H, Nakai K, Sakurai H. A Critical Review of Radiation Therapy: From Particle Beam Therapy (Proton, Carbon, and BNCT) to Beyond. J Pers Med 2021; 11:jpm11080825. [PMID: 34442469 PMCID: PMC8399040 DOI: 10.3390/jpm11080825] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/20/2021] [Accepted: 08/22/2021] [Indexed: 12/24/2022] Open
Abstract
In this paper, we discuss the role of particle therapy—a novel radiation therapy (RT) that has shown rapid progress and widespread use in recent years—in multidisciplinary treatment. Three types of particle therapies are currently used for cancer treatment: proton beam therapy (PBT), carbon-ion beam therapy (CIBT), and boron neutron capture therapy (BNCT). PBT and CIBT have been reported to have excellent therapeutic results owing to the physical characteristics of their Bragg peaks. Variable drug therapies, such as chemotherapy, hormone therapy, and immunotherapy, are combined in various treatment strategies, and treatment effects have been improved. BNCT has a high dose concentration for cancer in terms of nuclear reactions with boron. BNCT is a next-generation RT that can achieve cancer cell-selective therapeutic effects, and its effectiveness strongly depends on the selective 10B accumulation in cancer cells by concomitant boron preparation. Therefore, drug delivery research, including nanoparticles, is highly desirable. In this review, we introduce both clinical and basic aspects of particle beam therapy from the perspective of multidisciplinary treatment, which is expected to expand further in the future.
Collapse
Affiliation(s)
- Yoshitaka Matsumoto
- Department of Radiation Oncology, Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan; (K.N.); (H.S.)
- Proton Medical Research Center, University of Tsukuba Hospital, Tsukuba 305-8576, Japan
- Correspondence: ; Tel.: +81-29-853-7100
| | | | - Hitoshi Ishikawa
- National Institute of Quantum and Radiological Science and Technology Hospital, Chiba 263-8555, Japan;
| | - Kei Nakai
- Department of Radiation Oncology, Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan; (K.N.); (H.S.)
- Proton Medical Research Center, University of Tsukuba Hospital, Tsukuba 305-8576, Japan
| | - Hideyuki Sakurai
- Department of Radiation Oncology, Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan; (K.N.); (H.S.)
- Proton Medical Research Center, University of Tsukuba Hospital, Tsukuba 305-8576, Japan
| |
Collapse
|
8
|
Suckert T, Nexhipi S, Dietrich A, Koch R, Kunz-Schughart LA, Bahn E, Beyreuther E. Models for Translational Proton Radiobiology-From Bench to Bedside and Back. Cancers (Basel) 2021; 13:4216. [PMID: 34439370 PMCID: PMC8395028 DOI: 10.3390/cancers13164216] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/09/2021] [Accepted: 08/17/2021] [Indexed: 12/25/2022] Open
Abstract
The number of proton therapy centers worldwide are increasing steadily, with more than two million cancer patients treated so far. Despite this development, pending questions on proton radiobiology still call for basic and translational preclinical research. Open issues are the on-going discussion on an energy-dependent varying proton RBE (relative biological effectiveness), a better characterization of normal tissue side effects and combination treatments with drugs originally developed for photon therapy. At the same time, novel possibilities arise, such as radioimmunotherapy, and new proton therapy schemata, such as FLASH irradiation and proton mini-beams. The study of those aspects demands for radiobiological models at different stages along the translational chain, allowing the investigation of mechanisms from the molecular level to whole organisms. Focusing on the challenges and specifics of proton research, this review summarizes the different available models, ranging from in vitro systems to animal studies of increasing complexity as well as complementing in silico approaches.
Collapse
Affiliation(s)
- Theresa Suckert
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany; (T.S.); (S.N.); (A.D.); (L.A.K.-S.)
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Sindi Nexhipi
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany; (T.S.); (S.N.); (A.D.); (L.A.K.-S.)
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, 01309 Dresden, Germany
| | - Antje Dietrich
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany; (T.S.); (S.N.); (A.D.); (L.A.K.-S.)
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Robin Koch
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany; (R.K.); (E.B.)
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Leoni A. Kunz-Schughart
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany; (T.S.); (S.N.); (A.D.); (L.A.K.-S.)
- National Center for Tumor Diseases (NCT), Partner Site Dresden, 01307 Dresden, Germany
| | - Emanuel Bahn
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany; (R.K.); (E.B.)
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
- German Cancer Research Center (DKFZ), Clinical Cooperation Unit Radiation Oncology, 69120 Heidelberg, Germany
| | - Elke Beyreuther
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany; (T.S.); (S.N.); (A.D.); (L.A.K.-S.)
- Helmholtz-Zentrum Dresden—Rossendorf, Institute of Radiation Physics, 01328 Dresden, Germany
| |
Collapse
|
9
|
Nomura K, Iwata H, Toshito T, Omachi C, Nagayoshi J, Nakajima K, Ogino H, Shibamoto Y. Biological effects of passive scattering and spot scanning proton beams at the distal end of the spread-out Bragg peak in single cells and multicell spheroids. Int J Radiat Biol 2021; 97:695-703. [PMID: 33617430 DOI: 10.1080/09553002.2021.1889704] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/02/2021] [Accepted: 02/09/2021] [Indexed: 12/28/2022]
Abstract
PURPOSE The present study investigated the biological effects of spot scanning and passive scattering proton therapies at the distal end region of the spread-out Bragg peak (SOBP) using single cell and multicell spheroids. MATERIALS AND METHODS The Geant4 Monte Carlo simulation was used to calculate linear energy transfer (LET) values in passive scattering and spot scanning beams. The biological doses of the two beam options at various points of the distal end region of SOBP were investigated using EMT6 single cells and 0.6-mm V79 spheroids irradiated with 6 and 15 Gy, respectively, by inserting the fractions surviving these doses onto dose-survival curves and reading the corresponding dose. RESULTS LET values in the entrance region of SOBP were similar between the two beam options and increased at the distal end region of SOBP, where the LET value of spot scanning beams was higher than that of passive scattering beams. Increases in biological effects at the distal end region were similarly observed in single cells and spheroids; biological doses at 2-10 mm behind the distal end were 4.5-57% and 5.7-86% higher than physical doses in passive scattering and spot scanning beams, respectively, with the biological doses of spot scanning beams being higher than those of passive scattering beams (p < .05). CONCLUSIONS In single cells and spheroids, the effects of proton irradiation were stronger than expected from measured physical doses at the distal end of SOBP and were correlated with LET increases.
Collapse
Affiliation(s)
- Kento Nomura
- Department of Radiation Oncology, Nagoya Proton Therapy Center, Nagoya City West Medical Center, Nagoya, Japan
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Hiromitsu Iwata
- Department of Radiation Oncology, Nagoya Proton Therapy Center, Nagoya City West Medical Center, Nagoya, Japan
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Toshiyuki Toshito
- Department of Proton Therapy Physics, Nagoya Proton Therapy Center, Nagoya, Japan
| | - Chihiro Omachi
- Department of Proton Therapy Physics, Nagoya Proton Therapy Center, Nagoya, Japan
| | - Junpei Nagayoshi
- Department of Radiation Therapy, Nagoya City West Medical Center, Nagoya, Japan
| | - Koichiro Nakajima
- Department of Radiation Oncology, Nagoya Proton Therapy Center, Nagoya City West Medical Center, Nagoya, Japan
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Hiroyuki Ogino
- Department of Radiation Oncology, Nagoya Proton Therapy Center, Nagoya City West Medical Center, Nagoya, Japan
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yuta Shibamoto
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
10
|
Iwata H, Akita K, Yamaba Y, Kunii E, Takakuwa O, Yoshihara M, Hattori Y, Nakajima K, Hayashi K, Toshito T, Ogino H, Shibamoto Y. Concurrent Chemo-Proton Therapy Using Adaptive Planning for Unresectable Stage 3 Non-Small Cell Lung Cancer: A Phase 2 Study. Int J Radiat Oncol Biol Phys 2020; 109:1359-1367. [PMID: 33227444 DOI: 10.1016/j.ijrobp.2020.11.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/05/2020] [Accepted: 11/12/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE This study prospectively evaluated the efficacy and safety of concurrent chemo-proton therapy (CCPT) using adaptive planning for unresectable stage III non-small cell lung cancer (NSCLC). METHODS AND MATERIALS The primary endpoint was overall survival (OS). Secondary endpoints were local control rate (LCR), progression-free survival (PFS), incidence of grade 3 or higher adverse events, and changes in quality of life (QOL). Patients received cisplatin (60 mg/m2) on day 1 and S-1 (∼40 mg/m2 twice daily) on days 1 to 14, q4w, for up to 4 cycles, plus concurrent proton therapy at a total dose of 70 GyRBE for the primary lesion and 66 GyRBE for lymph node metastasis with 2 GyRBE per day. Proton therapy was performed using respiratory-gated and image guided techniques, and adaptive plans were implemented. RESULTS Forty-seven patients were enrolled between August 2013 and August 2018. Four cycles of cisplatin plus S-1 were completed in 34 patients. The mean number of cycles was 4 (range, 1-4). The median follow-up of all and surviving patients was 37 (range, 4-84) and 52 months (range, 26-84), respectively. The mean number of replanning sessions was 2.5 (range, 1-4). The 2- and 5-year OS, LCR, and PFS were 77% (95% confidence interval 64%-89%) and 59% (43%-76%), 84% (73%-95%) and 61% (44%-78%), and 43% (28%-57%) and 37% (22%-51%), respectively. The median OS was not reached. No grade 3 or higher radiation pneumonitis was observed. There was no significant deterioration in the QOL scores after 24 months except for alopecia. CONCLUSIONS CCPT with adaptive planning was well tolerated and yielded remarkable OS for unresectable stage III NSCLC.
Collapse
Affiliation(s)
- Hiromitsu Iwata
- Department of Radiation Oncology, Nagoya Proton Therapy Center, Nagoya City West Medical Center, Nagoya, Japan; Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan.
| | - Kenji Akita
- Department of Respiratory Tract Oncology Center, Nagoya City West Medical Center, Nagoya, Japan
| | - Yusuke Yamaba
- Department of Respiratory Tract Oncology Center, Nagoya City West Medical Center, Nagoya, Japan
| | - Eiji Kunii
- Department of Respiratory Tract Oncology Center, Nagoya City West Medical Center, Nagoya, Japan
| | - Osamu Takakuwa
- Department of Respiratory Tract Oncology Center, Nagoya City West Medical Center, Nagoya, Japan
| | - Misuzu Yoshihara
- Department of Respiratory Tract Oncology Center, Nagoya City West Medical Center, Nagoya, Japan
| | - Yukiko Hattori
- Department of Radiation Oncology, Nagoya Proton Therapy Center, Nagoya City West Medical Center, Nagoya, Japan
| | - Koichiro Nakajima
- Department of Radiation Oncology, Nagoya Proton Therapy Center, Nagoya City West Medical Center, Nagoya, Japan; Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Kensuke Hayashi
- Department of Proton Therapy Technology, Nagoya Proton Therapy Center, Nagoya, Japan
| | - Toshiyuki Toshito
- Department of Proton Therapy Physics, Nagoya Proton Therapy Center, Nagoya, Japan
| | - Hiroyuki Ogino
- Department of Radiation Oncology, Nagoya Proton Therapy Center, Nagoya City West Medical Center, Nagoya, Japan; Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yuta Shibamoto
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|