1
|
Zhou L, Zhu J, Liu Y, Zhou P, Gu Y. Mechanisms of radiation-induced tissue damage and response. MedComm (Beijing) 2024; 5:e725. [PMID: 39309694 PMCID: PMC11413508 DOI: 10.1002/mco2.725] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/25/2024] Open
Abstract
Radiation-induced tissue injury (RITI) is the most common complication in clinical tumor radiotherapy. Due to the heterogeneity in the response of different tissues to radiation (IR), radiotherapy will cause different types and degrees of RITI, which greatly limits the clinical application of radiotherapy. Efforts are continuously ongoing to elucidate the molecular mechanism of RITI and develop corresponding prevention and treatment drugs for RITI. Single-cell sequencing (Sc-seq) has emerged as a powerful tool in uncovering the molecular mechanisms of RITI and for identifying potential prevention targets by enhancing our understanding of the complex intercellular relationships, facilitating the identification of novel cell phenotypes, and allowing for the assessment of cell heterogeneity and spatiotemporal developmental trajectories. Based on a comprehensive review of the molecular mechanisms of RITI, we analyzed the molecular mechanisms and regulatory networks of different types of RITI in combination with Sc-seq and summarized the targeted intervention pathways and therapeutic drugs for RITI. Deciphering the diverse mechanisms underlying RITI can shed light on its pathogenesis and unveil new therapeutic avenues to potentially facilitate the repair or regeneration of currently irreversible RITI. Furthermore, we discuss how personalized therapeutic strategies based on Sc-seq offer clinical promise in mitigating RITI.
Collapse
Affiliation(s)
- Lin Zhou
- Beijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Jiaojiao Zhu
- Beijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Yuhao Liu
- Beijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Ping‐Kun Zhou
- Beijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Yongqing Gu
- Beijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
- Hengyang Medical CollegeUniversity of South ChinaHengyangHunanChina
- College of Life SciencesHebei UniversityBaodingChina
| |
Collapse
|
2
|
Boz S, Kwiatkowski M, Zwahlen M, Bochud M, Bulliard JL, Konzelmann I, Bergeron Y, Rapiti E, Maspoli Conconi M, Bordoni A, Röösli M, Vienneau D. A cohort analysis of residential radon exposure and melanoma incidence in Switzerland. ENVIRONMENTAL RESEARCH 2024; 243:117822. [PMID: 38048864 DOI: 10.1016/j.envres.2023.117822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/18/2023] [Accepted: 11/28/2023] [Indexed: 12/06/2023]
Abstract
Radon is a radioactive noble gas found in Earth's crust. It accumulates in buildings, and accounts for approximately half the ionizing radiation dose received by humans. The skin is considerably exposed to ionizing radiation from radon. We aimed to evaluate the association between residential radon exposure and melanoma and squamous cell carcinoma incidence. The study included 1.3 million adults (20 years and older) from the Swiss National Cohort who were residents of the cantons of Vaud, Neuchâtel, Valais, Geneva, Fribourg, and Ticino at the study baseline (December 04, 2000). Cases of primary tumours of skin (melanoma and squamous cell carcinoma) were identified using data from cantonal cancer registries. Long-term residential radon and ambient solar ultraviolet radiation exposures were assigned to each individual's address at baseline. Cox proportional hazard models with age as time scale, adjusted for canton, socioeconomic position, demographic data available in the census, and outdoor occupation were applied. Total and age specific effects were calculated, in the full population and in non-movers, and potential effect modifiers were tested. In total 4937 incident cases of melanoma occurred during an average 8.9 years of follow-up. Across all ages, no increased risk of malignant melanoma or squamous cell carcinoma incidence in relation to residential radon was found. An association was only observed for melanoma incidence in the youngest age group of 20-29 year olds (1.68 [95% CI: 1.29, 2.19] 100 Bq/m3 radon). This association was mainly in women, and in those with low socio-economic position. Residential radon exposure might be a relevant risk factor for melanoma, especially for young adults. However, the results must be interpreted with caution as this finding is based on a relatively small number of melanoma cases. Accumulation of radon is preventable, and measures to reduce exposure and communicate the risks remain important to convey to the public.
Collapse
Affiliation(s)
- Seçkin Boz
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Marek Kwiatkowski
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Marcel Zwahlen
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Murielle Bochud
- Centre for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland
| | - Jean-Luc Bulliard
- Centre for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland; Neuchâtel Cancer Registry, Neuchâtel, Switzerland
| | | | | | | | | | - Andrea Bordoni
- Ticino Cancer Registry, Institute of Pathology South of Switzerland, Locarno, Switzerland
| | - Martin Röösli
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Danielle Vienneau
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland.
| |
Collapse
|
3
|
Singh VK, Srivastava M, Seed TM. Protein biomarkers for radiation injury and testing of medical countermeasure efficacy: promises, pitfalls, and future directions. Expert Rev Proteomics 2023; 20:221-246. [PMID: 37752078 DOI: 10.1080/14789450.2023.2263652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/11/2023] [Indexed: 09/28/2023]
Abstract
INTRODUCTION Radiological/nuclear accidents, hostile military activity, or terrorist strikes have the potential to expose a large number of civilians and military personnel to high doses of radiation resulting in the development of acute radiation syndrome and delayed effects of exposure. Thus, there is an urgent need for sensitive and specific assays to assess the levels of radiation exposure to individuals. Such radiation exposures are expected to alter primary cellular proteomic processes, resulting in multifaceted biological responses. AREAS COVERED This article covers the application of proteomics, a promising and fast developing technology based on quantitative and qualitative measurements of protein molecules for possible rapid measurement of radiation exposure levels. Recent advancements in high-resolution chromatography, mass spectrometry, high-throughput, and bioinformatics have resulted in comprehensive (relative quantitation) and precise (absolute quantitation) approaches for the discovery and accuracy of key protein biomarkers of radiation exposure. Such proteome biomarkers might prove useful for assessing radiation exposure levels as well as for extrapolating the pharmaceutical dose of countermeasures for humans based on efficacy data generated using animal models. EXPERT OPINION The field of proteomics promises to be a valuable asset in evaluating levels of radiation exposure and characterizing radiation injury biomarkers.
Collapse
Affiliation(s)
- Vijay K Singh
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Meera Srivastava
- Department of Anatomy, Physiology and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | | |
Collapse
|