1
|
Han Y, Geng C, Liu Y, Wu R, Li M, Yu C, Altieri S, Tang X. Calculation of the DNA damage yield and relative biological effectiveness in boron neutron capture therapy via the Monte Carlo track structure simulation. Phys Med Biol 2023; 68:175028. [PMID: 37524085 DOI: 10.1088/1361-6560/acec2a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 07/31/2023] [Indexed: 08/02/2023]
Abstract
Objective.Boron neutron capture therapy (BNCT) is an advanced cellular-level hadron therapy that has exhibited remarkable therapeutic efficacy in the treatment of locally invasive malignancies. Despite its clinical success, the intricate nature of relative biological effectiveness (RBE) and mechanisms responsible for DNA damage remains elusive. This work aims to quantify the RBE of compound particles (i.e. alpha and lithium) in BNCT based on the calculation of DNA damage yields via the Monte Carlo track structure (MCTS) simulation.Approach. The TOPAS-nBio toolkit was employed to conduct MCTS simulations. The calculations encompassed four steps: determination of the angle and energy spectra on the nuclear membrane, quantification of the database containing DNA damage yields for ions with specific angle and energy, accumulation of the database and spectra to obtain the DNA damage yields of compound particles, and calculation of the RBE by comparison yields of double-strand break (DSB) with the reference gamma-ray. Furthermore, the impact of cell size and microscopic boron distribution was thoroughly discussed.Main results. The DSB yields induced by compound particles in three types of spherical cells (radius equal to 10, 8, and 6μm) were found to be 13.28, 17.34, 22.15 Gy Gbp-1for boronophenylalanine (BPA), and 1.07, 3.45, 8.32 Gy Gbp-1for sodium borocaptate (BSH). The corresponding DSB-based RBE values were determined to be 1.90, 2.48, 3.16 for BPA and 0.15, 0.49, 1.19 for BSH. The calculated DSB-based RBE showed agreement with experimentally values of compound biological effectiveness for melanoma and gliosarcoma. Besides, the DNA damage yield and DSB-based RBE value exhibited an increasing trend as the cell radius decreased. The impact of the boron concentration ratio on RBE diminished once the drug enrichment surpasses a certain threshold.Significance. This work is potential to provide valuable guidance for accurate biological-weighted dose evaluation in BNCT.
Collapse
Affiliation(s)
- Yang Han
- Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, People's Republic of China
- Department of Physics, University of Pavia, Pavia, Italy
| | - Changran Geng
- Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, People's Republic of China
| | - Yuanhao Liu
- Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, People's Republic of China
- Neuboron Medtech. Ltd, Nanjing, People's Republic of China
| | - Renyao Wu
- Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, People's Republic of China
| | - Mingzhu Li
- Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, People's Republic of China
| | - Chenxi Yu
- Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, People's Republic of China
| | - Saverio Altieri
- Department of Physics, University of Pavia, Pavia, Italy
- Istituto Nazionale di Fisica Nucleare (INFN), the section of Pavia, Pavia, Italy
| | - Xiaobin Tang
- Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, People's Republic of China
| |
Collapse
|
2
|
Mechetin GV, Zharkov DO. DNA Damage Response and Repair in Boron Neutron Capture Therapy. Genes (Basel) 2023; 14:127. [PMID: 36672868 PMCID: PMC9859301 DOI: 10.3390/genes14010127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023] Open
Abstract
Boron neutron capture therapy (BNCT) is an approach to the radiotherapy of solid tumors that was first outlined in the 1930s but has attracted considerable attention recently with the advent of a new generation of neutron sources. In BNCT, tumor cells accumulate 10B atoms that react with epithermal neutrons, producing energetic α particles and 7Li atoms that damage the cell's genome. The damage inflicted by BNCT appears not to be easily repairable and is thus lethal for the cell; however, the molecular events underlying the action of BNCT remain largely unaddressed. In this review, the chemistry of DNA damage during BNCT is outlined, the major mechanisms of DNA break sensing and repair are summarized, and the specifics of the repair of BNCT-induced DNA lesions are discussed.
Collapse
Affiliation(s)
- Grigory V. Mechetin
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090 Novosibirsk, Russia
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia
| | - Dmitry O. Zharkov
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090 Novosibirsk, Russia
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia
| |
Collapse
|
3
|
Key biological mechanisms involved in high-LET radiation therapies with a focus on DNA damage and repair. Expert Rev Mol Med 2022; 24:e15. [PMID: 35357290 DOI: 10.1017/erm.2022.6] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
DNA damage and repair studies are at the core of the radiation biology field and represent also the fundamental principles informing radiation therapy (RT). DNA damage levels are a function of radiation dose, whereas the type of damage and biological effects such as DNA damage complexity, depend on radiation quality that is linear energy transfer (LET). Both levels and types of DNA damage determine cell fate, which can include necrosis, apoptosis, senescence or autophagy. Herein, we present an overview of current RT modalities in the light of DNA damage and repair with emphasis on medium to high-LET radiation. Proton radiation is discussed along with its new adaptation of FLASH RT. RT based on α-particles includes brachytherapy and nuclear-RT, that is proton-boron capture therapy (PBCT) and boron-neutron capture therapy (BNCT). We also discuss carbon ion therapy along with combinatorial immune-based therapies and high-LET RT. For each RT modality, we summarise relevant DNA damage studies. Finally, we provide an update of the role of DNA repair in high-LET RT and we explore the biological responses triggered by differential LET and dose.
Collapse
|
4
|
High-Accuracy Relative Biological Effectiveness Values Following Low-Dose Thermal Neutron Exposures Support Bimodal Quality Factor Response with Neutron Energy. Int J Mol Sci 2022; 23:ijms23020878. [PMID: 35055062 PMCID: PMC8779315 DOI: 10.3390/ijms23020878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/24/2021] [Accepted: 12/30/2021] [Indexed: 12/04/2022] Open
Abstract
Theoretical evaluations indicate the radiation weighting factor for thermal neutrons differs from the current International Commission on Radiological Protection (ICRP) recommended value of 2.5, which has radiation protection implications for high-energy radiotherapy, inside spacecraft, on the lunar or Martian surface, and in nuclear reactor workplaces. We examined the relative biological effectiveness (RBE) of DNA damage generated by thermal neutrons compared to gamma radiation. Whole blood was irradiated by 64 meV thermal neutrons from the National Research Universal reactor. DNA damage and erroneous DNA double-strand break repair was evaluated by dicentric chromosome assay (DCA) and cytokinesis-block micronucleus (CBMN) assay with low doses ranging 6–85 mGy. Linear dose responses were observed. Significant DNA aberration clustering was found indicative of high ionizing density radiation. When the dose contribution of both the 14N(n,p)14C and 1H(n,γ)2H capture reactions were considered, the DCA and the CBMN assays generated similar maximum RBE values of 11.3 ± 1.6 and 9.0 ± 1.1, respectively. Consequently, thermal neutron RBE is approximately four times higher than the current ICRP radiation weighting factor value of 2.5. This lends support to bimodal peaks in the quality factor for RBE neutron energy response, underlining the importance of radiological protection against thermal neutron exposures.
Collapse
|
5
|
Qi J, Geng C, Tang X, Tian F, Han Y, Liu H, Liu Y, Bortolussi S, Guan F. Effect of spatial distribution of boron and oxygen concentration on DNA damage induced from boron neutron capture therapy using Monte Carlo simulations. Int J Radiat Biol 2021; 97:986-996. [PMID: 33970761 DOI: 10.1080/09553002.2021.1928785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 04/03/2021] [Accepted: 04/19/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE This paper aims to investigate how the spatial distribution of boron in cells and oxygen concentration affect the DNA damage induced by charged particles in boron neutron capture therapy (BNCT) by Monte Carlo simulations, and further to evaluate the relative biological effectiveness (RBE) of DNA double-strand breaks (DSBs) induction. MATERIALS AND METHODS The kinetic energy spectra of α, 7Li particles in BNCT arriving at the nucleus surface were obtained from GEANT4 (Geant4 10.05.p01). The DNA damage caused by BNCT was then evaluated using MCDS (MCDS 3.10A). RESULTS When α or 7Li particles were distributed in the cytomembrane or cytoplasm, the difference in DNA damage of the same types was less than 0.5%. Taking the 137Cs photons as the reference radiation, when the oxygen concentration varied from 0% to 50%, the RBE of 0.54MeV protons and recoil protons varied from 5 to 2, whereas it decreased from 10 to 3 for α or 7Li particles. CONCLUSION The RBE of DSB induction all charged particles in BNCT decreased with the increase of oxygen concentration. This work indicated that the RBE of different radiation particles of BNCT might be affected by many factors, which should be paid attention to in theoretical research or clinical application.
Collapse
Affiliation(s)
- Jie Qi
- Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Changran Geng
- Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China
- Key Laboratory of Nuclear Technology Application and Radiation Protection in Astronautics, Ministry of Industry and Information Technology, Nanjing, China
- Joint International Research Laboratory on Advanced Particle Therapy, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Xiaobin Tang
- Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China
- Key Laboratory of Nuclear Technology Application and Radiation Protection in Astronautics, Ministry of Industry and Information Technology, Nanjing, China
- Joint International Research Laboratory on Advanced Particle Therapy, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Feng Tian
- Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Yang Han
- Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China
- Department of Physics, University of Pavia, Pavia, Italy
| | - Huan Liu
- Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Yuanhao Liu
- Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | | | - Fada Guan
- Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
6
|
Maliszewska-Olejniczak K, Kaniowski D, Araszkiewicz M, Tymińska K, Korgul A. Molecular Mechanisms of Specific Cellular DNA Damage Response and Repair Induced by the Mixed Radiation Field During Boron Neutron Capture Therapy. Front Oncol 2021; 11:676575. [PMID: 34094980 PMCID: PMC8170402 DOI: 10.3389/fonc.2021.676575] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/28/2021] [Indexed: 01/04/2023] Open
Abstract
The impact of a mixed neutron-gamma beam on the activation of DNA damage response (DDR) proteins and non-coding RNAs (ncRNAs) is poorly understood. Ionizing radiation is characterized by its biological effectiveness and is related to linear energy transfer (LET). Neutron-gamma mixed beam used in boron neutron capture therapy (BNCT) can induce another type of DNA damage such as clustered DNA or multiple damaged sites, as indicated for high LET particles, such as alpha particles, carbon ions, and protons. We speculate that after exposure to a mixed radiation field, the repair capacity might reduce, leading to unrepaired complex DNA damage for a long period and may promote genome instability and cell death. This review will focus on the poorly studied impact of neutron-gamma mixed beams with an emphasis on DNA damage and molecular mechanisms of repair. In case of BNCT, it is not clear which repair pathway is involved, and recent experimental work will be presented. Further understanding of BNCT-induced DDR mechanisms may lead to improved therapeutic efficiency against different tumors.
Collapse
Affiliation(s)
| | - Damian Kaniowski
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Lodz, Poland
| | - Martyna Araszkiewicz
- Faculty of Physics, University of Warsaw, Warsaw, Poland.,Nuclear Facilities Operations Department, National Centre for Nuclear Research, Otwock, Poland
| | - Katarzyna Tymińska
- Nuclear Facilities Operations Department, National Centre for Nuclear Research, Otwock, Poland
| | | |
Collapse
|
7
|
Shi Y, Fu Q, Li J, Liu H, Zhang Z, Liu T, Liu Z. Covalent Organic Polymer as a Carborane Carrier for Imaging-Facilitated Boron Neutron Capture Therapy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:55564-55573. [PMID: 33327054 DOI: 10.1021/acsami.0c15251] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Boron neutron capture therapy (BNCT) is an atomic targeted radiotherapy that shows fantastic suppression impact on locally intrusive threatening tumors. One key factor for effective BNCT is to aggregate an adequate concentration (>20 ppm) of 10B in the cytoplasm of the tumor. Carborane-loaded polymer nanoparticles are promising because of their outstanding biocompatibility and plasma steadiness. In this study, a new class of carborane-loaded nanoscale covalent organic polymers (BCOPs) was prepared by a Schiff base condensation reaction, and their solubility was greatly improved in common solvents via alkyl chain engineering and size tailoring. The obtained BCOP-5T was further functionalized by biocompatible 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino(polyethylene-glycol)-2000] (DSPE-PEG, molecular weight 2000) to form stable aqueous-phase nanoparticles with a hydrodynamic diameter of around 100 nm. After chelating with radioactive copper-64, DSPE-BCOP-5T was tracked by positron emission tomography (PET) imaging and showed significant accumulation in the tumor. DSPE-BCOP-5T + neutron radiation showed remarkable tumor suppression in 4T1 tumor-bearing mice (murine breast cancer). No obvious physical tissue damage and abnormal behavior were observed, demonstrating that the boron delivery was successful and tumor-selective. To conclude, this study presents a theranostic COP-based platform with a well-defined composition, good biocompatibility, and satisfactory tumor accumulation, which is promising for PET imaging, drug delivery, and BNCT.
Collapse
Affiliation(s)
- Yaxin Shi
- Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Qiang Fu
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jiyuan Li
- Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Hui Liu
- Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zizhu Zhang
- Beijing Capture Tech Co. Ltd., Beijing 102413, China
| | - Tong Liu
- Beijing Capture Tech Co. Ltd., Beijing 102413, China
| | - Zhibo Liu
- Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Peking University-Tsinghua University Center for Life Sciences, Beijing 100871, China
| |
Collapse
|
8
|
Mendes ME, Mendonça JCGD, Hwang S, Giorgio MD, Lima FFD, Santos N. Calibration curves by 60Co with low dose rate are different in terms of dose estimation - a comparative study. Genet Mol Biol 2020; 43:e20180370. [PMID: 32105287 PMCID: PMC7231543 DOI: 10.1590/1678-4685-gmb-2018-0370] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 12/17/2019] [Indexed: 01/08/2023] Open
Abstract
Biological dosimetry aims to estimate individual absorbed doses due ionizing
radiation exposure. The dicentric chromosomes are considered the most specific
biomarker for dose estimation. This study aimed to compare calibration curves
for linear low energy transfer (LET) radiation built from low dose rates and
whether they vary in terms of dose estimation. For that we did a search in the
literature of all calibration curves produced with low dose rates and we
simulated the dose estimation from pre-established dicentric’s frequencies. The
information on methodologies and cytogenetic results of each study were
analyzed. As expected dose rate influence β coefficients, especially at higher
doses. However, we have seen that some doses were not statistically different
but they should be, because there is a significant association between the
productions of dicentrics and dose rate. This comparative study reinforced the
robustness of the dicentric assay and its importance in biological dosimetry. We
also emphasized that the dose rate was an important factor in dose estimations.
Thus, intercomparison exercises should take into account the dose rates of the
participating laboratories, because the dose rates might explain why some
results of estimated doses fall outside the recommendations.
Collapse
Affiliation(s)
- Mariana Esposito Mendes
- Universidade Federal de Pernambuco, Departamento de Genética, Recife, Pernambuco, Brazil.,Centro Regional de Ciências Nucleares do Nordeste, Recife, Pernambuco, Brazil
| | | | - Suy Hwang
- Centro Regional de Ciências Nucleares do Nordeste, Recife, Pernambuco, Brazil
| | | | | | - Neide Santos
- Universidade Federal de Pernambuco, Departamento de Genética, Recife, Pernambuco, Brazil
| |
Collapse
|
9
|
Chen J, Yang Q, Liu M, Lin M, Wang T, Zhang Z, Zhong X, Guo N, Lu Y, Xu J, Wang C, Han M, Wei Q. Remarkable Boron Delivery Of iRGD-Modified Polymeric Nanoparticles For Boron Neutron Capture Therapy. Int J Nanomedicine 2019; 14:8161-8177. [PMID: 31632025 PMCID: PMC6790217 DOI: 10.2147/ijn.s214224] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 09/11/2019] [Indexed: 12/20/2022] Open
Abstract
Purpose Boron neutron capture therapy (BNCT) is an emerging binary radiotherapy, which is limited for application due to the challenge of targeted delivery into tumor nowadays. Here, we propose the use of iRGD-modified polymeric nanoparticles for active targeted delivery of boron and doxorubicin (DOX) in BNCT. Methods 10B-enriched BSH was covalently grafted to PEG-PCCL to prepare 10B-polymer, then surface-modified with iRGD. And, DOX was physically incorporated into polymers afterwards. Characterization of prepared polymers and in vitro release profile of DOX from polymers were determined by several methods. Cellular uptake of DOX was observed by confocal microscope. Accumulation of boron in cells and tissues was analyzed by ICP-MS. Biodistribution of DOX was studied by ex vivo fluorescence imaging and quantitative measurement. Tumor vascular normalization of Endostar for promoting delivery efficiency of boron on refractory B16F10 tumor was also studied. Results The polymers were monodisperse and spheroidal in water with an average diameter of 24.97 nm, which were relatively stable at physiological pH and showed a sustained release of DOX, especially at endolysosomal pH. Enhanced cellular delivery of DOX was found in iRGD-modified polymer group. Cellular boron uptake of iRGD-modified polymers in A549 cells was remarkably raised fivefold (209.83 ng 10B/106 cells) compared with BSH. The polymers represented prolonged blood circulation, enhanced tumor accumulation of 10B against BSH, and favorable tumor:normal tissue boron concentration ratios (tumor:blood = 14.11, tumor:muscle = 19.49) in A549 tumor-bearing mice 24 hrs after injection. Both fluorescence imaging and quantitative measurement showed the highest tumor accumulation of DOX at 24 hrs after injecting of iRGD-modified polymers. Improvement of vascular integrity and reduction of vascular mimicries were found after Endostar injection, and raised tumor accumulation of boron as well. Conclusion The developed nanoparticle is an inspiring candidate for the safe clinical application for BNCT.
Collapse
Affiliation(s)
- Jiejian Chen
- Department of Radiation Oncology, Ministry of Education Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310009, People's Republic of China.,Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Qiyao Yang
- Department of Radiation Oncology, Ministry of Education Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310009, People's Republic of China.,Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Minchen Liu
- Engineering Research Center of Modern Preparation Technology of TCM, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, People's Republic of China
| | - Mengting Lin
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Tiantian Wang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Zhentao Zhang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Xincheng Zhong
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Ningning Guo
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Yiying Lu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Jing Xu
- Department of Radiation Oncology, Ministry of Education Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310009, People's Republic of China
| | - Changsheng Wang
- Department of Spinal Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, People's Republic of China
| | - Min Han
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Qichun Wei
- Department of Radiation Oncology, Ministry of Education Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310009, People's Republic of China
| |
Collapse
|
10
|
Jamsranjav E, Ito A, Kato Y, Tatebe Y, Takase N, Yoshida S. DNA Strand Breaks Induced by Fast and Thermal Neutrons from YAYOI Research Reactor in the Presence and Absence of Boric Acid. Radiat Res 2019; 191:483-489. [PMID: 30896279 DOI: 10.1667/rr15249.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
It is well known that neutrons have more damaging effects, with high relative biological effectiveness or a radiation weighting factor depending on neutron energy, compared to low-LET ionizing radiations. In the current work, we evaluated the contribution of the indirect effect induced by radicals for the purpose of studying the mechanisms of fast neutron effects or mechanisms of boron neutron capture therapy (BNCT) using relatively lower energy neutrons. Plasmid pBR322 DNA with a supercoiled structure was irradiated with fast neutrons (1-10 MeV) in the reactor core of the YAYOI research reactor at the University of Tokyo, and with thermalized neutrons passing through a phantom made of acrylic resin to simulate a human body. The single- and double-strand breaks (SSBs and DSBs) of the plasmid were evaluated from the numbers of its open circular and linear forms, respectively, detected using agarose gel electrophoresis. The number of supercoiled forms decreased exponentially with the absorbed dose of fast neutrons. The decrease was inhibited by dimethyl sulfoxide (DMSO) in a concentration-dependent manner. The contributions of the indirect effect to DNA strand breaks by fast neutrons and thermalized neutrons were calculated to be 50-65% which, while lower than the value for X rays, still accounts for the majority of the DNA strand breaks. In the case of thermalized neutrons, SSB and DSB yields were increased by the addition of boric acid. Moreover, an increased 10B isotope concentration was found to increase the DSB/SSB ratio.
Collapse
Affiliation(s)
- Erdenetogtokh Jamsranjav
- Department of Nuclear Engineering, School of Engineering, Tokai University, Hiratsuka-shi, Kanagawa 259-1292, Japan
| | - Atsushi Ito
- Department of Nuclear Engineering, School of Engineering, Tokai University, Hiratsuka-shi, Kanagawa 259-1292, Japan
| | - Yoshinari Kato
- Department of Nuclear Engineering, School of Engineering, Tokai University, Hiratsuka-shi, Kanagawa 259-1292, Japan
| | - Yousuke Tatebe
- Department of Nuclear Engineering, School of Engineering, Tokai University, Hiratsuka-shi, Kanagawa 259-1292, Japan
| | - Nobuhiro Takase
- Department of Nuclear Engineering, School of Engineering, Tokai University, Hiratsuka-shi, Kanagawa 259-1292, Japan
| | - Shigeo Yoshida
- Department of Nuclear Engineering, School of Engineering, Tokai University, Hiratsuka-shi, Kanagawa 259-1292, Japan
| |
Collapse
|
11
|
Shi Y, Li J, Zhang Z, Duan D, Zhang Z, Liu H, Liu T, Liu Z. Tracing Boron with Fluorescence and Positron Emission Tomography Imaging of Boronated Porphyrin Nanocomplex for Imaging-Guided Boron Neutron Capture Therapy. ACS APPLIED MATERIALS & INTERFACES 2018; 10:43387-43395. [PMID: 30451482 DOI: 10.1021/acsami.8b14682] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Boron neutron capture therapy (BNCT) induces high-energy radiation within cancer cells while avoiding damage to normal cells without uptake of BNCT drugs, which is holding great promise to provide excellent control over locally invasive malignant tumors. However, lack of quantitative imaging technique to determine local boron concentration has been a great challenge for nuclear physicians to apply accurate neutron irradiation during the treatment, which is a key factor that has limited BNCT's application in clinics. To meet this challenge, this study describes coating boronated porphyrins with a biocompatible poly(lactide- co-glycolide)-monomethoxy-poly(polyethylene-glycol) (PLGA-mPEG) micelle for selective tumor accumulation and reduced toxicity comparing with the previously reported boronated porphyrin drugs. Fluorescence imaging and positron emission tomography (PET) imaging were performed, unveiling the potential imaging properties of this boronated porphyrin nanocomplex (BPN) to locate tumor region and to determine tissue-localized boron concentration which facilitates treatment planning. By studying the pharmacokinetics of BPN with Cu-64 PET imaging, the treatment plan was adjusted from single bolus injection to multiple times of injections of smaller doses. As expected, high tumor uptake of boron (125.17 ± 13.54 ppm) was achieved with an extraordinarily high tumor to normal tissue ratio: tumors to liver, muscle, fat, and blood were 3.24 ± 0.22, 61.46 ± 20.26, 31.55 ± 10.30, and 33.85 ± 5.73, respectively. At last, neutron irradiation with BPN showed almost complete tumor suppression, demonstrating that BPN holds a great potential for being an efficient boron delivery agent for imaging-guided BNCT.
Collapse
Affiliation(s)
- Yaxin Shi
- Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - Jiyuan Li
- Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - Zizhu Zhang
- Beijing Capture Tech Co., Ltd. , Beijing 102413 , China
| | - Dongban Duan
- Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - Zhengchu Zhang
- Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - Hui Liu
- Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - Tong Liu
- Beijing Capture Tech Co., Ltd. , Beijing 102413 , China
| | - Zhibo Liu
- Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
- Peking University-Tsinghua University Center for Life Sciences , Beijing 100871 , China
| |
Collapse
|
12
|
Itoh T, Tamura K, Ueda H, Tanaka T, Sato K, Kuroda R, Aoki S. Design and synthesis of boron containing monosaccharides by the hydroboration of d-glucal for use in boron neutron capture therapy (BNCT). Bioorg Med Chem 2018; 26:5922-5933. [PMID: 30420329 DOI: 10.1016/j.bmc.2018.10.041] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/27/2018] [Accepted: 10/29/2018] [Indexed: 01/18/2023]
Abstract
Boron neutron capture therapy (BNCT) is one of the radiotherapies that involves the use of boron-containing compounds for the treatment of cancer. Boron-10 (10B) containing compounds that can accumulate in tumor tissue are expected to be suitable agents for BNCT. We report herein on the design and synthesis of some new BNCT agents based on a d-glucose scaffold, since glycoconjugation has been recognized as a useful strategy for the specific targeting of tumors. To introduce a boryl group into a d-glucose scaffold, we focused on the hydroboration of d-glucal derivatives, which have a double bond between the C1 and C2 positions. It was hypothesized that a C-B bond could be introduced at the C2 position of d-glucose by the hydroboration of d-glucal derivatives and that the products could be stabilized by conversion to the corresponding boronic acid ester. To test this hypothesis, we prepared some 2-boryl-1,2-dideoxy-d-glucose derivatives as boron carriers and evaluated their cytotoxicity and cellular uptake activity to cancer cells, especially under hypoxic conditions.
Collapse
Affiliation(s)
- Taiki Itoh
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Kei Tamura
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Hiroki Ueda
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Tomohiro Tanaka
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Kyouhei Sato
- Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Reiko Kuroda
- Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Shin Aoki
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan; Division of Medical-Science-Engineering Cooperation, Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan; Imaging Frontier Center, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
| |
Collapse
|
13
|
Juerß D, Zwar M, Giesen U, Nolte R, Kriesen S, Baiocco G, Puchalska M, van Goethem MJ, Manda K, Hildebrandt G. Comparative study of the effects of different radiation qualities on normal human breast cells. Radiat Oncol 2017; 12:159. [PMID: 28946898 PMCID: PMC5613446 DOI: 10.1186/s13014-017-0895-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 09/18/2017] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND As there is a growing number of long-term cancer survivors, the incidence of carcinogenesis as a late effect of radiotherapy is getting more and more into the focus. The risk for the development of secondary malignant neoplasms might be significantly increased due to exposure of healthy tissue outside of the target field to secondary neutrons, in particular in proton therapy. Thus far, the radiobiological effects of these neutrons and a comparison with photons on normal breast cells have not been sufficiently characterised. METHODS MCF10A cells were irradiated with doses of up to 2 Gy with neutrons of different energy spectra and X-rays for comparison. The biological effects of neutrons with a broad energy distribution ( = 5.8 MeV), monoenergetic neutrons (1.2 MeV, 0.56 MeV) and of the mixed field of gamma's and secondary neutrons ( = 70.5 MeV) produced by 190 MeV protons impinging on a water phantom, were analysed. The clonogenic survival and the DNA repair capacity were determined and values of relative biological effectiveness were compared. Furthermore, the influence of radiation on the sphere formation was observed to examine the radiation response of the potential fraction of stem like cells within the MCF10A cell population. RESULTS X-rays and neutrons caused dose-dependent decreases of survival fractions after irradiations with up to 2 Gy. Monoenergetic neutrons with an energy of 0.56 MeV had a higher effectiveness on the survival fraction with respect to neutrons with higher energies and to the mixed gamma - secondary neutron field induced by proton interactions in water. Similar effects were observed for the DNA repair capacity after exposure to ionising radiation (IR). Both experimental endpoints provided comparable values of the relative biological effectiveness. Significant changes in the sphere formation were notable following the various radiation qualities. CONCLUSION The present study compared the radiation response of MCF10A cells after IR with neutrons and photons. For the first time it was shown that monoenergetic neutrons with energies around 1 MeV have stronger radiobiological effects on normal human breast cells with respect to X rays, to neutrons with a broad energy distribution ( = 5.8 MeV), and to the mixed gamma - secondary neutron field given by interactions of 190 MeV protons in water. The results of the present study are highly relevant for further investigations of radiation-induced carcinogenesis and are very important in perspective for a better risk assessment after secondary neutron exposure in the field of conventional and proton radiotherapy.
Collapse
Affiliation(s)
- Dajana Juerß
- Department of Radiotherapy and Radiation Oncology, University Medical Centre Rostock, Suedring 75, 18059 Rostock, Germany
| | - Monique Zwar
- Department of Radiotherapy and Radiation Oncology, University Medical Centre Rostock, Suedring 75, 18059 Rostock, Germany
| | - Ulrich Giesen
- Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116 Braunschweig, Germany
| | - Ralf Nolte
- Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116 Braunschweig, Germany
| | - Stephan Kriesen
- Department of Radiotherapy and Radiation Oncology, University Medical Centre Rostock, Suedring 75, 18059 Rostock, Germany
| | - Giorgio Baiocco
- Physics Department, University of Pavia, Via Bassi 6, 27100 Pavia, Italy
| | - Monika Puchalska
- Technische Universität Wien, Atominstitut, Stadionallee 2, 1020 Vienna, Austria
| | - Marc-Jan van Goethem
- KVI - Center for Advanced Radiation Technology (KVI-CART), Zernikelaan 25, 9747 AA Groningen, The Netherlands
| | - Katrin Manda
- Department of Radiotherapy and Radiation Oncology, University Medical Centre Rostock, Suedring 75, 18059 Rostock, Germany
| | - Guido Hildebrandt
- Department of Radiotherapy and Radiation Oncology, University Medical Centre Rostock, Suedring 75, 18059 Rostock, Germany
| |
Collapse
|
14
|
Xiong H, Zhou D, Qi Y, Zhang Z, Xie Z, Chen X, Jing X, Meng F, Huang Y. Doxorubicin-Loaded Carborane-Conjugated Polymeric Nanoparticles as Delivery System for Combination Cancer Therapy. Biomacromolecules 2015; 16:3980-3988. [PMID: 26564472 DOI: 10.1021/acs.biomac.5b01311] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Carborane-conjugated amphiphilic copolymer nanoparticles were designed to deliver anticancer drugs for the combination of chemotherapy and boron neutron capture therapy (BNCT). Poly(ethylene glycol)-b-poly(L-lactide-co-2-methyl-2(2-dicarba-closo-dodecarborane)propyloxycarbonyl-propyne carbonate) (PLMB) was synthesized via the versatile reaction between decaborane and side alkynyl groups, and self-assembled with doxorubicin (DOX) to form drug-loaded nanoparticles. These DOX@PLMB nanoparticles could not only suppress the leakage of the boron compounds into the bloodstream due to the covalent bonds between carborane and polymer main chains, but also protect DOX from initial burst release at physiological conditions because of the dihydrogen bonds between DOX and carborane. It was demonstrated that DOX@PLMB nanoparticles could selectively deliver boron atoms and DOX to the tumor site simultaneously in vivo. Under the combination of chemotherapy and BNCT, the highest tumor suppression efficiency without reduction of body weight was achieved. This polymeric nanoparticles delivery system could be very useful in future chemoradiotherapy to obtain improved therapeutic effect with reduced systemic toxicity.
Collapse
Affiliation(s)
- Hejian Xiong
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, P. R. China
- Graduate School of Chinese Academy of Sciences , Beijing 100039, P. R. China
| | - Dongfang Zhou
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, P. R. China
| | - Yanxin Qi
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, P. R. China
| | - Zhiyun Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, P. R. China
- Graduate School of Chinese Academy of Sciences , Beijing 100039, P. R. China
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, P. R. China
| | - Xuesi Chen
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, P. R. China
| | - Xiabin Jing
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, P. R. China
| | - Fanbo Meng
- The Cardiology Department of China-Japan Union Hospital of Jilin University, No. 126 Xiantai Str., Changchun 130033, P. R. China
| | - Yubin Huang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, P. R. China
| |
Collapse
|
15
|
Okamoto E, Yamamoto T, Nakai K, Fumiyo Yoshida, Matsumura A. Detection of DNA double-strand breaks in boron neutron capture reaction. Appl Radiat Isot 2015; 106:185-8. [DOI: 10.1016/j.apradiso.2015.08.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 07/16/2015] [Accepted: 08/14/2015] [Indexed: 10/23/2022]
|
16
|
Histological and biochemical analysis of DNA damage after BNCT in rat model. Appl Radiat Isot 2014; 88:104-8. [DOI: 10.1016/j.apradiso.2014.03.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2012] [Revised: 02/27/2014] [Accepted: 03/05/2014] [Indexed: 11/24/2022]
|
17
|
Vandersickel V, Beukes P, Van Bockstaele B, Depuydt J, Vral A, Slabbert J. Induction and disappearance of γH2AX foci and formation of micronuclei after exposure of human lymphocytes to ⁶⁰Co γ-rays and p(66)+ Be(40) neutrons. Int J Radiat Biol 2014; 90:149-58. [PMID: 24168313 DOI: 10.3109/09553002.2014.860252] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE To investigate both the formation of micronuclei (MN) and the induction and subsequent loss of phosphorylated histone H2AX foci (γH2AX foci) after in vitro exposure of human lymphocytes to either (60)Co γ-rays or p(66)+ Be(40) neutrons. MATERIALS AND METHODS MN dose response (DR) curves were obtained by exposing isolated lymphocytes of 10 different donors to doses ranging from 0-4 Gy γ-rays or 0-2 Gy neutrons. Also, γH2AX foci DR curves were obtained following exposure to doses ranging from 0-0.5 Gy of either γ-rays or neutrons. Foci kinetics for lymphocytes for a single donor exposed to 0.5 Gy γ-rays or neutrons were studied up to 24 hours post-irradiation. RESULTS Micronuclei yields following neutron exposure were consistently higher compared to that from (60)Co γ-rays. All MN yields were over-dispersed compared to a Poisson distribution. Over-dispersion was higher after neutron irradiation for all doses > 0.1 Gy. Up to 4 hours post-irradiation lower yields of neutron-induced γH2AX foci were observed. Between 4 and 24 hours the numbers of foci from neutrons were consistently higher than that from γ-rays. The half-live of foci disappearance is only marginally longer for neutrons compared to that from γ-rays. Foci formations were more likely to be over-dispersed for neutron irradiations. CONCLUSION Although neutrons are more effective to induce MN, the absolute number of induced γH2AX foci are less at first compared to γ-rays. With time neutron-induced foci are more persistent. These findings are helpful for using γH2AX foci in biodosimetry and to understand the repair of neutron-induced cellular damage.
Collapse
Affiliation(s)
- Veerle Vandersickel
- NRF iThemba LABS (Laboratory for Accelerated Based Sciences), Somerset West, South Africa and Department of Medical Imaging and Clinical Oncology, University of Stellenbosch , South Africa
| | | | | | | | | | | |
Collapse
|