1
|
Masunaga SI, Sanada Y, Tano K, Sakurai Y, Tanaka H, Takata T, Suzuki M, Ono K. An attempt to improve the therapeutic effect of boron neutron capture therapy using commonly employed 10B-carriers based on analytical studies on the correlation among quiescent tumor cell characteristics, tumor heterogeneity and cancer stemness. JOURNAL OF RADIATION RESEARCH 2020; 61:876-885. [PMID: 32601693 PMCID: PMC7674684 DOI: 10.1093/jrr/rraa048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/04/2020] [Indexed: 05/03/2023]
Abstract
Based on our previously published reports concerning the response of quiescent (Q) tumor cell populations to boron neutron capture therapy (BNCT), the heterogeneous microdistribution of 10B in tumors, which is influenced by the tumor microenvironment and the characteristics of the 10B delivery carriers, has been shown to limit the therapeutic effect of BNCT on local tumors. It was also clarified that the characteristics of 10B-carriers for BNCT and the type of combined treatment in BNCT can also affect the potential for distant lung metastases from treated local tumors. We reviewed the findings concerning the response of Q tumor cell populations to BNCT, mainly focusing on reports we have published so far, and we identified the mode of BNCT that currently offers the best therapeutic gain from the viewpoint of both controlling local tumor and suppressing the potential for distant lung metastasis. In addition, based on the finding that oxygenated Q tumor cells showed a large capacity to recover from DNA damage after cancer therapy, the interrelationship among the characteristics in Q tumor cell populations, tumor heterogeneity and cancer stemness was also discussed.
Collapse
Affiliation(s)
- Shin-ichiro Masunaga
- Particle Radiation Biology, Division of Radiation Life Science, Institute for Integrated Radiation and Nuclear Science, Kyoto University, Japan
- Corresponding author. Particle Radiation Biology, Division of Radiation Life Science, Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2-1010, Asashiro-nishi, Kumatori-cho, Sennan-gun, Osaka 590-0494, Japan. Tel: +81 72 451 2406; Fax: 81 72 451 2393;
| | - Yu Sanada
- Particle Radiation Biology, Division of Radiation Life Science, Institute for Integrated Radiation and Nuclear Science, Kyoto University, Japan
| | - Keizo Tano
- Particle Radiation Biology, Division of Radiation Life Science, Institute for Integrated Radiation and Nuclear Science, Kyoto University, Japan
| | - Yoshinori Sakurai
- Particle Radiation Medical Physics, Particle Radiation Research Center, Institute for Integrated Radiation and Nuclear Science, Kyoto University, Japan
| | - Hiroki Tanaka
- Particle Radiation Medical Physics, Particle Radiation Research Center, Institute for Integrated Radiation and Nuclear Science, Kyoto University, Japan
| | - Takushi Takata
- Particle Radiation Medical Physics, Particle Radiation Research Center, Institute for Integrated Radiation and Nuclear Science, Kyoto University, Japan
| | - Minoru Suzuki
- Particle Radiation Oncology, Particle Radiation Research Center, Institute for Integrated Radiation and Nuclear Science, Kyoto University, Japan
| | - Koji Ono
- Kansai BNCT Medical Center, Osaka Medical College, Japan
| |
Collapse
|
2
|
Zhang J, Si J, Gan L, Di C, Xie Y, Sun C, Li H, Guo M, Zhang H. Research progress on therapeutic targeting of quiescent cancer cells. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:2810-2820. [DOI: 10.1080/21691401.2019.1638793] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Jinhua Zhang
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jing Si
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Lu Gan
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Cuixia Di
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yi Xie
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Chao Sun
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Hongyan Li
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Menghuan Guo
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Hong Zhang
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Alberti D, Protti N, Toppino A, Deagostino A, Lanzardo S, Bortolussi S, Altieri S, Voena C, Chiarle R, Geninatti Crich S, Aime S. A theranostic approach based on the use of a dual boron/Gd agent to improve the efficacy of Boron Neutron Capture Therapy in the lung cancer treatment. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 11:741-50. [PMID: 25596074 DOI: 10.1016/j.nano.2014.12.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Revised: 11/04/2014] [Accepted: 12/08/2014] [Indexed: 10/24/2022]
Abstract
This study aims at developing an innovative theranostic approach for lung tumor and metastases treatment, based on Boron Neutron Capture Therapy (BNCT). It relies on to the use of low density lipoproteins (LDL) as carriers able to maximize the selective uptake of boron atoms in tumor cells and, at the same time, to quantify the in vivo boron distribution by magnetic resonance imaging (MRI). Tumor cells uptake was initially assessed by ICP-MS and MRI on four types of tumor (TUBO, B16-F10, MCF-7, A549) and one healthy (N-MUG) cell lines. Lung metastases were generated by intravenous injection of a Her2+ breast cancer cell line (i.e. TUBO) in BALB/c mice and transgenic EML4-ALK mice were used as primary tumor model. After neutron irradiation, tumor growth was followed for 30-40 days by MRI. Tumor masses of boron treated mice increased markedly slowly than the control group. From the clinical editor: In this article, the authors described an improvement to existing boron neutron capture therapy. The dual MRI/BNCT agent, carried by LDLs, was able to maximize the selective uptake of boron in tumor cells, and, at the same time, quantify boron distribution in tumor and in other tissues using MRI. Subsequent in vitro and in vivo experiments showed tumor cell killing after neutron irradiation.
Collapse
Affiliation(s)
- Diego Alberti
- Department of Molecular Biotechnology and Health Sciences; University of Torino, Torino, Italy
| | - Nicoletta Protti
- Department of Nuclear and Theoretical Physics, University of Pavia, Pavia, Italy; Nuclear Physics National Institute (INFN), section of Pavia, Pavia, Italy
| | - Antonio Toppino
- Department of Chemistry, University of Torino, Torino, Italy
| | | | - Stefania Lanzardo
- Department of Molecular Biotechnology and Health Sciences; University of Torino, Torino, Italy
| | - Silva Bortolussi
- Department of Nuclear and Theoretical Physics, University of Pavia, Pavia, Italy; Nuclear Physics National Institute (INFN), section of Pavia, Pavia, Italy
| | - Saverio Altieri
- Department of Nuclear and Theoretical Physics, University of Pavia, Pavia, Italy; Nuclear Physics National Institute (INFN), section of Pavia, Pavia, Italy
| | - Claudia Voena
- Department of Molecular Biotechnology and Health Sciences; University of Torino, Torino, Italy; Center for Experimental Research and Medical Studies (CERMS), Città della Salute e della Scienza, Torino, Italy
| | - Roberto Chiarle
- Department of Molecular Biotechnology and Health Sciences; University of Torino, Torino, Italy; Center for Experimental Research and Medical Studies (CERMS), Città della Salute e della Scienza, Torino, Italy; Department of Pathology, Children's Hospital Harvard Medical School, Boston, MA, USA
| | | | - Silvio Aime
- Department of Molecular Biotechnology and Health Sciences; University of Torino, Torino, Italy
| |
Collapse
|