1
|
Inaniwa T, Masuda T, Kanematsu N. Effects of intra-tumoral cellular heterogeneity of oxygen partial pressure on biological effectiveness of hydrogen-, helium-, carbon-, oxygen-, and neon-ion beams. Phys Med Biol 2025; 70:025008. [PMID: 39752876 DOI: 10.1088/1361-6560/ada5a5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 01/03/2025] [Indexed: 01/18/2025]
Abstract
Objective.The tumor microenvironment characterized by heterogeneously organized vasculatures causes intra-tumoral heterogeneity of oxygen partial pressurepat the cellular level, which cannot be measured by current imaging techniques. The intra-tumoral cellularpheterogeneity may lead to a reduction of therapeutic effects of radiation. The purpose of this study was to investigate the effects of the heterogeneity on biological effectiveness of H-, He-, C-, O-, and Ne-ion beams for different oxygenation levels, prescribed dose levels, and cell types.Approach.The intra-tumoral cellularpdistributions were simulated with a numerical tumor model for average oxygen pressuresp¯tranging from 2.5 to 15 mmHg. The relative biological effectiveness (RBE)-weighted dose distributions of 3-15 Gy prescribed doses were planned for a cuboid target with the five ion species for constantp¯tvalues. Radiosensitivities of human salivary gland tumor (HSG) and Chinese hamster ovary (CHO) cells were investigated. The planned dose distributions were then recalculated by taking thepheterogeneity into account.Main results.Asp¯tdecreased and prescribed dose increased, the biological effectiveness of the ion beams decreased due to thepheterogeneity. The reduction in biological effectiveness was pronounced for lighter H- and He-ion beams compared to heavier C-, O-, and Ne-ion beams. The RBE-weighted dose in the target for HSG (CHO) cells decreased by 41.2% (44.3%) for the H-ion beam, while it decreased by 16.7% (14.7%) for the Ne-ion beam at a prescribed dose of 15 Gy under ap¯tof 2.5 mmHg.Significance.The intra-tumoral cellularpheterogeneity causes a significant reduction in biological effectiveness of ion beams. These effects should be considered in estimation of therapeutic outcomes.
Collapse
Affiliation(s)
- Taku Inaniwa
- Department of Accelerator and Medical Physics, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
- Medical Physics Laboratory, Division of Health Science, Graduate School of Medicine, Osaka University, 1-7 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takamitsu Masuda
- Department of Accelerator and Medical Physics, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
- Medical Physics Laboratory, Division of Health Science, Graduate School of Medicine, Osaka University, 1-7 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Nobuyuki Kanematsu
- Department of Accelerator and Medical Physics, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| |
Collapse
|
2
|
Cogno N, Bauer R, Durante M. Mechanistic model of radiotherapy-induced lung fibrosis using coupled 3D agent-based and Monte Carlo simulations. COMMUNICATIONS MEDICINE 2024; 4:16. [PMID: 38336802 PMCID: PMC10858213 DOI: 10.1038/s43856-024-00442-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Mechanistic modelling of normal tissue toxicities is unfolding as an alternative to the phenomenological normal tissue complication probability models. The latter, currently used in the clinics, rely exclusively on limited patient data and neglect spatial dose distribution information. Among the various approaches, agent-based models are appealing as they provide the means to include patient-specific parameters and simulate long-term effects in complex systems. However, Monte Carlo tools remain the state-of-the-art for modelling radiation transport and provide measurements of the delivered dose with unmatched precision. METHODS In this work, we develop and characterize a coupled 3D agent-based - Monte Carlo model that mechanistically simulates the onset of the radiation-induced lung fibrosis in an alveolar segment. To the best of our knowledge, this is the first such model. RESULTS Our model replicates extracellular matrix patterns, radiation-induced lung fibrosis severity indexes and functional subunits survivals that show qualitative agreement with experimental studies and are consistent with our past results. Moreover, in accordance with experimental results, higher functional subunits survival and lower radiation-induced lung fibrosis severity indexes are achieved when a 5-fractions treatment is simulated. Finally, the model shows increased sensitivity to more uniform protons dose distributions with respect to more heterogeneous ones from photon irradiation. CONCLUSIONS This study lays thus the groundwork for further investigating the effects of different radiotherapeutic treatments on the onset of radiation-induced lung fibrosis via mechanistic modelling.
Collapse
Affiliation(s)
- Nicolò Cogno
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291, Darmstadt, Germany
- Institute for Condensed Matter Physics, Technische Universität Darmstadt, 64289, Darmstadt, Germany
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Roman Bauer
- Department of Computer Science, University of Surrey, Guildford, GU2 7XH, UK
| | - Marco Durante
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291, Darmstadt, Germany.
- Institute for Condensed Matter Physics, Technische Universität Darmstadt, 64289, Darmstadt, Germany.
- Department of Physics "Ettore Pancini", University Federico II, Naples, Italy.
| |
Collapse
|
3
|
Watanabe Y, Tatsuguchi T, Date K, Shinkawa T, Kuga H, Tamiya S, Nishihara K, Nakano T. Conversion surgery for initially unresectable locally advanced pancreatic ductal adenocarcinoma after chemotherapy followed by carbon-ion radiotherapy: a case report. J Med Case Rep 2024; 18:13. [PMID: 38200536 PMCID: PMC10782725 DOI: 10.1186/s13256-023-04311-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 12/07/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Recent advances in chemotherapy and chemoradiotherapy have enabled conversion surgery (CS) to be performed for selected patients with initially unresectable locally advanced (LA) pancreatic ductal adenocarcinoma (PDAC). Many studies indicate CS might extend the survival of patients with initially unresectable LA PDAC. However, several clinical questions concerning CS remain, such as the optimal preoperative treatment. Carbon-ion radiotherapy (CIRT) is a unique radiotherapy that offers higher biological effectiveness than conventional radiotherapy. Here, we report a long-term survival case with initially unresectable LA PDAC who underwent CS after chemotherapy followed by CIRT. CASE PRESENTATION The patient was a 72-year-old Japanese woman with unresectable LA pancreatic head cancer with tumor contact to the superior mesenteric artery (SMA). She underwent four courses of chemotherapy (gemcitabine plus nanoparticle albumin-bound paclitaxel). However, the lesion did not shrink and tumor contact with the SMA did not improve after chemotherapy. Because the probability of achieving curative resection was judged to be low, she underwent radical dose CIRT, and chemotherapy was continued. She complained of vomiting 2 months after CIRT. Although imaging studies showed no tumor growth or metastasis, a duodenal obstruction which was speculated to be an adverse effect of CIRT was observed. She could not eat solid food and a trans-nasal feeding tube was inserted. Therapeutic intervention was required to enable enteral nutrition. We proposed several treatment options. She chose resection with the expectation of an anti-tumor effect of chemotherapy and CIRT rather than course observation with tube feeding or bypass surgery. Therefore, subtotal-stomach-preserving pancreatoduodenectomy with portal vein resection was performed as CS. Pathological examination of the resected specimen revealed an R0 resection with a histological response of Evans grade IIA. Postoperatively, she recovered uneventfully. Adjuvant chemotherapy with tegafur/gimeracil/oteracil (S1) was administrated. At the time of this report, 5 years have passed since the initial consultation and she has experienced no tumor recurrence. CONCLUSIONS The present case suggests that multidisciplinary treatment consisting of a combination of recent chemotherapy and CIRT may be beneficial for unresectable LA PDAC. However, further studies are required to assess the true efficacy of this treatment strategy.
Collapse
Affiliation(s)
- Yusuke Watanabe
- Department of Surgery, Kitakyushu Municipal Medical Center, 2-1-1 Bashaku, Kokurakita-Ku, Kitakyushu, 802-0077, Japan.
- Department of Surgery, Hamanomachi Hospital, 3-3-1 Nagahama, Chuo-Ku, Fukuoka, 810-8539, Japan.
| | - Takaaki Tatsuguchi
- Department of Surgery, Kitakyushu Municipal Medical Center, 2-1-1 Bashaku, Kokurakita-Ku, Kitakyushu, 802-0077, Japan
| | - Kenjiro Date
- Department of Surgery, Kitakyushu Municipal Medical Center, 2-1-1 Bashaku, Kokurakita-Ku, Kitakyushu, 802-0077, Japan
| | - Tomohiko Shinkawa
- Department of Surgery, Kitakyushu Municipal Medical Center, 2-1-1 Bashaku, Kokurakita-Ku, Kitakyushu, 802-0077, Japan
| | - Hirotaka Kuga
- Department of Surgery, Kitakyushu Municipal Medical Center, 2-1-1 Bashaku, Kokurakita-Ku, Kitakyushu, 802-0077, Japan
| | - Sadafumi Tamiya
- Department of Pathology, Kitakyushu Municipal Medical Center, 2-1-1 Bashaku, Kokurakita-Ku, Kitakyushu, 802-0077, Japan
| | - Kazuyoshi Nishihara
- Department of Surgery, Kitakyushu Municipal Medical Center, 2-1-1 Bashaku, Kokurakita-Ku, Kitakyushu, 802-0077, Japan
| | - Toru Nakano
- Department of Surgery, Kitakyushu Municipal Medical Center, 2-1-1 Bashaku, Kokurakita-Ku, Kitakyushu, 802-0077, Japan
| |
Collapse
|
4
|
Helm A, Fournier C. High-LET charged particles: radiobiology and application for new approaches in radiotherapy. Strahlenther Onkol 2023; 199:1225-1241. [PMID: 37872399 PMCID: PMC10674019 DOI: 10.1007/s00066-023-02158-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 09/17/2023] [Indexed: 10/25/2023]
Abstract
The number of patients treated with charged-particle radiotherapy as well as the number of treatment centers is increasing worldwide, particularly regarding protons. However, high-linear energy transfer (LET) particles, mainly carbon ions, are of special interest for application in radiotherapy, as their special physical features result in high precision and hence lower toxicity, and at the same time in increased efficiency in cell inactivation in the target region, i.e., the tumor. The radiobiology of high-LET particles differs with respect to DNA damage repair, cytogenetic damage, and cell death type, and their increased LET can tackle cells' resistance to hypoxia. Recent developments and perspectives, e.g., the return of high-LET particle therapy to the US with a center planned at Mayo clinics, the application of carbon ion radiotherapy using cost-reducing cyclotrons and the application of helium is foreseen to increase the interest in this type of radiotherapy. However, further preclinical research is needed to better understand the differential radiobiological mechanisms as opposed to photon radiotherapy, which will help to guide future clinical studies for optimal exploitation of high-LET particle therapy, in particular related to new concepts and innovative approaches. Herein, we summarize the basics and recent progress in high-LET particle radiobiology with a focus on carbon ions and discuss the implications of current knowledge for charged-particle radiotherapy. We emphasize the potential of high-LET particles with respect to immunogenicity and especially their combination with immunotherapy.
Collapse
Affiliation(s)
- Alexander Helm
- Biophysics Department, GSI Helmholtz Center for Heavy Ion Research, Darmstadt, Germany
| | - Claudia Fournier
- Biophysics Department, GSI Helmholtz Center for Heavy Ion Research, Darmstadt, Germany.
| |
Collapse
|
5
|
Sokol O, Durante M. Carbon Ions for Hypoxic Tumors: Are We Making the Most of Them? Cancers (Basel) 2023; 15:4494. [PMID: 37760464 PMCID: PMC10526811 DOI: 10.3390/cancers15184494] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/07/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Hypoxia, which is associated with abnormal vessel growth, is a characteristic feature of many solid tumors that increases their metastatic potential and resistance to radiotherapy. Carbon-ion radiation therapy, either alone or in combination with other treatments, is one of the most promising treatments for hypoxic tumors because the oxygen enhancement ratio decreases with increasing particle LET. Nevertheless, current clinical practice does not yet fully benefit from the use of carbon ions to tackle hypoxia. Here, we provide an overview of the existing experimental and clinical evidence supporting the efficacy of C-ion radiotherapy in overcoming hypoxia-induced radioresistance, followed by a discussion of the strategies proposed to enhance it, including different approaches to maximize LET in the tumors.
Collapse
Affiliation(s)
- Olga Sokol
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforchung, Planckstraße 1, 64291 Darmstadt, Germany;
| | - Marco Durante
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforchung, Planckstraße 1, 64291 Darmstadt, Germany;
- Institute for Condensed Matter Physics, Technische Universität Darmstadt, Hochschulstraße 8, 64289 Darmstadt, Germany
| |
Collapse
|
6
|
Kawahara D, Nagata Y. Biological dosimetric impact of dose-delivery time for hypoxic tumour with modified microdosimetric kinetic model. Rep Pract Oncol Radiother 2023; 28:514-521. [PMID: 37795224 PMCID: PMC10547428 DOI: 10.5603/rpor.a2023.0062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 08/03/2023] [Indexed: 10/06/2023] Open
Abstract
Background An improved microdosimetric kinetic model (MKM) can address radiobiological effects with prolonged delivery times. However, these do not consider the effects of oxygen. The current study aimed to evaluate the biological dosimetric effects associated with the dose delivery time in hypoxic tumours with improved MKM for photon radiation therapy. Materials and methods Cell survival was measured under anoxic, hypoxic, and oxic conditions using the Monte Carlo code PHITS. The effect of the dose rate of 0.5-24 Gy/min for the biological dose (Dbio) was estimated using the microdosimetric kinetic model. The dose per fraction and pressure of O2 (pO2) in the tumour varied from 2 to 20 Gy and from 0.01 to 5.0% pO2, respectively. Results The ratio of the Dbio at 1.0-24 Gy/min to that at 0.5 Gy/min (RDR) was higher at higher doses. The maximum RDR was 1.09 at 1.0 Gy/min, 1.12 at 12 Gy/min, and 1.13 at 24 Gy/min. The ratio of the Dbio at 0.01-2.0% of pO2 to that at 5.0% of pO2 (Roxy) was within 0.1 for 2-20 Gy of physical dose. The maximum Roxy was 0.42 at 0.01% pO2, 0.76 at 0.4% pO2, 0.89 at 1% pO2, and 0.96 at 2% pO2. Conclusion Our proposed model can estimate the cell killing and biological dose under hypoxia in a clinical and realistic patient. A shorter dose-delivery time with a higher oxygen distribution increased the radiobiological effect. It was more effective at higher doses per fraction than at lower doses.
Collapse
Affiliation(s)
- Daisuke Kawahara
- Department of Radiation Oncology, Institute of Biomedical & Health Science, Hiroshima University, Japan
| | - Yasushi Nagata
- Department of Radiation Oncology, Institute of Biomedical & Health Science, Hiroshima University, Japan
| |
Collapse
|
7
|
Sakae T, Takada K, Kamizawa S, Terunuma T, Ando K. Formulation of Time-Dependent Cell Survival with Saturable Repairability of Radiation Damage. Radiat Res 2023; 200:139-150. [PMID: 37303133 DOI: 10.1667/rade-21-00066.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/10/2023] [Indexed: 06/13/2023]
Abstract
This study aims to provide a model that compounds historically proposed ideas regarding cell survival irradiated with X rays or particles. The parameters used in this model have simple meanings and are closely related to cell death-related phenomena. The model is adaptable to a wide range of doses and dose rates and thus can consistently explain previously published cell survival data. The formulas of the model were derived by using five basic ideas: 1. "Poisson's law"; 2. "DNA affected damage"; 3. "repair"; 4. "clustered affected damage"; and 5. "saturation of reparability". The concept of affected damage is close to but not the same as the effect caused by the double-strand break (DSB). The parameters used in the formula are related to seven phenomena: 1. "linear coefficient of radiation dose"; 2. "probability of making affected damage"; 3. "cell-specific repairability", 4. "irreparable damage by adjacent affected damage"; 5. "recovery of temporally changed repairability"; 6. "recovery of simple damage which will make the affected damage"; 7. "cell division". By using the second parameter, this model includes cases where a single hit results in repairable-lethal and double-hit results in repairable-lethal. The fitting performance of the model for the experimental data was evaluated based on the Akaike information criterion, and practical results were obtained for the published experiments irradiated with a wide range of doses (up to several 10 Gy) and dose rates (0.17 Gy/h to 55.8 Gy/h). The direct association of parameters with cell death-related phenomena has made it possible to systematically fit survival data of different cell types and different radiation types by using crossover parameters.
Collapse
Affiliation(s)
- Takeji Sakae
- Faculty of Medicine, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
- University of Tsukuba Hospital, Proton Medical Research Center, 2-1-1, Amakubo, Tsukuba, Ibaraki, 305-8576, Japan
| | - Kenta Takada
- Graduate School of Radiology, Gunma Prefectural College of Health Sciences, 323-1 Kamiokimachi, Maebashi, Gunma 371-0052, Japan
| | - Satoshi Kamizawa
- University of Tsukuba Hospital, Proton Medical Research Center, 2-1-1, Amakubo, Tsukuba, Ibaraki, 305-8576, Japan
| | - Toshiyuki Terunuma
- Faculty of Medicine, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
- University of Tsukuba Hospital, Proton Medical Research Center, 2-1-1, Amakubo, Tsukuba, Ibaraki, 305-8576, Japan
| | - Koichi Ando
- Gunma University Heavy Ion Medical Center, 3-39, Showamachi, Maebashi, Gunma 371-0034, Japan
| |
Collapse
|
8
|
Uyar B, Ozsamur NG, Celik FS, Ozbayram I, Erbas-Cakmak S. Downregulation of gene expression in hypoxic cancer cells by an activatable G-quadruplex stabiliser. Chem Commun (Camb) 2023; 59:2247-2250. [PMID: 36723070 DOI: 10.1039/d2cc06347f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In the research, the modulation of gene expression with a novel G-quadruplex stabiliser was analysed. Activation by the removal of bulky hypoxia-responsive substituent enhances G-quadruplex stabilisation. Hypoxic MCF7 cells incubated with the stabiliser displayed significant downregulation of oncogenes c-myc, bcl-2, and hif-1α. This study presents the first hypoxia-activatable G-quadruplex stabilization and transcriptional regulation.
Collapse
Affiliation(s)
- Busra Uyar
- Konya Food and Agriculture University, Department of Biotechnology, Konya 42080, Turkey.
| | - Nezahat Gokce Ozsamur
- Konya Food and Agriculture University, Department of Biotechnology, Konya 42080, Turkey.
| | - Fatma Secer Celik
- Konya Food and Agriculture University, Department of Biotechnology, Konya 42080, Turkey.
| | - Ilkyaz Ozbayram
- Konya Food and Agriculture University, Department of Biotechnology, Konya 42080, Turkey.
| | - Sundus Erbas-Cakmak
- Konya Food and Agriculture University, Department of Biotechnology, Konya 42080, Turkey. .,Konya Food and Agriculture University, Department of Molecular Biology and Genetics, Konya 42080, Turkey
| |
Collapse
|
9
|
Du TQ, Liu R, Zhang Q, Luo H, Chen Y, Tan M, Wang Q, Wu X, Liu Z, Sun S, Yang K, Tian J, Wang X. Does particle radiation have superior radiobiological advantages for prostate cancer cells? A systematic review of in vitro studies. Eur J Med Res 2022; 27:306. [PMID: 36572945 PMCID: PMC9793637 DOI: 10.1186/s40001-022-00942-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/07/2022] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Charged particle beams from protons to carbon ions provide many significant physical benefits in radiation therapy. However, preclinical studies of charged particle therapy for prostate cancer are extremely limited. The aim of this study was to comprehensively investigate the biological effects of charged particles on prostate cancer from the perspective of in vitro studies. METHODS We conducted a systematic review by searching EMBASE (OVID), Medline (OVID), and Web of Science databases to identify the publications assessing the radiobiological effects of charged particle irradiation on prostate cancer cells. The data of relative biological effectiveness (RBE), surviving fraction (SF), standard enhancement ratio (SER) and oxygen enhancement ratio (OER) were extracted. RESULTS We found 12 studies met the eligible criteria. The relative biological effectiveness values of proton and carbon ion irradiation ranged from 0.94 to 1.52, and 1.67 to 3.7, respectively. Surviving fraction of 2 Gy were 0.17 ± 0.12, 0.55 ± 0.20 and 0.53 ± 0.16 in carbon ion, proton, and photon irradiation, respectively. PNKP inhibitor and gold nanoparticles were favorable sensitizing agents, while it was presented poorer performance in GANT61. The oxygen enhancement ratio values of photon and carbon ion irradiation were 2.32 ± 0.04, and 1.77 ± 0.13, respectively. Charged particle irradiation induced more G0-/G1- or G2-/M-phase arrest, more expression of γ-H2AX, more apoptosis, and lower motility and/or migration ability than photon irradiation. CONCLUSIONS Both carbon ion and proton irradiation have advantages over photon irradiation in radiobiological effects on prostate cancer cell lines. Carbon ion irradiation seems to have further advantages over proton irradiation.
Collapse
Affiliation(s)
- Tian-Qi Du
- grid.9227.e0000000119573309Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Rd, Lanzhou, 730000 Gansu People’s Republic of China ,grid.32566.340000 0000 8571 0482The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu People’s Republic of China
| | - Ruifeng Liu
- grid.9227.e0000000119573309Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Rd, Lanzhou, 730000 Gansu People’s Republic of China ,grid.410726.60000 0004 1797 8419Graduate School, University of Chinese Academy of Sciences, Beijing, People’s Republic of China ,Heavy Ion Therapy Center, Lanzhou Heavy Ion Hospital, Lanzhou, Gansu People’s Republic of China
| | - Qiuning Zhang
- grid.9227.e0000000119573309Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Rd, Lanzhou, 730000 Gansu People’s Republic of China ,grid.410726.60000 0004 1797 8419Graduate School, University of Chinese Academy of Sciences, Beijing, People’s Republic of China ,Heavy Ion Therapy Center, Lanzhou Heavy Ion Hospital, Lanzhou, Gansu People’s Republic of China
| | - Hongtao Luo
- grid.9227.e0000000119573309Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Rd, Lanzhou, 730000 Gansu People’s Republic of China ,grid.410726.60000 0004 1797 8419Graduate School, University of Chinese Academy of Sciences, Beijing, People’s Republic of China ,Heavy Ion Therapy Center, Lanzhou Heavy Ion Hospital, Lanzhou, Gansu People’s Republic of China
| | - Yanliang Chen
- grid.9227.e0000000119573309Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Rd, Lanzhou, 730000 Gansu People’s Republic of China ,grid.32566.340000 0000 8571 0482The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu People’s Republic of China
| | - Mingyu Tan
- grid.9227.e0000000119573309Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Rd, Lanzhou, 730000 Gansu People’s Republic of China ,grid.32566.340000 0000 8571 0482The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu People’s Republic of China
| | - Qian Wang
- grid.9227.e0000000119573309Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Rd, Lanzhou, 730000 Gansu People’s Republic of China ,grid.32566.340000 0000 8571 0482The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu People’s Republic of China
| | - Xun Wu
- grid.9227.e0000000119573309Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Rd, Lanzhou, 730000 Gansu People’s Republic of China ,grid.32566.340000 0000 8571 0482The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu People’s Republic of China
| | - Zhiqiang Liu
- grid.9227.e0000000119573309Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Rd, Lanzhou, 730000 Gansu People’s Republic of China ,grid.410726.60000 0004 1797 8419Graduate School, University of Chinese Academy of Sciences, Beijing, People’s Republic of China ,Heavy Ion Therapy Center, Lanzhou Heavy Ion Hospital, Lanzhou, Gansu People’s Republic of China
| | - Shilong Sun
- grid.9227.e0000000119573309Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Rd, Lanzhou, 730000 Gansu People’s Republic of China ,grid.410726.60000 0004 1797 8419Graduate School, University of Chinese Academy of Sciences, Beijing, People’s Republic of China ,Heavy Ion Therapy Center, Lanzhou Heavy Ion Hospital, Lanzhou, Gansu People’s Republic of China
| | - Kehu Yang
- grid.32566.340000 0000 8571 0482Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu People’s Republic of China
| | - Jinhui Tian
- grid.32566.340000 0000 8571 0482Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu People’s Republic of China
| | - Xiaohu Wang
- grid.9227.e0000000119573309Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Rd, Lanzhou, 730000 Gansu People’s Republic of China ,grid.32566.340000 0000 8571 0482The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu People’s Republic of China ,grid.410726.60000 0004 1797 8419Graduate School, University of Chinese Academy of Sciences, Beijing, People’s Republic of China ,Heavy Ion Therapy Center, Lanzhou Heavy Ion Hospital, Lanzhou, Gansu People’s Republic of China
| |
Collapse
|
10
|
Jones B. The influence of hypoxia on LET and RBE relationships with implications for ultra-high dose rates and FLASH modelling. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac6ebb] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 05/11/2022] [Indexed: 11/12/2022]
Abstract
Abstract
Objective. To investigate relationships between linear energy transfer (LET), fluence rates, changes in radiosensitivity and the oxygen enhancement ratio (OER) in different ion beams and extend these concepts to ultra-high dose rate (UHDR) or FLASH effects. Approach. LET values providing maximum relative biological effect (RBE), designated as LETU, are found for neon, carbon and helium beams. Proton experiments show reduced RBEs with depth in scattered (divergent) beams, but not with scanned beams, suggesting that instantaneous fluence rates (related to track separation distances) can modify RBE, all other RBE-determining factors being equal. Micro-volumetric energy transfer per μm3 (mVET) is defined by LET × fluence. High fluence rates will increase mVET rates, with proportional shifts of LETU to lower values due to more rapid energy transfer. From the relationship between LETU and OER at conventional dose rates, OER reductions in UHDR/FLASH exposures can be estimated and biological effective dose analysis of experimental lung and skin reactions becomes feasible. Main results. The Furusawa et al data show that hypoxic LETU values exceed their oxic counterparts. OER reduces from around 3–1.25 at LETU, although the relative radiosensitivities of the oxic and hypoxic α parameters (the OER(α)) exceed those of the standard OER values. Increased fluence rates are predicted to reduce LETU and OER. Large FLASH single doses will minimise RBE increments due to the β parameter reducing by a factor of 0.5–0.25 consistent with oxygen depletion, causing radioresistance. Similar results will occur for photons. Tissue α/β ratios increase by around 10 in FLASH conditions, agreeing with derived ion-beam dose rate equations. Significance. Increasing dose rates enhance local energy deposition rate per unit volume, probably causing oxygen depletion and radioresistance in pre-existing hypoxic sites during UHDR/FLASH exposures. The modelled equations provide testable hypotheses for further dose rate investigations in photon, proton and ion beams.
Collapse
|
11
|
Chaudhary P, Gwynne DC, Odlozilik B, McMurray A, Milluzzo G, Maiorino C, Doria D, Ahmed H, Romagnani L, Alejo A, Padda H, Green J, Carroll D, Booth N, McKenna P, Kar S, Petringa G, Catalano R, Cammarata FP, Cirrone GAP, McMahon SJ, Prise KM, Borghesi M. Development of a portable hypoxia chamber for ultra-high dose rate laser-driven proton radiobiology applications. Radiat Oncol 2022; 17:77. [PMID: 35428301 PMCID: PMC9013042 DOI: 10.1186/s13014-022-02024-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 03/03/2022] [Indexed: 11/22/2022] Open
Abstract
Background There is currently significant interest in assessing the role of oxygen in the radiobiological effects at ultra-high dose rates. Oxygen modulation is postulated to play a role in the enhanced sparing effect observed in FLASH radiotherapy, where particles are delivered at 40–1000 Gy/s. Furthermore, the development of laser-driven accelerators now enables radiobiology experiments in extreme regimes where dose rates can exceed 109 Gy/s, and predicted oxygen depletion effects on cellular response can be tested. Access to appropriate experimental enviroments, allowing measurements under controlled oxygenation conditions, is a key requirement for these studies. We report on the development and application of a bespoke portable hypoxia chamber specifically designed for experiments employing laser-driven sources, but also suitable for comparator studies under FLASH and conventional irradiation conditions. Materials and methods We used oxygen concentration measurements to test the induction of hypoxia and the maintenance capacity of the chambers. Cellular hypoxia induction was verified using hypoxia inducible factor-1α immunostaining. Calibrated radiochromic films and GEANT-4 simulations verified the dosimetry variations inside and outside the chambers. We irradiated hypoxic human skin fibroblasts (AG01522B) cells with laser-driven protons, conventional protons and reference 225 kVp X-rays to quantify DNA DSB damage and repair under hypoxia. We further measured the oxygen enhancement ratio for cell survival after X-ray exposure in normal fibroblast and radioresistant patient- derived GBM stem cells. Results Oxygen measurements showed that our chambers maintained a radiobiological hypoxic environment for at least 45 min and pathological hypoxia for up to 24 h after disconnecting the chambers from the gas supply. We observed a significant reduction in the 53BP1 foci induced by laser-driven protons, conventional protons and X-rays in the hypoxic cells compared to normoxic cells at 30 min post-irradiation. Under hypoxic irradiations, the Laser-driven protons induced significant residual DNA DSB damage in hypoxic AG01522B cells compared to the conventional dose rate protons suggesting an important impact of these extremely high dose-rate exposures. We obtained an oxygen enhancement ratio (OER) of 2.1 ± 0.1 and 2.5 ± 0.1 respectively for the AG01522B and patient-derived GBM stem cells for X-ray irradiation using our hypoxia chambers. Conclusion We demonstrated the design and application of portable hypoxia chambers for studying cellular radiobiological endpoints after exposure to laser-driven protons at ultra-high dose, conventional protons and X-rays. Suitable levels of reduced oxygen concentration could be maintained in the absence of external gassing to quantify hypoxic effects. The data obtained provided indication of an enhanced residual DNA DSB damage under hypoxic conditions at ultra-high dose rate compared to the conventional protons or X-rays. Supplementary Information The online version contains supplementary material available at 10.1186/s13014-022-02024-3.
Collapse
|
12
|
Kim MM, Darafsheh A, Schuemann J, Dokic I, Lundh O, Zhao T, Ramos-Méndez J, Dong L, Petersson K. Development of Ultra-High Dose-Rate (FLASH) Particle Therapy. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2022; 6:252-262. [PMID: 36092270 PMCID: PMC9457346 DOI: 10.1109/trpms.2021.3091406] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Research efforts in FLASH radiotherapy have increased at an accelerated pace recently. FLASH radiotherapy involves ultra-high dose rates and has shown to reduce toxicity to normal tissue while maintaining tumor response in pre-clinical studies when compared to conventional dose rate radiotherapy. The goal of this review is to summarize the studies performed to-date with proton, electron, and heavy ion FLASH radiotherapy, with particular emphasis on the physical aspects of each study and the advantages and disadvantages of each modality. Beam delivery parameters, experimental set-up, and the dosimetry tools used are described for each FLASH modality. In addition, modeling efforts and treatment planning for FLASH radiotherapy is discussed along with potential drawbacks when translated into the clinical setting. The final section concludes with further questions that have yet to be answered before safe clinical implementation of FLASH radiotherapy.
Collapse
Affiliation(s)
- Michele M Kim
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Arash Darafsheh
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jan Schuemann
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ivana Dokic
- Clinical Cooperation Unit Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 460, Heidelberg, Germany
- Division of Molecular and Translational Radiation Oncology, Department of Radiation Oncology, Heidelberg Faculty of Medicine (MFHD) and Heidelberg University Hospital (UKHD), Heidelberg Ion-Beam Therapy Center (HIT), Im Neuenheimer Feld 450, 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK) Core-Center Heidelberg, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg University and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 222, Heidelberg, Germany
| | - Olle Lundh
- Department of Physics, Lund University, Lund, Sweden
| | - Tianyu Zhao
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - José Ramos-Méndez
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California, USA
| | - Lei Dong
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kristoffer Petersson
- Department of Oncology, The Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
- Radiation Physics, Department of Haematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
13
|
The Effect of Hypoxia on Relative Biological Effectiveness and Oxygen Enhancement Ratio for Cells Irradiated with Grenz Rays. Cancers (Basel) 2022; 14:cancers14051262. [PMID: 35267573 PMCID: PMC8909589 DOI: 10.3390/cancers14051262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/11/2022] [Accepted: 02/25/2022] [Indexed: 12/31/2022] Open
Abstract
Grenz-ray therapy (GT) is commonly used for dermatological radiotherapy and has a higher linear energy transfer, relative biological effectiveness (RBE) and oxygen enhancement ratio (OER). GT is a treatment option for lentigo maligna and lentigo maligna melanoma. This study aims to calculate the RBE for DNA double-strand break (DSB) induction and cell survival under hypoxic conditions for GT. The yield of DSBs induced by GT is calculated at the aerobic and hypoxic conditions, using a Monte Carlo damage simulation (MCDS) software. The RBE value for cell survival is calculated using the repair–misrepair–fixation (RMF) model. The RBE values for cell survival for cells irradiated by 15 kV, 10 kV and 10 kVp and titanium K-shell X-rays (4.55 kV) relative to 60Co γ-rays are 1.0–1.6 at the aerobic conditions and moderate hypoxia (2% O2), respectively, but increase to 1.2, 1.4 and 1.9 and 2.1 in conditions of severe hypoxia (0.1% O2). The OER values for DSB induction relative to 60Co γ-rays are about constant and ~2.4 for GT, but the OER for cell survival is 2.8–2.0 as photon energy decreases from 15 kV to 4.55 kV. The results indicate that GT results in more DSB induction and allows effective tumor control for superficial and hypoxic tumors.
Collapse
|
14
|
Brender JR, Saida Y, Devasahayam N, Krishna MC, Kishimoto S. Hypoxia Imaging As a Guide for Hypoxia-Modulated and Hypoxia-Activated Therapy. Antioxid Redox Signal 2022; 36:144-159. [PMID: 34428981 PMCID: PMC8856011 DOI: 10.1089/ars.2021.0176] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 08/16/2021] [Indexed: 01/03/2023]
Abstract
Significance: Oxygen imaging techniques, which can probe the spatiotemporal heterogeneity of tumor oxygenation, could be of significant clinical utility in radiation treatment planning and in evaluating the effectiveness of hypoxia-activated prodrugs. To fulfill these goals, oxygen imaging techniques should be noninvasive, quantitative, and capable of serial imaging, as well as having sufficient temporal resolution to detect the dynamics of tumor oxygenation to distinguish regions of chronic and acute hypoxia. Recent Advances: No current technique meets all these requirements, although all have strengths in certain areas. The current status of positron emission tomography (PET)-based hypoxia imaging, oxygen-enhanced magnetic resonance imaging (MRI), 19F MRI, and electron paramagnetic resonance (EPR) oximetry are reviewed along with their strengths and weaknesses for planning hypoxia-guided, intensity-modulated radiation therapy and detecting treatment response for hypoxia-targeted prodrugs. Critical Issues: Spatial and temporal resolution emerges as a major concern for these areas along with specificity and quantitative response. Although multiple oxygen imaging techniques have reached the investigative stage, clinical trials to test the therapeutic effectiveness of hypoxia imaging have been limited. Future Directions: Imaging elements of the redox environment besides oxygen by EPR and hyperpolarized MRI may have a significant impact on our understanding of the basic biology of the reactive oxygen species response and may extend treatment possibilities.
Collapse
Affiliation(s)
- Jeffrey R. Brender
- Radiation Biology Branch, Center for Cancer Research, National
Institutes of Health, Bethesda, Maryland, USA
| | - Yu Saida
- Radiation Biology Branch, Center for Cancer Research, National
Institutes of Health, Bethesda, Maryland, USA
| | - Nallathamby Devasahayam
- Radiation Biology Branch, Center for Cancer Research, National
Institutes of Health, Bethesda, Maryland, USA
| | - Murali C. Krishna
- Radiation Biology Branch, Center for Cancer Research, National
Institutes of Health, Bethesda, Maryland, USA
| | - Shun Kishimoto
- Radiation Biology Branch, Center for Cancer Research, National
Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
15
|
Ebara M, Shibuya K, Shimada H, Kawashima M, Hirasawa H, Taketomi-Takahashi A, Ohno T, Tsushima Y. Evaluation of Threshold Dose of Damaged Hepatic Tissue After Carbon-Ion Radiation Therapy Using Gd-EOB-DTPA-Enhanced Magnetic Resonance Imaging. Adv Radiat Oncol 2021; 6:100775. [PMID: 34934860 PMCID: PMC8655403 DOI: 10.1016/j.adro.2021.100775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 08/09/2021] [Indexed: 11/25/2022] Open
Abstract
Purpose To evaluate the threshold dose and associated factors using signal-intensity changes in the irradiated area after carbon-ion radiation therapy (C-ion RT) for patients with liver cancer. Methods and Materials Patients treated for the first time with C-ion RT for malignant liver tumors and followed up with 3-Tesla gadoxetic acid (Gd-EOB-DTPA)–enhanced magnetic resonance imaging (MRI) 3 months after treatment completion were retrospectively enrolled. The volume of focal liver reaction (FLR), a low-intensity area in the hepatobiliary phase of Gd-EOB-DTPA after treatment, was measured. Corrected FLR (cFLR) volume, defined as FLR corrected for changes in tumor volume from before to after treatment, was calculated, and the threshold dose was determined by applying the cFLR volume in the dose-volume histogram. To evaluate potential mismatch in fusion images of planning computed tomography and follow-up MRI, the concordance coefficient (CC) was measured, and patients with a CC < 0.7 were excluded. Sixty patients were included. Multiple regression analysis was performed with the threshold dose as the objective variable and the age, dose, number of fractionations, Child-Pugh score, pretreatment liver volume, and pretreatment tumor volume as explanatory variables. The Student t test or Mann-Whitney U test was used as required. Results The median threshold doses for each number of dose fractionations (4 fractions, 12 fractions, and overall) were 51.6, 51.9, and 51.8 Gy (relative biological effectiveness [RBE]), respectively, in patients categorized as Child-Pugh class A and 27.0, 28.8, and 27.0 Gy (RBE), respectively, in patients categorized as Child-Pugh class B. In the multiple-regression analysis, only the Child-Pugh score was significant (P < .001). The number of dose fractionations was not statistically significant. Conclusions Although few patients in the study had decreased liver function, baseline liver function was the only factor significantly associated with the median threshold dose. These findings facilitate appropriate patient selection to receive C-ion RT for malignant hepatic tumors.
Collapse
Affiliation(s)
- Masashi Ebara
- Department of Diagnostic Radiology and Nuclear Medicine, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Kei Shibuya
- Department of Diagnostic Radiology and Nuclear Medicine, Gunma University Graduate School of Medicine, Gunma, Japan.,Department of Radiation Oncology, Gunma University Graduate School of Medicine, Gunma, Japan.,Gunma University Heavy Ion Medical Center, Gunma, Japan
| | | | | | - Hiromi Hirasawa
- Department of Diagnostic Radiology and Nuclear Medicine, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Ayako Taketomi-Takahashi
- Department of Diagnostic Radiology and Nuclear Medicine, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Tatsuya Ohno
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Gunma, Japan.,Gunma University Heavy Ion Medical Center, Gunma, Japan
| | - Yoshito Tsushima
- Department of Diagnostic Radiology and Nuclear Medicine, Gunma University Graduate School of Medicine, Gunma, Japan
| |
Collapse
|
16
|
Inaniwa T, Kanematsu N, Shinoto M, Koto M, Yamada S. Adaptation of stochastic microdosimetric kinetic model to hypoxia for hypo-fractionated multi-ion therapy treatment planning. Phys Med Biol 2021; 66. [PMID: 34560678 DOI: 10.1088/1361-6560/ac29cc] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 09/24/2021] [Indexed: 11/11/2022]
Abstract
For hypo-fractionated multi-ion therapy (HFMIT), the stochastic microdosimetric kinetic (SMK) model had been developed to estimate the biological effectiveness of radiation beams with wide linear energy transfer (LET) and dose ranges. The HFMIT will be applied to radioresistant tumors with oxygen-deficient regions. The response of cells to radiation is strongly dependent on the oxygen condition in addition to radiation type, LET and absorbed dose. This study presents an adaptation of the SMK model to account for oxygen-pressure dependent cell responses, and develops the oxygen-effect-incorporated stochastic microdosimetric kinetic (OSMK) model. In the model, following assumptions were made: the numbers of radiation-induced sublethal lesions (double-strand breaks) are reduced due to lack of oxygen, and the numbers of oxygen-mediated lesions are reduced for radiation with high LET. The model parameters were determined by fitting survival data under aerobic and anoxic conditions for human salivary gland tumor cells and V79 cells exposed to helium-, carbon-, and neon-ion beams over the LET range of 18.5-654.0 keVμm-1. The OSMK model provided good agreement with the experimental survival data of the cells with determination coefficients >0.9. In terms of oxygen enhancement ratio, the OSMK model reproduced the experimental data behavior, including slight dependence on particle type at the same LET. The OSMK model was then implemented into the in-house treatment planning software for the HFMIT to validate its applicability in clinical practice. A treatment plan with helium- and neon-ion beams was made for a pancreatic cancer case assuming an oxygen-deficient region within the tumor. The biological optimization based on the OSMK model preferentially placed the neon-ion beam to the hypoxic region, while it placed both helium- and neon-ion beams to the surrounding normoxic region. The OSMK model offered the accuracy and usability required for hypoxia-based biological optimization in HFMIT treatment planning.
Collapse
Affiliation(s)
- Taku Inaniwa
- Department of Accelerator and Medical Physics, Institute for Quantum Medical Science, QST, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Nobuyuki Kanematsu
- Department of Accelerator and Medical Physics, Institute for Quantum Medical Science, QST, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Makoto Shinoto
- QST Hospital, QST, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.,Department of Charged Particle Therapy Research, Institute for Quantum Medical Science, QST, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Masashi Koto
- QST Hospital, QST, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.,Department of Charged Particle Therapy Research, Institute for Quantum Medical Science, QST, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Shigeru Yamada
- QST Hospital, QST, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.,Department of Charged Particle Therapy Research, Institute for Quantum Medical Science, QST, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| |
Collapse
|
17
|
Wang X, Chen X, Li G, Han X, Gao T, Liu W, Tang X. Application of Carbon Ion and Its Sensitizing Agent in Cancer Therapy: A Systematic Review. Front Oncol 2021; 11:708724. [PMID: 34290989 PMCID: PMC8287631 DOI: 10.3389/fonc.2021.708724] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 06/21/2021] [Indexed: 12/24/2022] Open
Abstract
Carbon ion radiation therapy (CIRT) is the most advanced radiation therapy (RT) available and offers new opportunities to improve cancer treatment and research. CIRT has a unique physical and biological advantage that allow them to kill tumor cells more accurately and intensively. So far, CIRT has been used in almost all types of malignant tumors, and showed good feasibility, safety and acceptable toxicity, indicating that CIRT has a wide range of development and application prospects. In addition, in order to improve the biological effect of CIRT, scientists are also trying to investigate related sensitizing agents to enhance the killing ability of tumor cells, which has attracted extensive attention. In this review, we tried to systematically review the rationale, advantages and problems, the clinical applications and the sensitizing agents of the CIRT. At the same time, the prospects of the CIRT in were prospected. We hope that this review will help researchers interested in CIRT, sensitizing agents, and radiotherapy to understand their magic more systematically and faster, and provide data reference and support for bioanalysis, clinical medicine, radiotherapy, heavy ion therapy, and nanoparticle diagnostics.
Collapse
Affiliation(s)
- Xiaolin Wang
- School of Life Science, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, China
| | - Xiaojun Chen
- School of Life Science, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, China
| | - Guangfei Li
- School of Life Science, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, China
| | - Xiao Han
- School of Life Science, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, China
| | - Tianxin Gao
- School of Life Science, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, China
| | - Weifeng Liu
- School of Life Science, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, China
| | - Xiaoying Tang
- School of Life Science, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
18
|
Chan CC, Chen FH, Hsiao YY. Impact of Hypoxia on Relative Biological Effectiveness and Oxygen Enhancement Ratio for a 62-MeV Therapeutic Proton Beam. Cancers (Basel) 2021; 13:2997. [PMID: 34203882 PMCID: PMC8232608 DOI: 10.3390/cancers13122997] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 01/11/2023] Open
Abstract
This study uses the yields of double-strand breaks (DSBs) to determine the relative biological effectiveness (RBE) of proton beams, using cell survival as a biological endpoint. DSB induction is determined when cells locate at different depths (6 positions) along the track of 62 MeV proton beams. The DNA damage yields are estimated using Monte Carlo Damage Simulation (MCDS) software. The repair outcomes are estimated using Monte Carlo excision repair (MCER) simulations. The RBE for cell survival at different oxygen concentrations is calculated using the repair-misrepair-fixation (RMF) model. Using 60Co γ-rays (linear energy transfer (LET) = 2.4 keV/μm) as the reference radiation, the RBE for DSB induction and enzymatic DSB under aerobic condition (21% O2) are in the range 1.0-1.5 and 1.0-1.6 along the track depth, respectively. In accord with RBE obtained from experimental data, RMF model-derived RBE values for cell survival are in the range of 1.0-3.0. The oxygen enhancement ratio (OER) for cell survival (10%) decreases from 3.0 to 2.5 as LET increases from 1.1 to 22.6 keV/μm. The RBE values for severe hypoxia (0.1% O2) are in the range of 1.1-4.4 as LET increases, indicating greater contributions of direct effects for protons. Compared with photon therapy, the overall effect of 62 MeV proton beams results in greater cell death and is further intensified under hypoxic conditions.
Collapse
Affiliation(s)
- Chun-Chieh Chan
- Department of Electrical Engineering, National Chung Hsing University, Taichung 40227, Taiwan;
| | - Fang-Hsin Chen
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan 33302, Taiwan;
- Radiation Biology Research Center, Institute for Radiological Research, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Radiation Oncology, Chang Gung Memorial Hospital—Linkou Branch, Taoyuan 33305, Taiwan
| | - Ya-Yun Hsiao
- Department of Radiology, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
- Department of Medical Imaging and Radiological Sciences, Chung Shan Medical University, Taichung 40201, Taiwan
| |
Collapse
|
19
|
Hypoxia Transcriptomic Modifications Induced by Proton Irradiation in U87 Glioblastoma Multiforme Cell Line. J Pers Med 2021; 11:jpm11040308. [PMID: 33923454 PMCID: PMC8073933 DOI: 10.3390/jpm11040308] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/08/2021] [Accepted: 04/12/2021] [Indexed: 12/11/2022] Open
Abstract
In Glioblastoma Multiforme (GBM), hypoxia is associated with radioresistance and poor prognosis. Since standard GBM treatments are not always effective, new strategies are needed to overcome resistance to therapeutic treatments, including radiotherapy (RT). Our study aims to shed light on the biomarker network involved in a hypoxic (0.2% oxygen) GBM cell line that is radioresistant after proton therapy (PT). For cultivating cells in acute hypoxia, GSI’s hypoxic chambers were used. Cells were irradiated in the middle of a spread-out Bragg peak with increasing PT doses to verify the greater radioresistance in hypoxic conditions. Whole-genome cDNA microarray gene expression analyses were performed for samples treated with 2 and 10 Gy to highlight biological processes activated in GBM following PT in the hypoxic condition. We describe cell survival response and significant deregulated pathways responsible for the cell death/survival balance and gene signatures linked to the PT/hypoxia configurations assayed. Highlighting the molecular pathways involved in GBM resistance following hypoxia and ionizing radiation (IR), this work could suggest new molecular targets, allowing the development of targeted drugs to be suggested in association with PT.
Collapse
|
20
|
The RBE in ion beam radiotherapy: In vivo studies and clinical application. Z Med Phys 2021; 31:105-121. [PMID: 33568337 DOI: 10.1016/j.zemedi.2020.12.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 11/23/2020] [Accepted: 12/04/2020] [Indexed: 12/15/2022]
Abstract
Ion beams used for radiotherapy exhibit an increased relative biological effectiveness (RBE), which depends on several physical treatment parameters as well as on biological factors of the irradiated tissues. While the RBE is an experimentally well-defined quantity, translation to patients is complex and requires radiobiological studies, dedicated models to calculate the RBE in treatment planning as well as strategies for dose prescription. Preclinical in vivo studies and analysis of clinical outcome are important to validate and refine RBE-models. This review describes the concept of the experimental and clinical RBE and explains the fundamental dependencies of the RBE based on in vitro experiments. The available preclinical in vivo studies on normal tissue and tumor RBE for ions heavier than protons are reviewed in the context of the historical and present development of ion beam radiotherapy. In addition, the role of in vivo RBE-values in the development and benchmarking of RBE-models as well as the transition of these models to clinical application are described. Finally, limitations in the translation of experimental RBE-values into clinical application and the direction of future research are discussed.
Collapse
|
21
|
Huang Q, Sun Y, Wang W, Lin LC, Huang Y, Yang J, Wu X, Kong L, Lu JJ. Biological Guided Carbon-Ion Microporous Radiation to Tumor Hypoxia Area Triggers Robust Abscopal Effects as Open Field Radiation. Front Oncol 2020; 10:597702. [PMID: 33330089 PMCID: PMC7713593 DOI: 10.3389/fonc.2020.597702] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/19/2020] [Indexed: 01/16/2023] Open
Abstract
Recently, a growing number of studies focus on partial tumor irradiation to induce the stronger non-target effects. However, the value of partial volume carbon ion radiotherapy (CIRT) targeting hypoxic region of a tumor under imaging guidance as well as its effect of inducing radiation induced abscopal effects (RIAEs) have not been well investigated. Herein, we developed a technique of carbon ion microporous radiation (CI-MPR), guided by 18F-FMISO PET/computerized tomography (CT), for partial volume radiation targeting the hypoxia area of a tumor and investigated its capability of inducing abscopal effects. Tumor-bearing mice were inoculated subcutaneously with breast cancer 4T1 cells into the flanks of both hind legs of mouse. Mice were assigned to three groups: group I: control group with no treatment; group II: carbon ion open field radiation (CI-OFR group) targeting the entire tumor; group III: partial volume carbon ion microporous radiation (CI-MPR group) targeting the hypoxia region. The tumors on the left hind legs of mice were irradiated with single fraction of 20 Gy of CIRT. Mice treated with CI-MPR or CI-OFR showed that significant growth delay on both the irradiated and unirradiated of tumor as compared to the control groups. Tumor regression of left tumor irradiated with CI-OFR was more prominent as compared to the tumor treated with CI-MPR, while the regression of the unirradiated tumor in both CI-MPR and CI-OFR group was similar. Biological-guided CIRT using the newly developed microporous technique targeting tumor hypoxia region could induce robust abscopal effects similar to CIRT covering the entire tumor.
Collapse
Affiliation(s)
- Qingting Huang
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China.,Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Yun Sun
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China.,Department of Research and Development, Shanghai Proton and Heavy Ion Center, Shanghai, China
| | - Weiwei Wang
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China.,Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Shanghai, China
| | - Lien-Chun Lin
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China.,Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Shanghai, China
| | - Yangle Huang
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China
| | - Jing Yang
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Xiaodong Wu
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China.,Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Shanghai, China
| | - Lin Kong
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Jiade Jay Lu
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| |
Collapse
|
22
|
Tinganelli W, Durante M. Carbon Ion Radiobiology. Cancers (Basel) 2020; 12:E3022. [PMID: 33080914 PMCID: PMC7603235 DOI: 10.3390/cancers12103022] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 12/15/2022] Open
Abstract
Radiotherapy using accelerated charged particles is rapidly growing worldwide. About 85% of the cancer patients receiving particle therapy are irradiated with protons, which have physical advantages compared to X-rays but a similar biological response. In addition to the ballistic advantages, heavy ions present specific radiobiological features that can make them attractive for treating radioresistant, hypoxic tumors. An ideal heavy ion should have lower toxicity in the entrance channel (normal tissue) and be exquisitely effective in the target region (tumor). Carbon ions have been chosen because they represent the best combination in this direction. Normal tissue toxicities and second cancer risk are similar to those observed in conventional radiotherapy. In the target region, they have increased relative biological effectiveness and a reduced oxygen enhancement ratio compared to X-rays. Some radiobiological properties of densely ionizing carbon ions are so distinct from X-rays and protons that they can be considered as a different "drug" in oncology, and may elicit favorable responses such as an increased immune response and reduced angiogenesis and metastatic potential. The radiobiological properties of carbon ions should guide patient selection and treatment protocols to achieve optimal clinical results.
Collapse
Affiliation(s)
- Walter Tinganelli
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforchung, Planckstraße 1, 64291 Darmstadt, Germany;
| | - Marco Durante
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforchung, Planckstraße 1, 64291 Darmstadt, Germany;
- Institut für Festkörperphysik, Technische Universität Darmstadt, Hochschulstraße 8, 64289 Darmstadt, Germany
| |
Collapse
|
23
|
Jeong J, Taasti VT, Jackson A, Deasy JO. The relative biological effectiveness of carbon ion radiation therapy for early stage lung cancer. Radiother Oncol 2020; 153:265-271. [PMID: 32976878 DOI: 10.1016/j.radonc.2020.09.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/26/2020] [Accepted: 09/13/2020] [Indexed: 12/26/2022]
Abstract
BACKGROUND AND PURPOSE Carbon ion radiation therapy (CIRT) is recognized as an effective alternative treatment modality for early stage lung cancer, but a quantitative understanding of relative biological effectiveness (RBE) compared to photon therapy is lacking. In this work, a mechanistic tumor response model previously validated for lung photon radiotherapy was used to estimate the RBE of CIRT compared to photon radiotherapy, as a function of dose and the fractionation schedule. MATERIALS AND METHODS Clinical outcome data of 9 patient cohorts (394 patients) treated with CIRT for early stage lung cancer, representing all published data, were included. Fractional dose, number of fractions, treatment schedule, and local control rates were used for model simulations relative to standard photon outcomes. Four parameters were fitted: α, α/β, and the oxygen enhancement ratios of cells either accessing only glucose, not oxygen (OERI), or cells dying from starvation (OERH). The resulting dose-response relationship of CIRT was compared with the previously determined dose-response relationship of photon radiotherapy for lung cancer, and an RBE of CIRT was derived. RESULTS Best-fit CIRT parameters were: α = 1.12 Gy-1 [95%-CI: 0.97-1.26], α/β = 23.9 Gy [95%-CI: 8.9-38.9], and the oxygen induced radioresistance of hypoxic cell populations were characterized by OERI = 1.08 [95%-CI: 1.00-1.41] (cells lacking oxygen but not glucose), and OERH = 1.01 [95%-CI: 1.00-1.44] (cells lacking oxygen and glucose). Depending on dose and fractionation, the derived RBE ranges from 2.1 to 1.5, with decreasing values for larger fractional dose and fewer number of fractions. CONCLUSION Fitted radiobiological parameters were consistent with known carbon in vitro radiobiology, and the resulting dose-response curve well-fitted the reported data over a wide range of dose-fractionation schemes. The same model, with only a few fitted parameters of clear mechanistic meaning, thus synthesizes both photon radiotherapy and CIRT clinical experience with early stage lung tumors.
Collapse
Affiliation(s)
- Jeho Jeong
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, USA.
| | - Vicki T Taasti
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Andrew Jackson
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Joseph O Deasy
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, USA
| |
Collapse
|
24
|
Liermann J, Shinoto M, Syed M, Debus J, Herfarth K, Naumann P. Carbon ion radiotherapy in pancreatic cancer: A review of clinical data. Radiother Oncol 2020; 147:145-150. [PMID: 32416281 DOI: 10.1016/j.radonc.2020.05.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/15/2020] [Accepted: 05/08/2020] [Indexed: 12/14/2022]
Abstract
Despite all efforts, pancreatic cancer remains a highly lethal disease. Only surgical resection offers a realistic chance of survival. But at diagnosis the majority of patients suffer from unresectable disease. Whereas guidelines clearly recommend systemic treatments in metastatic disease, data is limited to support a specific treatment option for locally advanced or borderline resectable pancreatic cancer. Therefore, there is an urgent need to improve treatment schemes addressing patients that suffer from unresectable pancreatic cancer. Chemotherapy, photon radiotherapy and combinations of both have shown improved local control rates but there is still a lack of evidence demonstrating an overall survival benefit of photon radiotherapy if no surgical resection is achieved. Impressive results of Japanese Phase I/II-trials investigating carbon ion radiotherapy in pancreatic cancer attracted global attention. Several studies have been initiated to validate and intensify this promising issue. This review gives an overview of the evidence and current use of carbon ion radiotherapy in pancreatic cancer.
Collapse
Affiliation(s)
- Jakob Liermann
- Heidelberg University Hospital, Department of Radiation Oncology, 69120 Heidelberg, Germany; Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT), 69120 Heidelberg, Germany.
| | - Makoto Shinoto
- Ion Beam Therapy Center, SAGA HIMAT Foundation, Saga, Japan.
| | - Mustafa Syed
- Heidelberg University Hospital, Department of Radiation Oncology, 69120 Heidelberg, Germany; Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany.
| | - Jürgen Debus
- Heidelberg University Hospital, Department of Radiation Oncology, 69120 Heidelberg, Germany; Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany; National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany; Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT), 69120 Heidelberg, Germany; German Cancer Consortium (DKTK), Partner Site Heidelberg, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| | - Klaus Herfarth
- Heidelberg University Hospital, Department of Radiation Oncology, 69120 Heidelberg, Germany; Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany; National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany; Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT), 69120 Heidelberg, Germany; German Cancer Consortium (DKTK), Partner Site Heidelberg, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| | - Patrick Naumann
- Heidelberg University Hospital, Department of Radiation Oncology, 69120 Heidelberg, Germany; Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT), 69120 Heidelberg, Germany.
| |
Collapse
|
25
|
Matsuya Y, Sato T, Nakamura R, Naijo S, Date H. A theoretical cell-killing model to evaluate oxygen enhancement ratios at DNA damage and cell survival endpoints in radiation therapy. Phys Med Biol 2020; 65:095006. [PMID: 32135526 DOI: 10.1088/1361-6560/ab7d14] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Radio-resistance induced under low oxygen pressure plays an important role in malignant progression in fractionated radiotherapy. For the general approach to predict cell killing under hypoxia, cell-killing models (e.g. the Linear-Quadratic model) have to be fitted to in vitro experimental survival data for both normoxia and hypoxia to obtain the oxygen enhancement ratio (OER). In such a case, model parameters for every oxygen condition needs to be considered by model-fitting approaches. This is inefficient for fractionated irradiation planning. Here, we present an efficient model for fractionated radiotherapy the integrated microdosimetric-kinetic model including cell-cycle distribution and the OER at DNA double-strand break endpoint (OERDSB). The cell survival curves described by this model can reproduce the in vitro experimental survival data for both acute and chronic low oxygen concentrations. The OERDSB used for calculating cell survival agrees well with experimental DSB ratio of normoxia to hypoxia. The important parameters of the model are oxygen pressure and cell-cycle distribution, which enables us to predict cell survival probabilities under chronic hypoxia and chronic anoxia. This work provides biological effective dose (BED) under various oxygen conditions including its uncertainty, which can contribute to creating fractionated regimens for multi-fractionated radiotherapy. If the oxygen concentration in a tumor can be quantified by medical imaging, the present model will make it possible to estimate the cell-killing and BED under hypoxia in more realistic intravital situations.
Collapse
Affiliation(s)
- Yusuke Matsuya
- Japan Atomic Energy Agency, Nuclear Science and Engineering Center, Research Group for Radiation Transport Analysis, 2-4 Shirakata, Tokai, Ibaraki 319-1195, Japan. Faculty of Health Sciences, Hokkaido University, Kita-12 Nishi-5, Kita-ku, Sapporo, Hokkaiddo 060-0812, Japan
| | | | | | | | | |
Collapse
|
26
|
Konings K, Vandevoorde C, Baselet B, Baatout S, Moreels M. Combination Therapy With Charged Particles and Molecular Targeting: A Promising Avenue to Overcome Radioresistance. Front Oncol 2020; 10:128. [PMID: 32117774 PMCID: PMC7033551 DOI: 10.3389/fonc.2020.00128] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/24/2020] [Indexed: 12/13/2022] Open
Abstract
Radiotherapy plays a central role in the treatment of cancer patients. Over the past decades, remarkable technological progress has been made in the field of conventional radiotherapy. In addition, the use of charged particles (e.g., protons and carbon ions) makes it possible to further improve dose deposition to the tumor, while sparing the surrounding healthy tissues. Despite these improvements, radioresistance and tumor recurrence are still observed. Although the mechanisms underlying resistance to conventional radiotherapy are well-studied, scientific evidence on the impact of charged particle therapy on cancer cell radioresistance is restricted. The purpose of this review is to discuss the potential role that charged particles could play to overcome radioresistance. This review will focus on hypoxia, cancer stem cells, and specific signaling pathways of EGFR, NFκB, and Hedgehog as well as DNA damage signaling involving PARP, as mechanisms of radioresistance for which pharmacological targets have been identified. Finally, new lines of future research will be proposed, with a focus on novel molecular inhibitors that could be used in combination with charged particle therapy as a novel treatment option for radioresistant tumors.
Collapse
Affiliation(s)
- Katrien Konings
- Radiobiology Unit, Belgian Nuclear Research Center (SCK•CEN), Mol, Belgium
| | - Charlot Vandevoorde
- Radiobiology, Radiation Biophysics Division, Department of Nuclear Medicine, iThemba LABS, Cape Town, South Africa
| | - Bjorn Baselet
- Radiobiology Unit, Belgian Nuclear Research Center (SCK•CEN), Mol, Belgium
| | - Sarah Baatout
- Radiobiology Unit, Belgian Nuclear Research Center (SCK•CEN), Mol, Belgium.,Department of Molecular Biotechnology, Ghent University, Ghent, Belgium
| | - Marjan Moreels
- Radiobiology Unit, Belgian Nuclear Research Center (SCK•CEN), Mol, Belgium
| |
Collapse
|
27
|
Rezaee L. Optimization of treatment planning for hypoxic tumours and re-modulation of radiation intensity in heavy-ion radiotherapy. Rep Pract Oncol Radiother 2020; 25:68-78. [PMID: 31889925 DOI: 10.1016/j.rpor.2019.12.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 09/30/2019] [Accepted: 12/13/2019] [Indexed: 12/26/2022] Open
Abstract
Aim The purpose of this study is to optimize treatment planning in carbon ion radiotherapy, taking into account the effect of tumour hypoxia. Background In conventional hadron therapy, the goal is to create a homogenous dose in the tumour area and, thus, achieve a uniform cell survival level. Since the induction of a specific damage to cells is directly influenced by the level of hypoxia in the tissue, the varying oxygen pressure in the different regions of hypoxic tumours would disrupt the uniformity of the cell survival level. Materials and methods Using the Geant4 Monte Carlo Code, the physical dose profile and dose-averaged linear energy transfer were calculated in the tumour. Then, the oxygen enhancement ratio in different areas of the tumour were compared with different pressures. Results Modulations of radiation intensities as well as energies of ion beams were calculated, both considering and disregarding the effect of hypoxia, and the required dose profiles were compared with each other. Cell survival levels were also compared between the two methods. An equation was obtained for re-modulating the beams in the presence of hypoxia, and radiation weighting factors were extracted for the beam intensities. Conclusion The results show that taking the effect of hypoxia into account would cause the reduction of average doses delivered to the tumour tissues up to 1.54 times. In this regard, the required dose is reduced by 1.63 times in the healthy tissues before the tumour. This will result in an effective protection of healthy tissues around the tumour.
Collapse
Affiliation(s)
- Ladan Rezaee
- Department of Physics, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| |
Collapse
|
28
|
Sato K, Shimokawa T, Imai T. Difference in Acquired Radioresistance Induction Between Repeated Photon and Particle Irradiation. Front Oncol 2019; 9:1213. [PMID: 31799186 PMCID: PMC6863406 DOI: 10.3389/fonc.2019.01213] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 10/23/2019] [Indexed: 12/21/2022] Open
Abstract
In recent years, advanced radiation therapy techniques, including stereotactic body radiotherapy and carbon–ion radiotherapy, have progressed to such an extent that certain types of cancer can be treated with radiotherapy alone. The therapeutic outcomes are particularly promising for early stage lung cancer, with results matching those of surgical resection. Nevertheless, patients may still experience local tumor recurrence, which might be exacerbated by the acquisition of radioresistance after primary radiotherapy. Notwithstanding the risk of tumors acquiring radioresistance, secondary radiotherapy is increasingly used to treat recurrent tumors. In this context, it appears essential to comprehend the radiobiological effects of repeated photon and particle irradiation and their underlying cellular and molecular mechanisms in order to achieve the most favorable therapeutic outcome. However, to date, the mechanisms of acquisition of radioresistance in cancer cells have mainly been studied after repeated in vitro X-ray irradiation. By contrast, other critical aspects of radioresistance remain mostly unexplored, including the response to carbon-ion irradiation of X-ray radioresistant cancer cells, the mechanisms of acquisition of carbon-ion resistance, and the consequences of repeated in vivo X-ray or carbon-ion irradiation. In this review, we discuss the underlying mechanisms of acquisition of X-ray and carbon-ion resistance in cancer cells, as well as the phenotypic differences between X-ray and carbon-ion-resistant cancer cells, the biological implications of repeated in vivo X-ray or carbon-ion irradiation, and the main open questions in the field.
Collapse
Affiliation(s)
- Katsutoshi Sato
- Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, The Tisch Cancer Institute, New York, NY, United States
| | - Takashi Shimokawa
- Department of Accelerator and Medical Physics, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Sciences and Technology, Chiba, Japan
| | - Takashi Imai
- Medical Databank, Department of Radiation Medicine, QST Hospital, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| |
Collapse
|
29
|
Perry CC, Ramos-Méndez J, Milligan JR. DNA Condensation with a Boron-Containing Cationic Peptide for Modeling Boron Neutron Capture Therapy. Radiat Phys Chem Oxf Engl 1993 2019; 166. [PMID: 32454570 DOI: 10.1016/j.radphyschem.2019.108521] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The amino acid derivative 4-borono-L-phenylalanine (BPA) has been used in the radiation medicine technique boron neutron capture therapy (BNCT). Here we have characterized its interaction with DNA when incorporated into a positively charged hexa-L-arginine peptide. This ligand binds strongly to DNA and induces its condensation, an effect which is attenuated at higher ionic strengths. The use of an additional tetra-L-arginine ligand enables the preparation of a DNA condensate in the presence of a negligible concentration of unbound boron. Under these conditions, Monte Carlo simulation indicates that >85% of energy deposition events resulting from thermal neutron irradiation derive from boron fission. The combination of experimental model systems and simulations that we describe here provides a valuable tool for accurate track structure modeling of the DNA damage produced by the high LET particles involved in BNCT.
Collapse
Affiliation(s)
- Chris C Perry
- Department of Basic Sciences, School of Medicine, Loma Linda University, 11085 Campus Street, Loma Linda, CA 92350, USA
| | - Jose Ramos-Méndez
- Department of Radiation Oncology, University of California San Francisco, 1600 Divisadero Street, San Francisco, CA 94115, USA
| | - Jamie R Milligan
- Department of Basic Sciences, School of Medicine, Loma Linda University, 11085 Campus Street, Loma Linda, CA 92350, USA
| |
Collapse
|
30
|
Scharl S, Combs SE. Radiation Therapy in Meningiomas. Radiat Oncol 2019. [DOI: 10.1007/978-3-319-52619-5_1-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
31
|
Read GH, Miura N, Carter JL, Kines KT, Yamamoto K, Devasahayam N, Cheng JY, Camphausen KA, Krishna MC, Kesarwala AH. Three-dimensional alginate hydrogels for radiobiological and metabolic studies of cancer cells. Colloids Surf B Biointerfaces 2018; 171:197-204. [PMID: 30031304 DOI: 10.1016/j.colsurfb.2018.06.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 04/23/2018] [Accepted: 06/14/2018] [Indexed: 01/05/2023]
Abstract
The purpose of this study is to demonstrate calcium alginate hydrogels as a system for in vitro radiobiological and metabolic studies of cancer cells. Previous studies have established calcium alginate as a versatile three-dimensional (3D) culturing system capable of generating areas of oxygen heterogeneity and modeling metabolic changes in vitro. Here, through dosimetry, clonogenic and viability assays, and pimonidazole staining, we demonstrate that alginate can model radiobiological responses that monolayer cultures do not simulate. Notably, alginate hydrogels with radii greater than 500 μm demonstrate hypoxic cores, while smaller hydrogels do not. The size of this hypoxic region correlates with hydrogel size and improved cell survival following radiation therapy. Hydrogels can also be utilized in hyperpolarized magnetic resonance spectroscopy and extracellular flux analysis. Alginate therefore offers a reproducible, consistent, and low-cost means for 3D culture of cancer cells for radiobiological studies that simulates important in vivo parameters such as regional hypoxia and enables long-term culturing and in vitro metabolic studies.
Collapse
Affiliation(s)
- Graham H Read
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Natsuko Miura
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jenna L Carter
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kelsey T Kines
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kazutoshi Yamamoto
- Radiation Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Nallathamby Devasahayam
- Radiation Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jason Y Cheng
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kevin A Camphausen
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Murali C Krishna
- Radiation Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Aparna H Kesarwala
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA; Lead Contact, USA.
| |
Collapse
|
32
|
Strigari L, Torriani F, Manganaro L, Inaniwa T, Dalmasso F, Cirio R, Attili A. Tumour control in ion beam radiotherapy with different ions in the presence of hypoxia: an oxygen enhancement ratio model based on the microdosimetric kinetic model. ACTA ACUST UNITED AC 2018; 63:065012. [DOI: 10.1088/1361-6560/aa89ae] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
33
|
Mohamad O, Makishima H, Kamada T. Evolution of Carbon Ion Radiotherapy at the National Institute of Radiological Sciences in Japan. Cancers (Basel) 2018; 10:cancers10030066. [PMID: 29509684 PMCID: PMC5876641 DOI: 10.3390/cancers10030066] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 03/02/2018] [Accepted: 03/02/2018] [Indexed: 12/19/2022] Open
Abstract
Charged particles can achieve better dose distribution and higher biological effectiveness compared to photon radiotherapy. Carbon ions are considered an optimal candidate for cancer treatment using particles. The National Institute of Radiological Sciences (NIRS) in Chiba, Japan was the first radiotherapy hospital dedicated for carbon ion treatments in the world. Since its establishment in 1994, the NIRS has pioneered this therapy with more than 69 clinical trials so far, and hundreds of ancillary projects in physics and radiobiology. In this review, we will discuss the evolution of carbon ion radiotherapy at the NIRS and some of the current and future projects in the field.
Collapse
Affiliation(s)
- Osama Mohamad
- Hospital of the National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.
- Department of Radiation Oncology, University of Texas-Southwestern Medical Center, 2280 Inwood Rd., Dallas, TX 75390, USA.
| | - Hirokazu Makishima
- Hospital of the National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.
| | - Tadashi Kamada
- Hospital of the National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.
| |
Collapse
|
34
|
Sato K, Nitta N, Aoki I, Imai T, Shimokawa T. Repeated photon and C-ion irradiations in vivo have different impact on alteration of tumor characteristics. Sci Rep 2018; 8:1458. [PMID: 29362374 PMCID: PMC5780469 DOI: 10.1038/s41598-018-19422-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 12/12/2017] [Indexed: 12/16/2022] Open
Abstract
Precise characterization of tumor recurrence and regrowth after radiotherapy are important for prognostic understanding of the therapeutic effect. Here, we established a novel in vivo mouse model for evaluating the characteristics of regrown tumor after repeated photon and carbon ion (C-ion) irradiations. The results showed that tumor growth rate, lung metastasis, shortening of the survival of the tumor-bearing mice, and tumor microvessel formation were promoted 2- to 3-fold, and expression of angiogenic and metastatic genes increased 1.5- to 15-fold in regrown tumors after repeated photon irradiations, whereas repeated C-ion irradiations did not alter these characteristics. Interestingly, both repeated photon and C-ion irradiations did not generate radioresistance, which is generally acquired for in vitro treatment. Our results demonstrated that the repetition of photon, and not C-ion, irradiations in vivo alter the characteristics of the regrown tumor, making it more aggressive without acquisition of radioresistance.
Collapse
Affiliation(s)
- Katsutoshi Sato
- Cancer Metastasis Research Team, Advanced Radiation Biology Research Program, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, QST, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
- Clinical Genetic Oncology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, 3-8-31 Koto-Ku, Tokyo, 135-8550, Japan
| | - Nobuhiro Nitta
- Department of Molecular Imaging and Theranostics, and Group of Quantum-state Controlled MRI, National Institute of Radiological Sciences, QST, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - Ichio Aoki
- Department of Molecular Imaging and Theranostics, and Group of Quantum-state Controlled MRI, National Institute of Radiological Sciences, QST, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - Takashi Imai
- National Institute of Radiological Sciences, QST, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - Takashi Shimokawa
- Cancer Metastasis Research Team, Advanced Radiation Biology Research Program, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, QST, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan.
| |
Collapse
|
35
|
Klein C, Dokic I, Mairani A, Mein S, Brons S, Häring P, Haberer T, Jäkel O, Zimmermann A, Zenke F, Blaukat A, Debus J, Abdollahi A. Overcoming hypoxia-induced tumor radioresistance in non-small cell lung cancer by targeting DNA-dependent protein kinase in combination with carbon ion irradiation. Radiat Oncol 2017; 12:208. [PMID: 29287602 PMCID: PMC5747947 DOI: 10.1186/s13014-017-0939-0] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 12/06/2017] [Indexed: 01/19/2023] Open
Abstract
Background Hypoxia-induced radioresistance constitutes a major obstacle for a curative treatment of cancer. The aim of this study was to investigate effects of photon and carbon ion irradiation in combination with inhibitors of DNA-Damage Response (DDR) on tumor cell radiosensitivity under hypoxic conditions. Methods Human non-small cell lung cancer (NSCLC) models, A549 and H1437, were irradiated with dose series of photon and carbon ions under hypoxia (1% O2) vs. normoxic conditions (21% O2). Clonogenic survival was studied after dual combinations of radiotherapy with inhibitors of DNA-dependent Protein Kinase (DNAPKi, M3814) and ATM serine/threonine kinase (ATMi). Results The OER at 30% survival for photon irradiation of A549 cells was 1.4. The maximal oxygen effect measured as survival ratio was 2.34 at 8 Gy photon irradiation of A549 cells. In contrast, no significant oxygen effect was found after carbon ion irradiation. Accordingly, the relative effect of 6 Gy carbon ions was determined as 3.8 under normoxia and. 4.11 under hypoxia. ATM and DNA-PK inhibitors dose dependently sensitized tumor cells for both radiation qualities. For 100 nM DNAPKi the survival ratio at 4 Gy more than doubled from 1.59 under normoxia to 3.3 under hypoxia revealing a strong radiosensitizing effect under hypoxic conditions. In contrast, this ratio only moderately increased after photon irradiation and ATMi under hypoxia. The most effective treatment was combined carbon ion irradiation and DNA damage repair inhibition. Conclusions Carbon ions efficiently eradicate hypoxic tumor cells. Both, ATMi and DNAPKi elicit radiosensitizing effects. DNAPKi preferentially sensitizes hypoxic cells to radiotherapy. Electronic supplementary material The online version of this article (10.1186/s13014-017-0939-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Carmen Klein
- Division of Molecular and Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital, Heidelberg, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany
| | - Ivana Dokic
- Division of Molecular and Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital, Heidelberg, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany
| | - Andrea Mairani
- Division of Molecular and Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital, Heidelberg, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany.,National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Stewart Mein
- Division of Molecular and Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital, Heidelberg, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany
| | - Stephan Brons
- Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany
| | - Peter Häring
- Heidelberg Institute of Radiation Oncology (HIRO), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Medical Physics in Radiation Therapy, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Thomas Haberer
- Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany
| | - Oliver Jäkel
- Heidelberg Institute of Radiation Oncology (HIRO), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | | | | | - Jürgen Debus
- Division of Molecular and Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital, Heidelberg, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany
| | - Amir Abdollahi
- Division of Molecular and Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital, Heidelberg, Germany. .,German Cancer Consortium (DKTK), Heidelberg, Germany. .,Heidelberg Institute of Radiation Oncology (HIRO), German Cancer Research Center (DKFZ), Heidelberg, Germany. .,Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany. .,Division of Molecular and Translational Radiation Oncology, Heidelberg Ion-Beam Therapy Center (HIT), Im Neuenheimer Feld 450, 69120, Heidelberg, Germany.
| |
Collapse
|
36
|
Proceedings of the National Cancer Institute Workshop on Charged Particle Radiobiology. Int J Radiat Oncol Biol Phys 2017; 100:816-831. [PMID: 29485053 DOI: 10.1016/j.ijrobp.2017.12.260] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 12/05/2017] [Accepted: 12/11/2017] [Indexed: 12/21/2022]
Abstract
In April 2016, the National Cancer Institute hosted a multidisciplinary workshop to discuss the current knowledge of the radiobiological aspects of charged particles used in cancer therapy to identify gaps in that knowledge that might hinder the effective clinical use of charged particles and to propose research that could help fill those gaps. The workshop was organized into 10 topics ranging from biophysical models to clinical trials and included treatment optimization, relative biological effectiveness of tumors and normal tissues, hypofractionation with particles, combination with immunotherapy, "omics," hypoxia, and particle-induced second malignancies. Given that the most commonly used charged particle in the clinic currently is protons, much of the discussion revolved around evaluating the state of knowledge and current practice of using a relative biological effectiveness of 1.1 for protons. Discussion also included the potential advantages of heavier ions, notably carbon ions, because of their increased biological effectiveness, especially for tumors frequently considered to be radiation resistant, increased effectiveness in hypoxic cells, and potential for differentially altering immune responses. The participants identified a large number of research areas in which information is needed to inform the most effective use of charged particles in the future in clinical radiation therapy. This unique form of radiation therapy holds great promise for improving cancer treatment.
Collapse
|
37
|
Sokol O, Scifoni E, Tinganelli W, Kraft-Weyrather W, Wiedemann J, Maier A, Boscolo D, Friedrich T, Brons S, Durante M, Krämer M. Oxygen beams for therapy: advanced biological treatment planning and experimental verification. Phys Med Biol 2017; 62:7798-7813. [PMID: 28841579 DOI: 10.1088/1361-6560/aa88a0] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Nowadays there is a rising interest towards exploiting new therapeutical beams beyond carbon ions and protons. In particular, [Formula: see text]O ions are being widely discussed due to their increased LET distribution. In this contribution, we report on the first experimental verification of biologically optimized treatment plans, accounting for different biological effects, generated with the TRiP98 planning system with [Formula: see text]O beams, performed at HIT and GSI. This implies the measurements of 3D profiles of absorbed dose as well as several biological measurements. The latter includes the measurements of relative biological effectiveness along the range of linear energy transfer values from ≈20 up to ≈750 keV μ [Formula: see text], oxygen enhancement ratio values and the verification of the kill-painting approach, to overcome hypoxia, with a phantom imitating an unevenly oxygenated target. With the present implementation, our treatment planning system is able to perform a comparative analysis of different ions, according to any given condition of the target. For the particular cases of low target oxygenation, [Formula: see text]O ions demonstrate a higher peak-to-entrance dose ratio for the same cell killing in the target region compared to [Formula: see text]C ions. Based on this phenomenon, we performed a short computational analysis to reveal the potential range of treatment plans, where [Formula: see text]O can benefit over lighter modalities. It emerges that for more hypoxic target regions (partial oxygen pressure of ≈0.15% or lower) and relatively low doses (≈4 Gy or lower) the choice of [Formula: see text]O over [Formula: see text]C or [Formula: see text]He may be justified.
Collapse
Affiliation(s)
- O Sokol
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstr. 1, D-64291 Darmstadt, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Carbon Ion Radiotherapy: A Review of Clinical Experiences and Preclinical Research, with an Emphasis on DNA Damage/Repair. Cancers (Basel) 2017; 9:cancers9060066. [PMID: 28598362 PMCID: PMC5483885 DOI: 10.3390/cancers9060066] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 05/21/2017] [Accepted: 06/06/2017] [Indexed: 12/31/2022] Open
Abstract
Compared to conventional photon-based external beam radiation (PhXRT), carbon ion radiotherapy (CIRT) has superior dose distribution, higher linear energy transfer (LET), and a higher relative biological effectiveness (RBE). This enhanced RBE is driven by a unique DNA damage signature characterized by clustered lesions that overwhelm the DNA repair capacity of malignant cells. These physical and radiobiological characteristics imbue heavy ions with potent tumoricidal capacity, while having the potential for simultaneously maximally sparing normal tissues. Thus, CIRT could potentially be used to treat some of the most difficult to treat tumors, including those that are hypoxic, radio-resistant, or deep-seated. Clinical data, mostly from Japan and Germany, are promising, with favorable oncologic outcomes and acceptable toxicity. In this manuscript, we review the physical and biological rationales for CIRT, with an emphasis on DNA damage and repair, as well as providing a comprehensive overview of the translational and clinical data using CIRT.
Collapse
|
39
|
Radium-223 dichloride in clinical practice: a review. Eur J Nucl Med Mol Imaging 2016; 43:1896-909. [DOI: 10.1007/s00259-016-3386-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 03/29/2016] [Indexed: 02/06/2023]
|
40
|
Held KD, Kawamura H, Kaminuma T, Paz AES, Yoshida Y, Liu Q, Willers H, Takahashi A. Effects of Charged Particles on Human Tumor Cells. Front Oncol 2016; 6:23. [PMID: 26904502 PMCID: PMC4751258 DOI: 10.3389/fonc.2016.00023] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 01/21/2016] [Indexed: 12/22/2022] Open
Abstract
The use of charged particle therapy in cancer treatment is growing rapidly, in large part because the exquisite dose localization of charged particles allows for higher radiation doses to be given to tumor tissue while normal tissues are exposed to lower doses and decreased volumes of normal tissues are irradiated. In addition, charged particles heavier than protons have substantial potential clinical advantages because of their additional biological effects, including greater cell killing effectiveness, decreased radiation resistance of hypoxic cells in tumors, and reduced cell cycle dependence of radiation response. These biological advantages depend on many factors, such as endpoint, cell or tissue type, dose, dose rate or fractionation, charged particle type and energy, and oxygen concentration. This review summarizes the unique biological advantages of charged particle therapy and highlights recent research and areas of particular research needs, such as quantification of relative biological effectiveness (RBE) for various tumor types and radiation qualities, role of genetic background of tumor cells in determining response to charged particles, sensitivity of cancer stem-like cells to charged particles, role of charged particles in tumors with hypoxic fractions, and importance of fractionation, including use of hypofractionation, with charged particles.
Collapse
Affiliation(s)
- Kathryn D Held
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School , Boston, MA , USA
| | - Hidemasa Kawamura
- Gunma University Heavy Ion Medical Center, Gunma, Japan; Department of Radiation Oncology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Takuya Kaminuma
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Gunma University Heavy Ion Medical Center, Gunma, Japan; Department of Radiation Oncology, Gunma University Graduate School of Medicine, Gunma, Japan
| | | | - Yukari Yoshida
- Gunma University Heavy Ion Medical Center , Gunma , Japan
| | - Qi Liu
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School , Boston, MA , USA
| | - Henning Willers
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School , Boston, MA , USA
| | | |
Collapse
|
41
|
Rupp NJ, Schüffler PJ, Zhong Q, Falkner F, Rechsteiner M, Rüschoff JH, Fankhauser C, Drach M, Largo R, Tremp M, Poyet C, Sulser T, Kristiansen G, Moch H, Buhmann J, Müntener M, Wild PJ. Oxygen supply maps for hypoxic microenvironment visualization in prostate cancer. J Pathol Inform 2016; 7:3. [PMID: 26955501 PMCID: PMC4763504 DOI: 10.4103/2153-3539.175376] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 10/26/2015] [Indexed: 12/04/2022] Open
Abstract
Background: Intratumoral hypoxia plays an important role with regard to tumor biology and susceptibility to radio- and chemotherapy. For further investigation of hypoxia-related changes, areas of certain hypoxia must be reliably detected within cancer tissues. Pimonidazole, a 2-nitroimindazole, accumulates in hypoxic tissue and can be easily visualized using immunohistochemistry. Materials and Methods: To improve detection of highly hypoxic versus normoxic areas in prostate cancer, immunoreactivity of pimonidazole and a combination of known hypoxia-related proteins was used to create computational oxygen supply maps of prostate cancer. Pimonidazole was intravenously administered before radical prostatectomy in n = 15 patients, using the da Vinci robot-assisted surgical system. Prostatectomy specimens were immediately transferred into buffered formaldehyde, fixed overnight, and completely embedded in paraffin. Pimonidazole accumulation and hypoxia-related protein expression were visualized by immunohistochemistry. Oxygen supply maps were created using the normalized information from pimonidazole and hypoxia-related proteins. Results: Based on pimonidazole staining and other hypoxia.related proteins (osteopontin, hypoxia-inducible factor 1-alpha, and glucose transporter member 1) oxygen supply maps in prostate cancer were created. Overall, oxygen supply maps consisting of information from all hypoxia-related proteins showed high correlation and mutual information to the golden standard of pimonidazole. Here, we describe an improved computer-based ex vivo model for an accurate detection of oxygen supply in human prostate cancer tissue. Conclusions: This platform can be used for precise colocalization of novel candidate hypoxia-related proteins in a representative number of prostate cancer cases, and improve issues of single marker correlations. Furthermore, this study provides a source for further in situ tests and biochemical investigations
Collapse
Affiliation(s)
- Niels J Rupp
- Institute of Surgical Pathology, University Hospital Zurich, Schmelzbergstrasse 12, 8091 Zurich, Switzerland
| | - Peter J Schüffler
- Department of Computer Science, ETH Zurich, Universitaetstr 6, 8092 Zurich, Switzerland
| | - Qing Zhong
- Institute of Surgical Pathology, University Hospital Zurich, Schmelzbergstrasse 12, 8091 Zurich, Switzerland
| | - Florian Falkner
- Institute of Pathology, Cantonal Hospital Winterthur, Brauerstrasse 15, 8401 Winterthur, Switzerland
| | - Markus Rechsteiner
- Institute of Surgical Pathology, University Hospital Zurich, Schmelzbergstrasse 12, 8091 Zurich, Switzerland
| | - Jan H Rüschoff
- Institute of Surgical Pathology, University Hospital Zurich, Schmelzbergstrasse 12, 8091 Zurich, Switzerland
| | - Christian Fankhauser
- Institute of Surgical Pathology, University Hospital Zurich, Schmelzbergstrasse 12, 8091 Zurich, Switzerland
| | - Matthias Drach
- Institute of Surgical Pathology, University Hospital Zurich, Schmelzbergstrasse 12, 8091 Zurich, Switzerland
| | - Remo Largo
- Department of Urology, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
| | - Mathias Tremp
- Department of Plastic, Reconstructive and Aesthetic Surgery, University Hospital Basel, Spitalstrasse 21, 4031 Basel, Switzerland
| | - Cedric Poyet
- Department of Urology, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
| | - Tullio Sulser
- Department of Urology, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
| | - Glen Kristiansen
- Institute of Pathology, University Hospital Bonn, Sigmund-Freud-Strasse 25, 53127 Bonn, Germany
| | - Holger Moch
- Institute of Surgical Pathology, University Hospital Zurich, Schmelzbergstrasse 12, 8091 Zurich, Switzerland
| | - Joachim Buhmann
- Department of Computer Science, ETH Zurich, Universitaetstr 6, 8092 Zurich, Switzerland
| | - Michael Müntener
- Department of Urology, City Hospital Triemli, Birmensdorferstrasse 497, 8063 Zurich, Switzerland
| | - Peter J Wild
- Institute of Surgical Pathology, University Hospital Zurich, Schmelzbergstrasse 12, 8091 Zurich, Switzerland
| |
Collapse
|
42
|
Tinganelli W, Durante M, Hirayama R, Krämer M, Maier A, Kraft-Weyrather W, Furusawa Y, Friedrich T, Scifoni E. Kill-painting of hypoxic tumours in charged particle therapy. Sci Rep 2015; 5:17016. [PMID: 26596243 PMCID: PMC4657060 DOI: 10.1038/srep17016] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 10/23/2015] [Indexed: 02/07/2023] Open
Abstract
Solid tumours often present regions with severe oxygen deprivation (hypoxia), which
are resistant to both chemotherapy and radiotherapy. Increased radiosensitivity as a
function of the oxygen concentration is well described for X-rays. It has also been
demonstrated that radioresistance in anoxia is reduced using high-LET radiation
rather than conventional X-rays. However, the dependence of the oxygen enhancement
ratio (OER) on radiation quality in the regions of intermediate oxygen
concentrations, those normally found in tumours, had never been measured and
biophysical models were based on extrapolations. Here we present a complete survival
dataset of mammalian cells exposed to different ions in oxygen concentration ranging
from normoxia (21%) to anoxia (0%). The data were used to generate a model of the
dependence of the OER on oxygen concentration and particle energy. The model was
implemented in the ion beam treatment planning system to prescribe uniform cell
killing across volumes with heterogeneous radiosensitivity. The adaptive treatment
plans have been validated in two different accelerator facilities, using a
biological phantom where cells can be irradiated simultaneously at three different
oxygen concentrations. We thus realized a hypoxia-adapted treatment plan, which will
be used for painting by voxel of hypoxic tumours visualized by functional
imaging.
Collapse
Affiliation(s)
- Walter Tinganelli
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany.,Research Center for Charged Particle Therapy and International Open Laboratory, National Institute of Radiological Sciences, 263-8555 Chiba, Japan
| | - Marco Durante
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany.,Technical University Darmstadt, 64283 Darmstadt, Germany
| | - Ryoichi Hirayama
- Research Center for Charged Particle Therapy and International Open Laboratory, National Institute of Radiological Sciences, 263-8555 Chiba, Japan
| | - Michael Krämer
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany
| | - Andreas Maier
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany
| | - Wilma Kraft-Weyrather
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany
| | - Yoshiya Furusawa
- Research Center for Charged Particle Therapy and International Open Laboratory, National Institute of Radiological Sciences, 263-8555 Chiba, Japan
| | - Thomas Friedrich
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany
| | - Emanuele Scifoni
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany
| |
Collapse
|
43
|
Turner PG, O'Sullivan JM. (223)Ra and other bone-targeting radiopharmaceuticals-the translation of radiation biology into clinical practice. Br J Radiol 2015; 88:20140752. [PMID: 25811095 DOI: 10.1259/bjr.20140752] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Osseous metastases are a source of significant morbidity for patients with a variety of cancers. Radiotherapy is well established as an effective means of palliating symptoms associated with such metastases. The role of external beam radiotherapy is limited where sites of metastases are numerous and widespread. Low linear energy transfer (LET) radionuclides have been utilized to allow targeted delivery of radiotherapy to disparate sites of disease, with evidence of palliative benefit. More recently, the bone targeting, high LET radionuclide (223)Ra has been shown to not only have a palliative effect but also a survival prolonging effect in metastatic, castration-resistant prostate cancer with bone metastases. This article reviews the different radionuclide-based approaches for targeting bone metastases, with an emphasis on (223)Ra, and key elements of the underlying radiobiology of these that will impact their clinical effectiveness. Consideration is given to the remaining unknowns of both the basic radiobiological and applied clinical effects of (223)Ra as targets for future research.
Collapse
Affiliation(s)
- P G Turner
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | | |
Collapse
|
44
|
Reitkopf-Brodutch S, Confino H, Schmidt M, Cooks T, Efrati M, Arazi L, Rath-Wolfson L, Marshak G, Kelson I, Keisari Y. Ablation of experimental colon cancer by intratumoral 224Radium-loaded wires is mediated by alpha particles released from atoms which spread in the tumor and can be augmented by chemotherapy. Int J Radiat Biol 2015; 91:179-86. [PMID: 25179346 DOI: 10.3109/09553002.2015.959666] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE We developed (224)Ra-loaded wires, which release by recoil alpha emitting nuclei into solid tumors and cause tumor cell killing. This research examined if the major damage was inflicted by alpha particles emitted from these atoms or by direct gamma and beta emissions from the inserted wires. We also examined the efficacy of this treatment against colon cancer in combination with chemotherapy. MATERIALS AND METHODS Mouse colon carcinomas (CT-26 xenografts), treated by intra-tumoral radioactive wires loaded with (224)Ra atoms were monitored for effects on tumor growth, intratumoral tissue damage and distribution of alpha emitting atoms. The effects were compared with those of (224)Ra-loaded wires coated with poly methyl methacrylate (PMMA), which blocks atom recoil. Similar experiments were performed with radioactive wires combined with systemic 5-FU. RESULTS (224)Ra-loaded wires inhibited tumor growth and formed necrotic areas inside the tumor. PMMA coated wires did not inhibit tumor growth, and caused minor intratumoral damage. Autoradiography images of tumors treated with (224)Ra-loaded wires revealed a spread of alpha emitters over several mm, whereas PMMA-coated wires showed no such spread. Injection of 5-FU with (224)Ra-loaded wires augmented tumor growth retardation and cure. CONCLUSIONS (224)Ra-loaded wires ablate solid tumors by the release of alpha-particle emitting atoms inside the tissue, an effect that can be enhanced by combining this method with chemotherapy.
Collapse
Affiliation(s)
- Shira Reitkopf-Brodutch
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University , Tel Aviv , Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Sato K, Imai T, Okayasu R, Shimokawa T. Heterochromatin domain number correlates with X-ray and carbon-ion radiation resistance in cancer cells. Radiat Res 2014; 182:408-19. [PMID: 25229975 DOI: 10.1667/rr13492.1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Although it is known that cancer cells can develop radiation resistance after repeated exposures to X rays, the underlying mechanisms and characteristics of this radiation-induced resistance of cancer cells are not well understood. Additionally, it is not known whether cells that develop X-ray resistance also would develop resistance to other types of radiation such as heavy-ions including carbon ions (C-ion). In this study, we established X-ray resistant cancer cell lines by delivering repeated exposures to X rays, and then assessed whether the cells were resistant to carbon ions. The mouse squamous cell carcinoma cell line, NR-S1, was X irradiated six times with 10 Gy, and the X-ray resistant cancer cells named X60 and ten subclones were established. Significant X-ray resistance was induced in four of the subclones (X60, X60-H2, X60-A3 and X60-B12). The X60 cells and all of the subclones were resistant to carbon ions. The correlation analysis between radioresistance and morphological characteristics of these cells showed that X-ray (R=0.74) and C-ion (R=0.79) resistance correlated strongly with the number of heterochromatin domains. Moreover, the numbers of γ-H2AX foci remaining in irradiated X60 cells and radioresistant subclones X60-A3 and X60-H2 were lower than in the NR-S1 cells after X-ray or C-ion irradiation, indicating that X60 cells and the radioresistant subclones rapidly repaired the DNA double-strand breaks compared with NR-S1 cells. Our findings suggest that the underlying causal mechanisms of X-ray and C-ion radiation resistance may overlap, and that an increase in heterochromatin domain number may be an indicator of X-ray and C-ion resistance.
Collapse
|