1
|
Ueno M, Setoguchi S, Matsunaga K, Matsumoto KI, Takata J, Anzai K. Effects of Whole-Body Carbon-Ion Beam Irradiation on Bone Marrow Death in Mice and an Examination of Candidates for Protectors or Mitigators against Carbon-Ion-Beam-Induced Bone Marrow Death. Radiat Res 2025; 203:246-256. [PMID: 39933555 DOI: 10.1667/rade-23-00253.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 02/02/2025] [Indexed: 02/13/2025]
Abstract
The present study examined the effects of whole-body carbon-ion-beam irradiation on bone marrow death in mice and investigated whether compounds/materials, which were identified as efficient radio-protectors or mitigators against X-ray-radiation-induced bone marrow death, were also effective against the carbon-ion-beam-induced death of mice. Amifostine and cysteamine were used as radio-protectors and zinc-containing heat-killed yeast (Zn-yeast) and γ-tocopherol-N,N-dimethylglycine ester (γTDMG) as radio-mitigators. Amifostine or cysteamine was intraperitoneally administered in a single injection of 1.95 mmol/kg body weight 30 min before whole-body carbon-ion-beam irradiation. Zn-yeast or γTDMG was administered in a single intraperitoneal injection of 100 mg/kg body weight immediately after whole-body carbon-ion-beam irradiation. The absorbed dose dependence of the 30-day survival rate after carbon-ion-beam irradiation was analyzed. The biological effectiveness of carbon-ion-beam irradiation (LD50/30 = 5.54 Gy) was estimated as 1.2 relative to X-ray irradiation (LD50/30 = 6.62 Gy). The dose reduction factors (DRF) of amifostine, cysteamine, Zn-yeast, and γTDMG estimated for carbon-ion-beam irradiation were 1.75, 1.53, 1.16, and 1.15, respectively. Radio-protectors and -mitigators that were effective against photon irradiation also exhibited efficacy against carbon-ion-beam irradiation; however, the DRF for carbon-ion-beam irradiation was slightly smaller than that for photon irradiation. Based on the radio-protective effects of amifostine and cysteamine, the contribution of ROS/free radicals to carbon-ion-beam-induced bone marrow death was 70-90% to that of photon irradiation. Since the suppression of tumor growth by carbon-ion-beam irradiation was not inhibited by the treatment with γTDMG or Zn-yeast, both mitigators have potential as normal tissue-selective protectors in carbon-ion irradiation.
Collapse
Affiliation(s)
- Megumi Ueno
- Quantitative RedOx Sensing Group, Department of Radiation Regulatory Science Research, Institute of Radiological Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba 263-8555, Japan
| | - Shuichi Setoguchi
- Faculty of Pharmaceutical Sciences, Fukuoka University, Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Kazuhisa Matsunaga
- Faculty of Pharmaceutical Sciences, Fukuoka University, Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Ken-Ichiro Matsumoto
- Quantitative RedOx Sensing Group, Department of Radiation Regulatory Science Research, Institute of Radiological Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba 263-8555, Japan
| | - Jiro Takata
- Faculty of Pharmaceutical Sciences, Fukuoka University, Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Kazunori Anzai
- Quantitative RedOx Sensing Group, Department of Radiation Regulatory Science Research, Institute of Radiological Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba 263-8555, Japan
- Faculty of Pharmaceutical Sciences, Nihon Pharmaceutical University, Ina-machi, Kitaadachi-gun, Saitama 362-0806, Japan
| |
Collapse
|
2
|
Landes RD, Jurgensen KJ, Skinner WKJ, Spencer HJ, Cary L. Feasibility of Reducing Animal Numbers in Radiation Countermeasure Experiments from Historic Levels when using Sample Size Calculations. Radiat Res 2023; 200:107-115. [PMID: 37327124 PMCID: PMC10513753 DOI: 10.1667/rade-22-00124.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 05/22/2023] [Indexed: 06/18/2023]
Abstract
Historically, animal numbers have most often been in the hundreds for experiments designed to estimate the dose reduction factor (DRF) of a radiation countermeasure treatment compared to a control treatment. Before 2010, researchers had to rely on previous experience, both from others and their own, to determine the number of animals needed for a DRF experiment. In 2010, a formal sample size formula was developed by Kodell et al. This theoretical work showed that sample sizes for realistic, yet hypothetical, DRF experiments could be less than a hundred animals and still have sufficient power to detect clinically meaningful DRF values. However, researchers have been slow to use the formula for their DRF experiments, whether from ignorance to its existence or hesitancy to depart from "tried and true" sample sizes. Here, we adapt the sample size formula to better fit usual DRF experiments, and, importantly, we provide real experimental evidence from two independent DRF experiments that sample sizes smaller than what have typically been used can still statistically detect clinically meaningful DRF values. In addition, we update a literature review of DRF experiments which can be used to inform future DRF experiments, provide answers to questions that researchers have asked when considering sample size calculations rather than solely relying on previous experience, whether their own or others', and, in the supplementary material, provide R code implementing the formula, along with several exercises to familiarize the user with the adapted formula.
Collapse
Affiliation(s)
- Reid D. Landes
- Department of Biostatistics, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Kimberly J. Jurgensen
- Scientific Research Department, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20889
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland 20817
| | - William K. J. Skinner
- Department of Radiation Oncology, Walter Reed National Military Medical Center, Bethesda, Maryland 20814
| | - Horace J. Spencer
- Department of Biostatistics, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Lynnette Cary
- Scientific Research Department, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20889
| |
Collapse
|
3
|
Ueno M, Shibata S, Nakanishi I, Aoki I, Yamada KI, Matsumoto KI. Effects of selenium deficiency on biological results of X-ray and carbon-ion beam irradiation in mice. J Clin Biochem Nutr 2023; 72:107-116. [PMID: 36936873 PMCID: PMC10017320 DOI: 10.3164/jcbn.22-57] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/16/2022] [Indexed: 12/13/2022] Open
Abstract
The impact of radiation-induced hydrogen peroxide (H2O2) on the biological effects of X-rays and carbon-ion beams was investigated using a selenium-deficient (SeD) mouse model. Selenium is the active center of glutathione peroxidase (GSH-Px), and SeD mice lack the ability to degrade H2O2. Male and female SeD mice were prepared by feeding a torula yeast-based SeD diet and ultrapure water. Thirty-day survival rates after whole-body irradiation, radiation-induced leg contracture, and MRI-based redox imaging of the brain were assessed and compared between SeD and normal mice. Thirty-day lethality after whole-body 5.6 Gy irradiation with X-rays or carbon-ion beams was higher in the SeD mice than in the normal mice, while SeD did not give the notable difference between X-rays and carbon-ion beams. SeD also did not affect the maximum leg contracture level after irradiation with carbon-ion beams, but delayed the leg contraction rate. In addition, no marked effects of SeD were observed on variations in the redox status of the brain after irradiation. Collectively, the present results indicate that SeD slightly altered the biological effects of X-rays and/or carbon-ion beams. GSH-Px processes endogenous H2O2 generated through mitochondrial respiration, but does not have the capacity to degrade H2O2 produced by irradiation.
Collapse
Affiliation(s)
- Megumi Ueno
- Quantitative RedOx Sensing Group, Department of Radiation Regulatory Science Research, National Institute of Radiological Sciences, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Sayaka Shibata
- Applied MRI Research Group, Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Ikuo Nakanishi
- Quantum RedOx Chemistry Team, Institute for Quantum Life Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Ichio Aoki
- Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Ken-ichi Yamada
- Physical Chemistry for Life Science Laboratory, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Ken-ichiro Matsumoto
- Quantitative RedOx Sensing Group, Department of Radiation Regulatory Science Research, National Institute of Radiological Sciences, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
4
|
Lledó I, Ibáñez B, Melero A, Montoro A, Merino-Torres JF, San Onofre N, Soriano JM. Vitamins and Radioprotective Effect: A Review. Antioxidants (Basel) 2023; 12:antiox12030611. [PMID: 36978859 PMCID: PMC10045031 DOI: 10.3390/antiox12030611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 02/22/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
The radioprotective effect ex vivo, in vitro and in vivo of vitamins was reviewed using PubMed and Embase and conducted according to the PRISMA statement. A total of 38 articles were included in this review, which includes the radioprotective effect of vitamins from ex vivo, in vitro and in vivo studies. Vitamins A, C, D and E were used alone, in combination or with other nutritional and non-nutritional compounds. The use of vitamins in natural form or supplementation can be useful to reduce the radiation effect in the body, organs and/or cells. Only four (A, C, D and E) out of thirteen vitamins have been detected with radioprotective properties being mainly vitamin E followed by vitamin C, A and D.
Collapse
Affiliation(s)
- Inés Lledó
- Food & Health Lab, Institute of Materials Science, University of Valencia, 46980 Paterna, Spain
| | - Blanca Ibáñez
- Food & Health Lab, Institute of Materials Science, University of Valencia, 46980 Paterna, Spain
| | - Ana Melero
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain
| | - Alegría Montoro
- Service of Radiological Protection, Clinical Area of Medical Image, University and Polytechnic La Fe Hospital, 46026 Valencia, Spain
- Biomedical Imaging Research Group GIBI230, Health Research Institute (IISLaFe), University and Polytechnic La Fe Hospital, 46026 Valencia, Spain
| | - Juan F. Merino-Torres
- Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, University of Valencia-Health Research Institute La Fe, 46026 Valencia, Spain
- Department of Endocrinology and Nutrition, University and Polytechnic La Fe Hospital, 46026 Valencia, Spain
- Department of Medicine, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain
| | - Nadia San Onofre
- Food & Health Lab, Institute of Materials Science, University of Valencia, 46980 Paterna, Spain
- Department of Community Nursing, Preventive Medicine and Public Health and History of Science, University of Alicante, 03690 Alicante, Spain
| | - Jose M. Soriano
- Food & Health Lab, Institute of Materials Science, University of Valencia, 46980 Paterna, Spain
- Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, University of Valencia-Health Research Institute La Fe, 46026 Valencia, Spain
- Correspondence:
| |
Collapse
|
5
|
Jit BP, Pattnaik S, Arya R, Dash R, Sahoo SS, Pradhan B, Bhuyan PP, Behera PK, Jena M, Sharma A, Agrawala PK, Behera RK. Phytochemicals: A potential next generation agent for radioprotection. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 106:154188. [PMID: 36029645 DOI: 10.1016/j.phymed.2022.154188] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 03/13/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Radiation hazards are accountable for extensive damage in the biological system and acts as a public health burden. Owing to the rapid increasing in radiation technology, both Ionizing radiation (IR) from natural and man made source poses detrimental outcome to public health. IR releases free radicals which induces oxidative stress and deleterious biological damage by modulating radiation induced signalling intermediates. The efficacy of existing therapeutic approach and treatment strategy are limited owing to their toxicity and associated side effects. Indian system of traditional medicine is enriched with prospective phytochemicals with potential radioprotection ability. PURPOSE The present review elucidated and summarized the potential role of plant derived novel chemical compound with prospective radioprotective potential. METHOD So far as the traditional system of Indian medicine is concerned, plant kingdom is enriched with potential bioactive molecules with diverse pharmacological activities. We reviewed several compounds mostly secondary metabolites from plant origin using various search engines. RESULTS Both compounds from land plants and marine source exhibited antioxidant antiinflammatory, free radical scavenging ability. These compounds have tremendous potential in fine-tuning of several signalling intermediates, which are actively participated in the progression and development of a pathological condition associated with radiation stress. CONCLUSION Development and explore of an operational radioprotective agent from originated from plant source that can be used as a novel molecular tool to eliminate the widespread damage caused by space exploration, ionizing radiation, nuclear war and radiotherapy has been significantly appreciated. Through extensive literature search we highlighted several compounds from both land plant and marine origin can be implemented for a better therapeutic potential against radiation induced injury. Furthermore, extensive clinical trials must be carried out in near future for better therapeutic modality and clinical efficacy.
Collapse
Affiliation(s)
- Bimal Prasad Jit
- Department of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India; School of Life Sciences, Sambalpur University, Jyoti Vihar, Burla 768019, India
| | - Subhaswaraj Pattnaik
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry 605014, India; Centre of Excellence in Natural Products and Therapeutics, Department of Biotechnology and Bioinformatics, Sambalpur University, Jyoti Vihar, Burla, Odisha 768019, India
| | - Rakesh Arya
- Department of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India; School of Life Sciences, Sambalpur University, Jyoti Vihar, Burla 768019, India
| | - Rutumbara Dash
- Departement of Gastroenterology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | | | - Biswajita Pradhan
- Algal Biotechnology and Molecular Systematic Laboratory, Post Graduate Department of Botany, Berhampur University, Bhanja Bihar, Berhampur, Odisha 760007, India; Department of Biotechnology, Sangmyung University, Seoul 03016, South Korea
| | - Prajna Paramita Bhuyan
- Department of Botany, Maharaja Sriram Chandra Bhanja Deo University, Baripada, Odisha 757003, India
| | - Pradyota Kumar Behera
- Department of Chemistry, Berhampur University, Bhanja Bihar, Berhampur, Odisha 760007, India
| | - Mrutyunjay Jena
- Algal Biotechnology and Molecular Systematic Laboratory, Post Graduate Department of Botany, Berhampur University, Bhanja Bihar, Berhampur, Odisha 760007, India
| | - Ashok Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Paban Kumar Agrawala
- Institute of Nuclear Medicine and Allied Science, Defence Research and Development Organization, New Delhi 110054, India
| | | |
Collapse
|
6
|
Watase D, Setoguchi S, Nagata-Akaho N, Goto S, Yamakawa H, Yamada A, Koga M, Karube Y, Matsunaga K, Takata J. Cationic N, N-Dimethylglycine Ester Prodrug of 2 R-α-Tocotrienol Promotes Intestinal Absorption via Efficient Self-Micellization with Intrinsic Bile Acid Anion. Molecules 2022; 27:2727. [PMID: 35566078 PMCID: PMC9102404 DOI: 10.3390/molecules27092727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 11/16/2022] Open
Abstract
The intestinal absorption of hydrophobic compounds is severely influenced by their transportation rate through the unstirred water layer in the intestinal lumen. A member of the vitamin E family, α-Tocotrienol (α-T3) has remarkable pharmacological effects, but its intestinal absorption is hampered due to its hydrophobicity. Here, we prepared three ester derivatives of 2R-α-T3, and we selected a suitable prodrug compound using rat plasma and liver microsomes. The micellization profile of the selected compound in the presence of taurocholic acid (TCA) was evaluated. After gastrostomy administration of the prodrug candidate or α-T3 solution containing TCA, AUC values were determined for α-T3 in plasma obtained from bile duct-ligated rats. Among the three types in the efficiency of the reconversion to the parent drug, α-T3 N,N-dimethylglycinate (α-T3DMG) was the best prodrug; α-T3DMG formed mixed micelles via ion pairs with anionic TCA. The solubility of α-T3DMG in n-octanol/water depended on its ratio to TCA. The AUC after α-T3DMG administration to ligated rats was 2-fold higher than that after α-T3 administration, suggesting a smooth interaction with intrinsic bile acids. In conclusion, utilization of the prodrug synthesized using N,N-dimethylglycine ester may be a beneficial approach to promote intestinal absorption of α-T3 via self-micellization with intrinsic bile acid.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Kazuhisa Matsunaga
- Faculty of Pharmaceutical Sciences, Fukuoka University, Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan; (D.W.); (S.S.); (N.N.-A.); (S.G.); (H.Y.); (A.Y.); (M.K.); (Y.K.); (J.T.)
| | | |
Collapse
|
7
|
Anzai K. [Generation, Detection and Bio-protection of Reactive Oxygen Species/Free Radicals]. YAKUGAKU ZASSHI 2021; 141:1359-1372. [PMID: 34853208 DOI: 10.1248/yakushi.21-00164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the present paper, generation, detection and protection of reactive oxygen species (ROS)/free radicals in relation to the author's research over about 20 years are reviewed. ROS/free radicals are generally generated physically, chemically and biologically, and they are harmful to living organisms by inducing various disorders and diseases. To prevent the harmful effects of ROS/free radicals, antioxidants are believed to be useful. Among many methods to detect ROS/free radicals, ESR technique is a direct method and is described in detail in this review. Several topics such as the production of ROS/free radicals by low temperature atmospheric pressure plasma, the evaluation of antioxidant activity using hemolysis of erythrocytes and the protective effects of antioxidants against X-ray induced damage to mice, are presented.
Collapse
|
8
|
Ueno M, Shimokawa T, Sekine-Suzuki E, Nyui M, Nakanishi I, Matsumoto KI. Preparation of an experimental mouse model lacking selenium-dependent glutathione peroxidase activities by feeding a selenium-deficient diet. J Clin Biochem Nutr 2021; 68:123-130. [PMID: 33879963 PMCID: PMC8046001 DOI: 10.3164/jcbn.20-36] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 06/20/2020] [Indexed: 11/22/2022] Open
Abstract
Relatively young (4-week-old) selenium deficient (SeD) mice, which lack the activity of selenium-dependent glutathione peroxidase (GSH-Px) isomers, were prepared using torula yeast-based SeD diet. Mice were fed the torula yeast-based SeD diet and ultra-pure water. Several different timings for starting the SeD diet were assessed. The weekly time course of liver comprehensive GSH-Px activity after weaning was monitored. Protein expression levels of GPx1 and 4 in the liver were measured by Western blot analysis. Gene expression levels of GPx1, 2, 3, 4, and 7 in the liver were measured by quantitative real-time PCR. Apoptotic activity of thymocytes after hydrogen peroxide (H2O2) exposure was compared. Thirty-day survival rates after whole-body X-ray irradiation were estimated. Pre-birth or right-after-birth starting of the SeD diet in dams was unable to lead to creation of SeD mice due to neonatal death. This suggests that Se is necessary for normal birth and healthy growing of mouse pups. Starting the mother on the SeD diet from 2 weeks after giving birth (SeD-trial-2w group) resulted in a usable SeD mouse model. The liver GSH-Px activity of the SeD-trial-2w group was almost none from 4 week olds, but the mice survived for more than 63 weeks. Protein and gene expression of GPx1 was suppressed in the SeD-trial-2w group, but that of GPx4 was not. The thymocytes of the SeD-trial-2w group were sensitive to H2O2-induced apoptosis. The SeD-trial-2w group was sensitive to whole-body X-ray irradiation compared with control mice. The SeD-trial-2w model may be a useful animal model for H2O2/hydroperoxide-induced oxidative stress.
Collapse
Affiliation(s)
- Megumi Ueno
- Quantitative RedOx Sensing Group, Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, Quantum Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba 263-8555, Japan
| | - Takashi Shimokawa
- Radiation Effect Research Group, Department of Accelerator and Medical Physics, National Institute of Radiological Sciences, Quantum Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba 263-8555, Japan
| | - Emiko Sekine-Suzuki
- Quantitative RedOx Sensing Group, Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, Quantum Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba 263-8555, Japan
| | - Minako Nyui
- Quantitative RedOx Sensing Group, Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, Quantum Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba 263-8555, Japan
| | - Ikuo Nakanishi
- Quantitative RedOx Sensing Group, Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, Quantum Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba 263-8555, Japan
| | - Ken-ichiro Matsumoto
- Quantitative RedOx Sensing Group, Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, Quantum Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba 263-8555, Japan
| |
Collapse
|
9
|
Amini P, Ashrafizadeh M, Motevaseli E, Najafi M, Shirazi A. Mitigation of radiation-induced hematopoietic system injury by melatonin. ENVIRONMENTAL TOXICOLOGY 2020; 35:815-821. [PMID: 32125094 DOI: 10.1002/tox.22917] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/05/2020] [Accepted: 02/20/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Increased risks of exposure to accidental radiation events are a concern in today's world. Radiation terror, nuclear explosion, as well as accidental exposure to radioactive sources in some industries pose a threat to the life of exposed persons. Studies have been conducted using some low-toxic agents to mitigate radiation toxicity and increase survival probability for exposed people. In the current study, we aimed to show the mitigation of radiation-induced mortality and bone marrow toxicity using postirradiation treatment with melatonin. METHOD Mice whole bodies were exposed to 4 or 7 Gy radiation followed by treatment with melatonin after 24 hours. Survival of mice with or without melatonin, the levels of peripheral cells, transforming growth factor (TGF)-β and 8-hydroxy-2' -deoxyguanosine (8-OHdG) in the bone marrow, as well as the expression of NADPH oxidase (NOX)2 and NOX4 in bone marrow cells were evaluated. RESULTS Whole body irradiation led to mortality 30 days after irradiation. However, melatonin treatment reduced mortality. Irradiation also showed severe reduction of lymphocytes, platelets, and red blood cells. The expressions of NOX2 and NOX4, in addition to TGF-β level, were increased after exposure to radiation. Melatonin ameliorated the increased levels of these factors and improved the number of blood cells. CONCLUSIONS Melatonin showed ability to mitigate radiation-induced hematopoietic system toxicity and also increased survival rate. These results suggest that melatonin could be a potential mitigator for accidental radiation events.
Collapse
Affiliation(s)
- Peyman Amini
- Department of Radiology, Faculty of Paramedical, Tehran University of Medical Sciences, Tehran, Iran
| | - Milad Ashrafizadeh
- Department of Basic Science, Veterinary Medicine Faculty, Tabriz University, Tabriz, Iran
| | - Elahe Motevaseli
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Alireza Shirazi
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Nakamura M, Yamasaki T, Ueno M, Shibata S, Ozawa Y, Kamada T, Nakanishi I, Yamada KI, Aoki I, Matsumoto KI. Radiation-induced redox alteration in the mouse brain. Free Radic Biol Med 2019; 143:412-421. [PMID: 31446055 DOI: 10.1016/j.freeradbiomed.2019.08.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/20/2019] [Accepted: 08/20/2019] [Indexed: 11/22/2022]
Abstract
Time courses of the redox status in the brains of mice after X-ray or carbon-ion beam irradiation were observed by magnetic resonance redox imaging (MRRI). The relationship between radiation-induced oxidative stress on the cerebral nervous system and the redox status in the brain was discussed. The mice were irradiated by 8-Gy X-ray or carbon-ion beam (C-beam) on their head under anesthesia. C-beam irradiation was performed at HIMAC (Heavy-Ion Medical Accelerator in Chiba, NIRS/QST, Chiba, Japan). MRRI measurements using a blood-brain-barrier-permeable nitroxyl contrast agent, MCP or TEMPOL, were performed using 7-T scanner at several different times, i.e., 5-10 h, 1, 2, 4, and 8 day(s) after irradiation. Decay rates of the nitroxyl-enhanced T1-weighted MR signals in the brains were estimated from MRRI data sets, and variation in the decay rates after irradiation was assessed. The variation in decay rates of MCP and TEMPOL after X-ray or C-beam irradiation was similar, but different variation patterns were observed between X-ray and C-beam. The apparent decay rate of both MCP and TEMPOL decreased due to the temporal reduction of blood flow in the brain several hours after X-ray and/or C-beam irradiation. After decreasing, the apparent decay rates of nitroxyl radicals in the brain gradually increased during the following days after X-ray irradiation or rapidly increased 1 day after C-beam irradiation. The sequential increase in nitroxyl decay rates may have been due to the oxidative atmosphere in the tissue due to ROS generation. X-ray and C-beam irradiation resulted in different redox responses, which may have been due to time-varying oxidative stress/injury, in the mouse brain. The C-beam irradiation effects were more acute and larger than those of X-ray irradiation.
Collapse
Affiliation(s)
- Mizuki Nakamura
- Quantitative RedOx Sensing Group, Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, Quantum Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba, 263-8555, Japan; Graduate School of Medical and Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-88670, Japan
| | - Toshihide Yamasaki
- Laboratory of Biophysical Chemistry, Kobe Pharmaceutical University, 4-19-1 Motoyama-kita, Higashinada, Kobe, 658-8558, Japan
| | - Megumi Ueno
- Quantitative RedOx Sensing Group, Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, Quantum Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba, 263-8555, Japan
| | - Sayaka Shibata
- Preclinical Research and Development for Functional and Molecular Imaging Group, Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, Quantum Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - Yoshikazu Ozawa
- Preclinical Research and Development for Functional and Molecular Imaging Group, Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, Quantum Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - Tadashi Kamada
- Graduate School of Medical and Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-88670, Japan; Research Center Hospital, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - Ikuo Nakanishi
- Quantitative RedOx Sensing Group, Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, Quantum Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba, 263-8555, Japan; Institute for Quantum Life Science (iQLS), National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - Ken-Ichi Yamada
- Physical Chemistry for Life Science Laboratory, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan; JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Ichio Aoki
- Preclinical Research and Development for Functional and Molecular Imaging Group, Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, Quantum Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan; Institute for Quantum Life Science (iQLS), National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - Ken-Ichiro Matsumoto
- Quantitative RedOx Sensing Group, Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, Quantum Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba, 263-8555, Japan; Institute for Quantum Life Science (iQLS), National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan.
| |
Collapse
|
11
|
Nanomelanin Potentially Protects the Spleen from Radiotherapy-Associated Damage and Enhances Immunoactivity in Tumor-Bearing Mice. MATERIALS 2019; 12:ma12101725. [PMID: 31137873 PMCID: PMC6567087 DOI: 10.3390/ma12101725] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/10/2019] [Accepted: 05/23/2019] [Indexed: 01/09/2023]
Abstract
Radiotherapy side-effects present serious problems in cancer treatment. Melanin, a natural polymer with low toxicity, is considered as a potential radio-protector; however, its application as an agent against irradiation during cancer treatment has still received little attention. In this study, nanomelanin particles were prepared, characterized and applied in protecting the spleens of tumor-bearing mice irradiated with X-rays. These nanoparticles had sizes varying in the range of 80–200 nm and contained several important functional groups such as carboxyl (-COO), carbonyl (-C=O) and hydroxyl (-OH) groups on the surfaces. Tumor-bearing mice were treated with nanomelanin at a concentration of 40 mg/kg before irradiating with a single dose of 6.0 Gray of X-ray at a high dose rate (1.0 Gray/min). Impressively, X-ray caused mild splenic fibrosis in 40% of nanomelanin-protected mice, whereas severe fibrosis was observed in 100% of mice treated with X-ray alone. Treatment with nanomelanin also partly rescued the volume and weight of mouse spleens from irradiation through promoting the transcription levels of splenic Interleukin-2 (IL-2) and Tumor Necrosis Factor alpha (TNF-α). More interestingly, splenic T cell and dendritic cell populations were 1.91 and 1.64-fold higher in nanomelanin-treated mice than those in mice which received X-ray alone. Consistently, the percentage of lymphocytes was also significantly greater in blood from nanomelanin-treated mice. In addition, nanomelanin might indirectly induce apoptosis in tumor tissues via activation of TNF-α, Bax, and Caspase-3 genes. In summary, our results demonstrate that nanomelanin protects spleens from X-ray irradiation and consequently enhances immunoactivity in tumor-bearing mice; therefore, we present nanomelanin as a potential protector against damage from radiotherapy in cancer treatment.
Collapse
|
12
|
Li ZT, Wang LM, Yi LR, Jia C, Bai F, Peng RJ, Yu ZY, Xiong GL, Xing S, Shan YJ, Yang RF, Dong JX, Cong YW. Succinate ester derivative of δ-tocopherol enhances the protective effects against 60Co γ-ray-induced hematopoietic injury through granulocyte colony-stimulating factor induction in mice. Sci Rep 2017; 7:40380. [PMID: 28145432 PMCID: PMC5286428 DOI: 10.1038/srep40380] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 12/06/2016] [Indexed: 12/20/2022] Open
Abstract
α-tocopherol succinate (α-TOS), γ-tocotrienol (GT3) and δ-tocotrienol (DT3) have drawn large attention due to their efficacy as radioprotective agents. α-TOS has been shown to act superior to α-tocopherol (α-TOH) in mice by reducing lethality following total body irradiation (TBI). Because α-TOS has been shown to act superior to α-tocopherol (α-TOH) in mice by reducing lethality following total body irradiation (TBI), we hypothesized succinate may be contribute to the radioprotection of α-TOS. To study the contributions of succinate and to identify stronger radioprotective agents, we synthesized α-, γ- and δ-TOS. Then, we evaluated their radioprotective effects and researched further mechanism of δ-TOS on hematological recovery post-irradiation. Our results demonstrated that the chemical group of succinate enhanced the effects of α-, γ- and δ-TOS upon radioprotection and granulocyte colony-stimulating factor (G-CSF) induction, and found δ-TOS a higher radioprotective efficacy at a lower dosage. We further found that treatment with δ-TOS ameliorated radiation-induced pancytopenia, augmenting cellular recovery in bone marrow and the colony forming ability of bone marrow cells in sublethal irradiated mice, thus promoting hematopoietic stem and progenitor cell recovery following irradiation exposure. δ-TOS appears to be an attractive radiation countermeasure without known toxicity, but further exploratory efficacy studies are still required.
Collapse
Affiliation(s)
- Zhong-Tang Li
- Department of Pathophysiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Li-Mei Wang
- Department of Pathophysiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Li-Rong Yi
- Department of Pathophysiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Chao Jia
- Department of Pathophysiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Fan Bai
- Department of Pathophysiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Ren-Jun Peng
- Department of Pathophysiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Zu-Yin Yu
- Department of Pathophysiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Guo-Lin Xiong
- Department of Pathophysiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Shuang Xing
- Department of Pathophysiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Ya-Jun Shan
- Department of Pathophysiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Ri-Fang Yang
- Department of Medicinal Chemistry, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Jun-Xing Dong
- Department of Pharmaceutical Sciences, Beijing Key Laboratory for Radiobiology (BKLRB), Beijing Institute of Radiation Medicine, Beijing, China
| | - Yu-Wen Cong
- Department of Pathophysiology, Beijing Institute of Radiation Medicine, Beijing, China
| |
Collapse
|
13
|
Vitamin E Analogs as Radiation Response Modifiers. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:741301. [PMID: 26366184 PMCID: PMC4558447 DOI: 10.1155/2015/741301] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 05/06/2015] [Accepted: 07/22/2015] [Indexed: 02/07/2023]
Abstract
The potentially life-threatening effects of total body ionizing radiation exposure have been known for more than a century. Despite considerable advances in our understanding of the effects of radiation over the past six decades, efforts to identify effective radiation countermeasures for use in case of a radiological/nuclear emergency have been largely unsuccessful. Vitamin E is known to have antioxidant properties capable of scavenging free radicals, which have critical roles in radiation injuries. Tocopherols and tocotrienols, vitamin E analogs together known as tocols, have shown promise as radioprotectors. Although the pivotal mechanisms of action of tocols have long been thought to be their antioxidant properties and free radical scavenging activities, other alternative mechanisms have been proposed to drive their activity as radioprotectors. Here we provide a brief overview of the effects of ionizing radiation, the mechanistic mediators of radiation-induced damage, and the need for radiation countermeasures. We further outline the role for, efficacy of, and mechanisms of action of tocols as radioprotectors, and we compare and contrast their efficacy and mode of action with that of another well-studied chemical radioprotector, amifostine.
Collapse
|
14
|
Patil R, Szabó E, Fells JI, Balogh A, Lim KG, Fujiwara Y, Norman DD, Lee SC, Balazs L, Thomas F, Patil S, Emmons-Thompson K, Boler A, Strobos J, McCool SW, Yates CR, Stabenow J, Byrne GI, Miller DD, Tigyi GJ. Combined mitigation of the gastrointestinal and hematopoietic acute radiation syndromes by an LPA2 receptor-specific nonlipid agonist. ACTA ACUST UNITED AC 2015; 22:206-16. [PMID: 25619933 DOI: 10.1016/j.chembiol.2014.12.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Revised: 12/03/2014] [Accepted: 12/15/2014] [Indexed: 02/06/2023]
Abstract
Pharmacological mitigation of injuries caused by high-dose ionizing radiation is an unsolved medical problem. A specific nonlipid agonist of the type 2 G protein coupled receptor for lysophosphatidic acid (LPA2) 2-[4-(1,3-dioxo-1H,3H-benzoisoquinolin-2-yl)butylsulfamoyl]benzoic acid (DBIBB) when administered with a postirradiation delay of up to 72 hr reduced mortality of C57BL/6 mice but not LPA2 knockout mice. DBIBB mitigated the gastrointestinal radiation syndrome, increased intestinal crypt survival and enterocyte proliferation, and reduced apoptosis. DBIBB enhanced DNA repair by augmenting the resolution of γ-H2AX foci, increased clonogenic survival of irradiated IEC-6 cells, attenuated the radiation-induced death of human CD34(+) hematopoietic progenitors and enhanced the survival of the granulocyte/macrophage lineage. DBIBB also increased the survival of mice suffering from the hematopoietic acute radiation syndrome after total-body irradiation. DBIBB represents a drug candidate capable of mitigating acute radiation syndrome caused by high-dose γ-radiation to the hematopoietic and gastrointestinal system.
Collapse
Affiliation(s)
- Renukadevi Patil
- Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Erzsébet Szabó
- Department of Physiology, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - James I Fells
- Department of Physiology, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Andrea Balogh
- Department of Physiology, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Keng G Lim
- Department of Physiology, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Yuko Fujiwara
- Department of Physiology, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Derek D Norman
- Department of Physiology, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Sue-Chin Lee
- Department of Physiology, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Louisa Balazs
- Department of Pathology, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Fridtjof Thomas
- Department of Preventive Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Shivaputra Patil
- Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | | | | | | | | | | | - Jennifer Stabenow
- The Regional Biocontainment Laboratory, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Gerrald I Byrne
- The Regional Biocontainment Laboratory, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Duane D Miller
- Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Gábor J Tigyi
- Department of Physiology, The University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| |
Collapse
|