1
|
Lyngholm E, Stokkevåg CH, Lühr A, Tian L, Meric I, Tjelta J, Henjum H, Handeland AH, Ytre-Hauge KS. An updated variable RBE model for proton therapy. Phys Med Biol 2024; 69:125025. [PMID: 38527373 DOI: 10.1088/1361-6560/ad3796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/25/2024] [Indexed: 03/27/2024]
Abstract
Objective.While a constant relative biological effectiveness (RBE) of 1.1 forms the basis for clinical proton therapy, variable RBE models are increasingly being used in plan evaluation. However, there is substantial variation across RBE models, and several newin vitrodatasets have not yet been included in the existing models. In this study, an updatedin vitroproton RBE database was collected and used to examine current RBE model assumptions, and to propose an up-to-date RBE model as a tool for evaluating RBE effects in clinical settings.Approach.A proton database (471 data points) was collected from the literature, almost twice the size of the previously largest model database. Each data point included linear-quadratic model parameters and linear energy transfer (LET). Statistical analyses were performed to test the validity of commonly applied assumptions of phenomenological RBE models, and new model functions were proposed forRBEmaxandRBEmin(RBE at the lower and upper dose limits). Previously published models were refitted to the database and compared to the new model in terms of model performance and RBE estimates.Main results.The statistical analysis indicated that the intercept of theRBEmaxfunction should be a free fitting parameter and RBE estimates were clearly higher for models with free intercept.RBEminincreased with increasing LET, while a dependency ofRBEminon the reference radiation fractionation sensitivity (α/βx) did not significantly improve model performance. Evaluating the models, the new model gave overall lowest RMSE and highest R2 score. RBE estimates in the distal part of a spread-out-Bragg-peak in water (α/βx= 2.1 Gy) were 1.24-1.51 for original models, 1.25-1.49 for refits and 1.42 for the new model.Significance.An updated RBE model based on the currently largest database among published phenomenological models was proposed. Overall, the new model showed better performance compared to refitted published RBE models.
Collapse
Affiliation(s)
- Erlend Lyngholm
- Department of Physics and Technology, University of Bergen, Bergen, Norway
| | - Camilla Hanquist Stokkevåg
- Department of Physics and Technology, University of Bergen, Bergen, Norway
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | - Armin Lühr
- Department of Physics, TU Dortmund University, Dortmund, Germany
| | - Liheng Tian
- Department of Physics, TU Dortmund University, Dortmund, Germany
| | - Ilker Meric
- Department of Computer Science, Electrical Engineering and Mathematical Sciences, Western Norway University of Applied Sciences, Bergen, Norway
| | - Johannes Tjelta
- Department of Physics and Technology, University of Bergen, Bergen, Norway
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | - Helge Henjum
- Department of Physics and Technology, University of Bergen, Bergen, Norway
| | - Andreas Havsgård Handeland
- Department of Physics and Technology, University of Bergen, Bergen, Norway
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | | |
Collapse
|
2
|
Sasaki M, Tamamura H, Tameshige Y, Azuma Y, Maeda Y, Matsushita K, Sato Y, Takamatsu S, Inoue K, Tabata Y, Yoshimura H, Yamamoto K. Dose Evaluation in 2-Phase Method for Advanced Esophageal Cancer by Hybrid Irradiation Techniques. Int J Part Ther 2024; 11:100010. [PMID: 38764603 PMCID: PMC11098852 DOI: 10.1016/j.ijpt.2024.100010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/10/2023] [Accepted: 12/18/2023] [Indexed: 05/21/2024] Open
Abstract
Purpose In concurrent chemoradiotherapy for advanced esophageal cancer, a 2-phase method consisting of initial irradiation of a wide elective nodal region and boost irradiation of the primary lesion is commonly employed. Although dose escalation to the primary lesion may be required to achieve higher local control rates, the radiation dose to critical organs must not exceed dose constraints. To achieve an optimum balance of dose prescription and dose reduction to surrounding organs, such as the lungs and heart, we compared hybrid dose distributions and investigated the best combination of the following recent irradiation techniques: volumetric modulation arc therapy (VMAT), proton broad-beam irradiation, and intensity-modulated proton beam therapy (IMPT). Materials and Methods Forty-five patients with advanced esophageal cancer whose primary lesions were located in the middle- or lower-thoracic region were studied. Radiotherapy plans for the initial and boost irradiation in the 2-phase method were calculated using VMAT, proton broad-beam irradiation, and IMPT calculation codes, and the dose-volume histogram indices of the lungs and heart for the accumulated plans were compared. Results In plans using boost proton irradiation with a prescribed dose of 60 Gy(RBE), all dose-volume histogram indices were significantly below the tolerance limits. Initial and boost irradiation with VMAT resulted in the median dose of V30 Gy(RBE)(heart) of 27.4% and an achievement rate below the tolerance limit of 57.8% (26 cases). In simulations of dose escalation up to 70 Gy(RBE), initial and boost IMPT resulted in the highest achievement rate, satisfying all dose constraints in 95.6% (43 cases). Conclusion Applying VMAT to both initial and boost irradiation is not recommended because of the increased risk of the cardiac dose exceeding the tolerance limit. IMPT may allow dose escalation of up to 70 Gy(RBE) without radiation risks to the lungs and heart in the treatment of advanced esophageal cancer.
Collapse
Affiliation(s)
- Makoto Sasaki
- Proton Therapy Center, Fukui Prefectural Hospital, Fukui, Japan
| | | | - Yuji Tameshige
- Proton Therapy Center, Fukui Prefectural Hospital, Fukui, Japan
| | - Yuya Azuma
- Kouseikai Proton Therapy Center, Nara, Japan
| | - Yoshikazu Maeda
- Proton Therapy Center, Fukui Prefectural Hospital, Fukui, Japan
| | | | - Yoshitaka Sato
- Proton Therapy Center, Fukui Prefectural Hospital, Fukui, Japan
| | - Shigeyuki Takamatsu
- Department of Radiology, Kanazawa University Graduate School of Medical Sciences, Ishikawa, Japan
| | | | - Yoji Tabata
- Kouseikai Proton Therapy Center, Nara, Japan
| | | | | |
Collapse
|
3
|
Sakae T, Takada K, Kamizawa S, Terunuma T, Ando K. Formulation of Time-Dependent Cell Survival with Saturable Repairability of Radiation Damage. Radiat Res 2023; 200:139-150. [PMID: 37303133 DOI: 10.1667/rade-21-00066.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/10/2023] [Indexed: 06/13/2023]
Abstract
This study aims to provide a model that compounds historically proposed ideas regarding cell survival irradiated with X rays or particles. The parameters used in this model have simple meanings and are closely related to cell death-related phenomena. The model is adaptable to a wide range of doses and dose rates and thus can consistently explain previously published cell survival data. The formulas of the model were derived by using five basic ideas: 1. "Poisson's law"; 2. "DNA affected damage"; 3. "repair"; 4. "clustered affected damage"; and 5. "saturation of reparability". The concept of affected damage is close to but not the same as the effect caused by the double-strand break (DSB). The parameters used in the formula are related to seven phenomena: 1. "linear coefficient of radiation dose"; 2. "probability of making affected damage"; 3. "cell-specific repairability", 4. "irreparable damage by adjacent affected damage"; 5. "recovery of temporally changed repairability"; 6. "recovery of simple damage which will make the affected damage"; 7. "cell division". By using the second parameter, this model includes cases where a single hit results in repairable-lethal and double-hit results in repairable-lethal. The fitting performance of the model for the experimental data was evaluated based on the Akaike information criterion, and practical results were obtained for the published experiments irradiated with a wide range of doses (up to several 10 Gy) and dose rates (0.17 Gy/h to 55.8 Gy/h). The direct association of parameters with cell death-related phenomena has made it possible to systematically fit survival data of different cell types and different radiation types by using crossover parameters.
Collapse
Affiliation(s)
- Takeji Sakae
- Faculty of Medicine, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
- University of Tsukuba Hospital, Proton Medical Research Center, 2-1-1, Amakubo, Tsukuba, Ibaraki, 305-8576, Japan
| | - Kenta Takada
- Graduate School of Radiology, Gunma Prefectural College of Health Sciences, 323-1 Kamiokimachi, Maebashi, Gunma 371-0052, Japan
| | - Satoshi Kamizawa
- University of Tsukuba Hospital, Proton Medical Research Center, 2-1-1, Amakubo, Tsukuba, Ibaraki, 305-8576, Japan
| | - Toshiyuki Terunuma
- Faculty of Medicine, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
- University of Tsukuba Hospital, Proton Medical Research Center, 2-1-1, Amakubo, Tsukuba, Ibaraki, 305-8576, Japan
| | - Koichi Ando
- Gunma University Heavy Ion Medical Center, 3-39, Showamachi, Maebashi, Gunma 371-0034, Japan
| |
Collapse
|
4
|
Suckert T, Nexhipi S, Dietrich A, Koch R, Kunz-Schughart LA, Bahn E, Beyreuther E. Models for Translational Proton Radiobiology-From Bench to Bedside and Back. Cancers (Basel) 2021; 13:4216. [PMID: 34439370 PMCID: PMC8395028 DOI: 10.3390/cancers13164216] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/09/2021] [Accepted: 08/17/2021] [Indexed: 12/25/2022] Open
Abstract
The number of proton therapy centers worldwide are increasing steadily, with more than two million cancer patients treated so far. Despite this development, pending questions on proton radiobiology still call for basic and translational preclinical research. Open issues are the on-going discussion on an energy-dependent varying proton RBE (relative biological effectiveness), a better characterization of normal tissue side effects and combination treatments with drugs originally developed for photon therapy. At the same time, novel possibilities arise, such as radioimmunotherapy, and new proton therapy schemata, such as FLASH irradiation and proton mini-beams. The study of those aspects demands for radiobiological models at different stages along the translational chain, allowing the investigation of mechanisms from the molecular level to whole organisms. Focusing on the challenges and specifics of proton research, this review summarizes the different available models, ranging from in vitro systems to animal studies of increasing complexity as well as complementing in silico approaches.
Collapse
Affiliation(s)
- Theresa Suckert
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany; (T.S.); (S.N.); (A.D.); (L.A.K.-S.)
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Sindi Nexhipi
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany; (T.S.); (S.N.); (A.D.); (L.A.K.-S.)
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, 01309 Dresden, Germany
| | - Antje Dietrich
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany; (T.S.); (S.N.); (A.D.); (L.A.K.-S.)
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Robin Koch
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany; (R.K.); (E.B.)
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Leoni A. Kunz-Schughart
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany; (T.S.); (S.N.); (A.D.); (L.A.K.-S.)
- National Center for Tumor Diseases (NCT), Partner Site Dresden, 01307 Dresden, Germany
| | - Emanuel Bahn
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany; (R.K.); (E.B.)
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
- German Cancer Research Center (DKFZ), Clinical Cooperation Unit Radiation Oncology, 69120 Heidelberg, Germany
| | - Elke Beyreuther
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany; (T.S.); (S.N.); (A.D.); (L.A.K.-S.)
- Helmholtz-Zentrum Dresden—Rossendorf, Institute of Radiation Physics, 01328 Dresden, Germany
| |
Collapse
|
5
|
Howard ME, Denbeigh JM, Debrot EK, Remmes NB, Herman MG, Beltran CJ. A High-Precision Method for In Vitro Proton Irradiation. Int J Part Ther 2020; 7:62-69. [PMID: 33274258 PMCID: PMC7707323 DOI: 10.14338/ijpt-20-00007.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 07/02/2020] [Indexed: 01/06/2023] Open
Abstract
Purpose Although proton therapy has become a well-established radiation modality, continued efforts are needed to improve our understanding of the molecular and cellular mechanisms occurring during treatment. Such studies are challenging, requiring many resources. The purpose of this study was to create a phantom that would allow multiple in vitro experiments to be irradiated simultaneously with a spot-scanning proton beam. Materials and Methods The setup included a modified patient-couch top coupled with a high-precision robotic arm for positioning. An acrylic phantom was created to hold 4 6-well cell-culture plates at 2 different positions along the Bragg curve in a reproducible manner. The proton treatment plan consisted of 1 large field encompassing all 4 plates with a monoenergetic 76.8-MeV posterior beam. For robust delivery, a mini pyramid filter was used to broaden the Bragg peak (BP) in the depth direction. Both a Markus ionization chamber and EBT3 radiochromic film measurements were used to verify absolute dose. Results A treatment plan for the simultaneous irradiation of 2 plates irradiated with high linear energy transfer protons (BP, 7 keV/μm) and 2 plates irradiated with low linear energy transfer protons (entrance, 2.2 keV/μm) was created. Dose uncertainty was larger across the setup for cell plates positioned at the BP because of beam divergence and, subsequently, variable proton-path lengths. Markus chamber measurements resulted in uncertainty values of ±1.8% from the mean dose. Negligible differences were seen in the entrance region (<0.3%). Conclusion The proposed proton irradiation setup allows 4 plates to be simultaneously irradiated with 2 different portions (entrance and BP) of a 76.8-MeV beam. Dosimetric uncertainties across the setup are within ±1.8% of the mean dose.
Collapse
Affiliation(s)
| | - Janet M Denbeigh
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | | | | | - Michael G Herman
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
6
|
Qi Tan H, Yang Calvin Koh W, Kuan Rui Tan L, Hao Phua J, Wei Ang K, Yong Park S, Siang Lew W, Cheow Lei Lee J. Dependence of LET on material and its impact on current RBE model. ACTA ACUST UNITED AC 2019; 64:135022. [DOI: 10.1088/1361-6560/ab1c90] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
7
|
Choi C, Son A, Lee GH, Shin SW, Park S, Ahn SH, Chung Y, Yu JI, Park HC. Targeting DNA-dependent protein kinase sensitizes hepatocellular carcinoma cells to proton beam irradiation through apoptosis induction. PLoS One 2019; 14:e0218049. [PMID: 31194786 PMCID: PMC6563991 DOI: 10.1371/journal.pone.0218049] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/24/2019] [Indexed: 12/12/2022] Open
Abstract
Recent studies have highlighted the implications of genetic variations in the relative biological effectiveness (RBE) of proton beam irradiation over conventional X-ray irradiation. Proton beam radiotherapy is a reasonable radiotherapy option for hepatocellular carcinoma (HCC), but the impact of genetic difference on the HCC RBE remains unknown. Here, we determined proton RBE in human HCC cells by exposing them to various doses of either 6-MV X-rays or 230-MeV proton beams. Clonogenic survival assay revealed variable radiosensitivity of human HCC cell lines with survival fraction at 2 Gy ranging from 0.38 to 0.83 and variable proton RBEs with 37% survival fraction ranging from 1.00 to 1.48. HCC cells appeared more sensitive to proton irradiation than X-rays, with more persistent activation of DNA damage repair proteins over time. Depletion of a DNA damage repair gene, DNA-PKcs, by siRNA dramatically increased the sensitivity of HCC cells to proton beams with a decrease in colony survival and an increase in apoptosis. Our findings suggest that there are large variations in proton RBE in HCC cells despite the use of a constant RBE of 1.1 in the clinic and targeting DNA-PKcs in combination with proton beam therapy may be a promising regimen for treating HCC.
Collapse
Affiliation(s)
- Changhoon Choi
- Department of Radiation Oncology, Samsung Medical Center, Seoul, South Korea
| | - Arang Son
- Department of Radiation Oncology, Samsung Medical Center, Seoul, South Korea
| | - Ga-Haeng Lee
- Department of Radiation Oncology, Samsung Medical Center, Seoul, South Korea
| | - Sung-Won Shin
- Department of Radiation Oncology, Samsung Medical Center, Seoul, South Korea
- Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Sohee Park
- Department of Radiation Oncology, Samsung Medical Center, Seoul, South Korea
| | - Sang Hee Ahn
- Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Yoonsun Chung
- Department of Nuclear Engineering, Hanyang University, Seoul, South Korea
| | - Jeong Il Yu
- Department of Radiation Oncology, Samsung Medical Center, Seoul, South Korea
| | - Hee Chul Park
- Department of Radiation Oncology, Samsung Medical Center, Seoul, South Korea
- Sungkyunkwan University School of Medicine, Seoul, South Korea
- * E-mail:
| |
Collapse
|
8
|
Fujinaga H, Sakai Y, Yamashita T, Arai K, Terashima T, Komura T, Seki A, Kawaguchi K, Nasti A, Yoshida K, Wada T, Yamamoto K, Kume K, Hasegawa T, Takata T, Honda M, Kaneko S. Biological characteristics of gene expression features in pancreatic cancer cells induced by proton and X-ray irradiation. Int J Radiat Biol 2019; 95:571-579. [PMID: 30557072 DOI: 10.1080/09553002.2019.1558297] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Radiation therapy is an important alternative treatment for advanced cancer. The aim of the current study was to disclose distinct alterations of the biological characteristics of gene expression features in pancreatic cancer cells, MIAPaCa-2, following proton and X-ray irradiation. MATERIALS AND METHODS Using cDNA microarray, we examined the gene expression alterations of MIAPaCa-2 cells following proton or X-ray irradiation. We also isolated the surviving MIAPaCa-2 cells after irradiation and analyzed their gene expression profiles. RESULTS Although the cytocidal effects of both types of irradiation were similar at sufficient doses in vitro and in vivo, the affected gene expression profile alterations of MIAPaCa-2 cells irradiated with protons were distinct from those irradiated with X-ray. Interestingly, clustering analysis of gene expression of the surviving MIAPaCa-2 cells was also completely discernible between the two types of irradiation. However, a similar cytocidal effect was still observed in the proton- and X-ray-irradiated surviving cells after re-irradiation, commonly showing biological effects related to apoptosis and cell cycle processes. CONCLUSIONS Proton irradiation treatment for pancreatic cancer provides the distinct biological effect of steady gene expression alterations compared to X-ray irradiation; however, surviving cells from both types of irradiation were still susceptible to the cytocidal effects induced by proton re-irradiation treatment.
Collapse
Affiliation(s)
- Haruo Fujinaga
- a Disease control and homeostasis , Kanazawa University , Kanazawa , Japan
| | - Yoshio Sakai
- b Department of Gastroenterology , Kanazawa University Hospital , Kanazawa , Japan
| | - Tatsuya Yamashita
- b Department of Gastroenterology , Kanazawa University Hospital , Kanazawa , Japan
| | - Kuniaki Arai
- b Department of Gastroenterology , Kanazawa University Hospital , Kanazawa , Japan
| | - Takeshi Terashima
- b Department of Gastroenterology , Kanazawa University Hospital , Kanazawa , Japan
| | - Takuya Komura
- c System Biology , Kanazawa University , Kanazawa , Japan
| | - Akihiro Seki
- c System Biology , Kanazawa University , Kanazawa , Japan
| | - Kazunori Kawaguchi
- b Department of Gastroenterology , Kanazawa University Hospital , Kanazawa , Japan
| | - Alessandro Nasti
- a Disease control and homeostasis , Kanazawa University , Kanazawa , Japan
| | - Keiko Yoshida
- a Disease control and homeostasis , Kanazawa University , Kanazawa , Japan
| | - Takashi Wada
- d Department of Nephrology , Kanazawa University Hospital , Kanazawa , Japan
| | | | - Kyo Kume
- e The Wakasa Wan Energy Research Center , Tsuruga , Japan
| | | | - Takushi Takata
- e The Wakasa Wan Energy Research Center , Tsuruga , Japan
| | - Masao Honda
- b Department of Gastroenterology , Kanazawa University Hospital , Kanazawa , Japan
| | - Shuichi Kaneko
- a Disease control and homeostasis , Kanazawa University , Kanazawa , Japan.,b Department of Gastroenterology , Kanazawa University Hospital , Kanazawa , Japan.,c System Biology , Kanazawa University , Kanazawa , Japan
| |
Collapse
|
9
|
Study of the Influence of NanOx Parameters. Cancers (Basel) 2018; 10:cancers10040087. [PMID: 29561819 PMCID: PMC5923342 DOI: 10.3390/cancers10040087] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 03/07/2018] [Accepted: 03/16/2018] [Indexed: 11/17/2022] Open
Abstract
NanOx is a new biophysical model that aims at predicting the biological effect of ions in the context of hadron therapy. It integrates the fully-stochastic nature of ionizing radiation both at micrometric and nanometric scales and also takes into account the production and diffusion of reactive chemical species. In order to further characterize the new framework, we discuss the meaning and relevance of most of the NanOx parameters by evaluating their influence on the linear-quadratic coefficient α and on the dose deposited to achieve 10% or 1% of cell survival, D10% or D1%, as a function of LET. We perform a theoretical study in which variations in the input parameters are propagated into the model predictions for HSG, V79 and CHO-K1 cells irradiated by monoenergetic protons and carbon ions. We conclude that, in the current version of NanOx, the modeling of a specific cell line relies on five parameters, which have to be adjusted to several experimental measurements: the average cellular nuclear radius, the linear-quadratic coefficients describing photon irradiations and the α values associated with two carbon ions of intermediate and high-LET values. This may have interesting implications toward a clinical application of the new biophysical model.
Collapse
|
10
|
Maeda K, Yasui H, Matsuura T, Yamamori T, Suzuki M, Nagane M, Nam JM, Inanami O, Shirato H. Evaluation of the relative biological effectiveness of spot-scanning proton irradiation in vitro. JOURNAL OF RADIATION RESEARCH 2016; 57:307-11. [PMID: 26838131 PMCID: PMC4915538 DOI: 10.1093/jrr/rrv101] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 12/02/2015] [Accepted: 12/07/2015] [Indexed: 05/22/2023]
Abstract
Variations in relative biological effectiveness (RBE) from a fixed value of 1.1 are critical in proton beam therapy. To date, studies estimating RBE at multiple positions relative to the spread-out Bragg peak (SOBP) have been predominantly performed using passive scattering methods, and limited data are available for spot-scanning beams. Thus, to investigate the RBE of spot-scanning beams, Chinese hamster fibroblast V79 cells were irradiated using the beam line at the Hokkaido University Hospital Proton Therapy Center. Cells were placed at six different depths, including the entrance of the proton beam and the proximal and distal part of the SOBP. Surviving cell fractions were analyzed using colony formation assay, and cell survival curves were obtained by the curve fitted using a linear-quadratic model. RBE10 and RBE37 were 1.15 and 1.21 at the center of the SOBP, respectively. In contrast, the distal region showed higher RBE values (1.50 for RBE10 and 1.85 for RBE37). These results are in line with those of previous studies conducted using passive scattering proton beams. Taken together, these data strongly suggest that variations in RBE should be considered during treatment planning for spot-scanning beams as well as for passive scattering proton beams.
Collapse
Affiliation(s)
- Kenichiro Maeda
- Department of Radiation Medicine, Graduate School of Medicine, Hokkaido University
| | - Hironobu Yasui
- Laboratory of Radiation Biology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University
| | - Taeko Matsuura
- Department of Medical Physics, Proton Beam Therapy Center, Hokkaido University Hospital
| | - Tohru Yamamori
- Laboratory of Radiation Biology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University
| | - Motofumi Suzuki
- Laboratory of Radiation Biology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University
| | - Masaki Nagane
- Laboratory of Radiation Biology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University
| | - Jin-Min Nam
- Department of Radiation Medicine, Graduate School of Medicine, Hokkaido University Global Station for Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education, Hokkaido University
| | - Osamu Inanami
- Laboratory of Radiation Biology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University
| | - Hiroki Shirato
- Department of Radiation Medicine, Graduate School of Medicine, Hokkaido University Global Station for Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education, Hokkaido University
| |
Collapse
|
11
|
Jones B. Towards Achieving the Full Clinical Potential of Proton Therapy by Inclusion of LET and RBE Models. Cancers (Basel) 2015; 7:460-80. [PMID: 25790470 PMCID: PMC4381269 DOI: 10.3390/cancers7010460] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 01/19/2015] [Accepted: 03/06/2015] [Indexed: 12/13/2022] Open
Abstract
Despite increasing use of proton therapy (PBT), several systematic literature reviews show limited gains in clinical outcomes, with publications mostly devoted to recent technical developments. The lack of randomised control studies has also hampered progress in the acceptance of PBT by many oncologists and policy makers. There remain two important uncertainties associated with PBT, namely: (1) accuracy and reproducibility of Bragg peak position (BPP); and (2) imprecise knowledge of the relative biological effect (RBE) for different tissues and tumours, and at different doses. Incorrect BPP will change dose, linear energy transfer (LET) and RBE, with risks of reduced tumour control and enhanced toxicity. These interrelationships are discussed qualitatively with respect to the ICRU target volume definitions. The internationally accepted proton RBE of 1.1 was based on assays and dose ranges unlikely to reveal the complete range of RBE in the human body. RBE values are not known for human (or animal) brain, spine, kidney, liver, intestine, etc. A simple efficiency model for estimating proton RBE values is described, based on data of Belli et al. and other authors, which allows linear increases in α and β with LET, with a gradient estimated using a saturation model from the low LET α and β radiosensitivity parameter input values, and decreasing RBE with increasing dose. To improve outcomes, 3-D dose-LET-RBE and bio-effectiveness maps are required. Validation experiments are indicated in relevant tissues. Randomised clinical studies that test the invariant 1.1 RBE allocation against higher values in late reacting tissues, and lower tumour RBE values in the case of radiosensitive tumours, are also indicated.
Collapse
Affiliation(s)
- Bleddyn Jones
- Gray Laboratory, CRUK/MRC Oxford Oncology Institute, The University of Oxford, ORCRB-Roosevelt Drive, Oxford OX3 7DQ, UK.
| |
Collapse
|
12
|
Paganetti H. Relative biological effectiveness (RBE) values for proton beam therapy. Variations as a function of biological endpoint, dose, and linear energy transfer. Phys Med Biol 2014; 59:R419-72. [PMID: 25361443 DOI: 10.1088/0031-9155/59/22/r419] [Citation(s) in RCA: 658] [Impact Index Per Article: 59.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Proton therapy treatments are based on a proton RBE (relative biological effectiveness) relative to high-energy photons of 1.1. The use of this generic, spatially invariant RBE within tumors and normal tissues disregards the evidence that proton RBE varies with linear energy transfer (LET), physiological and biological factors, and clinical endpoint. Based on the available experimental data from published literature, this review analyzes relationships of RBE with dose, biological endpoint and physical properties of proton beams. The review distinguishes between endpoints relevant for tumor control probability and those potentially relevant for normal tissue complication. Numerous endpoints and experiments on sub-cellular damage and repair effects are discussed. Despite the large amount of data, considerable uncertainties in proton RBE values remain. As an average RBE for cell survival in the center of a typical spread-out Bragg peak (SOBP), the data support a value of ~1.15 at 2 Gy/fraction. The proton RBE increases with increasing LETd and thus with depth in an SOBP from ~1.1 in the entrance region, to ~1.15 in the center, ~1.35 at the distal edge and ~1.7 in the distal fall-off (when averaged over all cell lines, which may not be clinically representative). For small modulation widths the values could be increased. Furthermore, there is a trend of an increase in RBE as (α/β)x decreases. In most cases the RBE also increases with decreasing dose, specifically for systems with low (α/β)x. Data on RBE for endpoints other than clonogenic cell survival are too diverse to allow general statements other than that the RBE is, on average, in line with a value of ~1.1. This review can serve as a source for defining input parameters for applying or refining biophysical models and to identify endpoints where additional radiobiological data are needed in order to reduce the uncertainties to clinically acceptable levels.
Collapse
Affiliation(s)
- Harald Paganetti
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, 30 Fruit Street, Boston, MA 02114, USA
| |
Collapse
|