1
|
Gao Y, Wang X, Cloutier P, Zheng Y, Sanche L. Oxygen Effect on 0-30 eV Electron Damage to DNA Under Different Hydration Levels: Base and Clustered Lesions, Strand Breaks and Crosslinks. Molecules 2024; 29:6033. [PMID: 39770123 PMCID: PMC11680046 DOI: 10.3390/molecules29246033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/13/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025] Open
Abstract
Studies on radiosensitization of biological damage by O2 began about a century ago and it remains one of the most significant subjects in radiobiology. It has been related to increased production of oxygen radicals and other reactive metabolites, but only recently to the action of the numerous low-energy electrons (LEEs: 0-30 eV) produced by ionizing radiation. We provide the first complete set of G-values (yields of specific products per energy deposited) for all conformational damages induced to plasmid DNA by LEEs (GLEE (O2)) and 1.5 keV X-rays (GX(O2)) under oxygen at atmospheric pressure. The experiments are performed in a chamber, under humidity levels ranging from 2.5 to 33 water molecules/base. Photoelectrons from 0 to 30 eV are produced by X-rays incident on a tantalum substrate covered with DNA. Damage yields are measured by electrophoresis as a function of X-ray fluence. The oxygen enhancement ratio GLEE(O2)/GLEE(N2), which lies around 2 for potentially lethal cluster lesions, is similar to that found with cells. The average ratio, GLEE(O2)/GX(O2), of 12 for cluster lesions and crosslinks strongly suggest that DNA damages that harm cells are much more likely to be created by LEEs than any other initial species generated by X-rays in the presence of O2.
Collapse
Affiliation(s)
- Yingxia Gao
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350116, China; (Y.G.); (X.W.); (Y.Z.)
| | - Xuran Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350116, China; (Y.G.); (X.W.); (Y.Z.)
| | - Pierre Cloutier
- Department of Nuclear Medicine and Radiobiology and Clinical Research Center, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada;
| | - Yi Zheng
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350116, China; (Y.G.); (X.W.); (Y.Z.)
- Department of Nuclear Medicine and Radiobiology and Clinical Research Center, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada;
| | - Léon Sanche
- Department of Nuclear Medicine and Radiobiology and Clinical Research Center, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada;
| |
Collapse
|
2
|
Malouff TD, Newpower M, Bush A, Seneviratne D, Ebner DK. A Practical Primer on Particle Therapy. Pract Radiat Oncol 2024; 14:590-602. [PMID: 38844118 DOI: 10.1016/j.prro.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 06/22/2024]
Abstract
PURPOSE Particle therapy is a promising treatment technique that is becoming more commonly used. Although proton beam therapy remains the most commonly used particle therapy, multiple other heavier ions have been used in the preclinical and clinical settings, each with its own unique properties. This practical review aims to summarize the differences between the studied particles, discussing their radiobiological and physical properties with additional review of the available clinical data. METHODS AND MATERIALS A search was carried out on the PubMed databases with search terms related to each particle. Relevant radiobiology, physics, and clinical studies were included. The articles were summarized to provide a practical resource for practicing clinicians. RESULTS A total of 113 articles and texts were included in our narrative review. Currently, proton beam therapy has the most data and is the most widely used, followed by carbon, helium, and neutrons. Although oxygen, neon, silicon, and argon have been used clinically, their future use will likely remain limited as monotherapy. CONCLUSIONS This review summarizes the properties of each of the clinically relevant particles. Protons, helium, and carbon will likely remain the most commonly used, although multi-ion therapy is an emerging technique.
Collapse
Affiliation(s)
- Timothy D Malouff
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota.
| | - Mark Newpower
- Department of Radiation Oncology, University of Oklahoma, OU Health Stephenson Cancer Center, Oklahoma City, Oklahoma
| | - Aaron Bush
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, Florida
| | - Danushka Seneviratne
- Department of Radiation Oncology, University of Oklahoma, OU Health Stephenson Cancer Center, Oklahoma City, Oklahoma
| | - Daniel K Ebner
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
3
|
Ramesh P, Ruan D, Liu SJ, Seo Y, Braunstein S, Sheng K. Hypoxia-informed RBE-weighted beam orientation optimization for intensity modulated proton therapy. Med Phys 2024; 51:2320-2333. [PMID: 38345134 PMCID: PMC10940223 DOI: 10.1002/mp.16978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 03/13/2024] Open
Abstract
BACKGROUND Variable relative biological effectiveness (RBE) models in treatment planning have been proposed to optimize the therapeutic ratio of proton therapy. It has been reported that proton RBE decreases with increasing tumor oxygen level, offering an opportunity to address hypoxia-related radioresistance with RBE-weighted optimization. PURPOSE Here, we obtain a voxel-level estimation of partial oxygen pressure to weigh RBE values in a single biologically informed beam orientation optimization (BOO) algorithm. METHODS Three glioblastoma patients with [18 F]-fluoromisonidazole (FMISO)-PET/CT images were selected from the institutional database. Oxygen values were derived from tracer uptake using a nonlinear least squares curve fitting. McNamara RBE, calculated from proton dose, was then weighed using oxygen enhancement ratios (OER) for each voxel and incorporated into the dose fidelity term of the BOO algorithm. The nonlinear optimization problem was solved using a split-Bregman approach, with FISTA as the solver. The proposed hypoxia informed RBE-weighted method (HypRBE) was compared to dose fidelity terms using the constant RBE of 1.1 (cRBE) and the normoxic McNamara RBE model (RegRBE). Tumor homogeneity index (HI), maximum biological dose (Dmax), and D95%, as well as OAR therapeutic index (TI = gEUDCTV /gEUDOAR ) were evaluated along with worst-case statistics after normalization to normal tissue isotoxicity. RESULTS Compared to [cRBE, RegRBE], HypRBE increased tumor HI, Dmax, and D95% across all plans by on average [31.3%, 31.8%], [48.6%, 27.1%], and [50.4%, 23.8%], respectively. In the worst-case scenario, the parameters increase on average by [12.5%, 14.7%], [7.3%,-8.9%], and [22.3%, 2.1%]. Despite increased OAR Dmean and Dmax by [8.0%, 3.0%] and [13.1%, -0.1%], HypRBE increased average TI by [22.0%, 21.1%]. Worst-case OAR Dmean, Dmax, and TI worsened by [17.9%, 4.3%], [24.5%, -1.2%], and [9.6%, 10.5%], but in the best cases, HypRBE escalates tumor coverage significantly without compromising OAR dose, increasing the therapeutic ratio. CONCLUSIONS We have developed an optimization algorithm whose dose fidelity term accounts for hypoxia-informed RBE values. We have shown that HypRBE selects bE:\Alok\aaeams better suited to deliver high physical dose to low RBE, hypoxic tumor regions while sparing the radiosensitive normal tissue.
Collapse
Affiliation(s)
- Pavitra Ramesh
- Department of Radiation Oncology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Dan Ruan
- Department of Radiation Oncology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - S. John Liu
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Youngho Seo
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94143, USA
| | - Steve Braunstein
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Ke Sheng
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
4
|
Audouin J, Hofverberg P, Ngono-Ravache Y, Desorgher L, Baldacchino G. Intermediate LET-like effect in distal part of proton Bragg peak revealed by track-ends imaging during super-Fricke radiolysis. Sci Rep 2023; 13:15460. [PMID: 37726376 PMCID: PMC10509149 DOI: 10.1038/s41598-023-42639-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 09/13/2023] [Indexed: 09/21/2023] Open
Abstract
Upstream of the efficiency of proton or carbon ion beams in cancer therapy, and to optimize hadrontherapy results, we analysed the chemistry of Fricke solutions in track-end of 64-MeV protons and 1.14-GeV carbon ions. An original optical setup is designed to determine the primary track-segment yields along the last millimetres of the ion track with a sub-millimetre resolution. The Fe3+-yield falls in the Bragg peak to (4.9 ± 0.4) × 10-7 mol/J and 1.9 × 10-7 mol/J, under protons and carbon ions respectively. Beyond the Bragg peak, a yield recovery is observed over 1 mm for proton beams. It is attributed to the intermediate-LET of protons in this region where their energy decreases and energy distribution becomes broader, in relation with the longitudinal straggling of the beam. Consequently to this LET decrease in the distal part of the Bragg peak, Fe3+-yield increases. For the first time, this signature is highlighted at the chemical level under proton irradiation. Nevertheless, this phenomenon is not identified for carbon ion beams since their straggling is lower. It would need a greater spatial resolution to be observed.
Collapse
Affiliation(s)
- J Audouin
- Université Paris-Saclay, CEA, CNRS, LIDYL, 91191, Gif-sur-Yvette, France
| | | | - Y Ngono-Ravache
- CIMAP, CEA-CNRS-ENSICAEN-UNICAEN, Normandy University, Cedex 04, 14050, Caen, France
| | - L Desorgher
- Institute of Radiation Physics (IRA), Lausanne University Hospital and University of Lausanne, CH-1007, Lausanne, Switzerland
| | - G Baldacchino
- Université Paris-Saclay, CEA, CNRS, LIDYL, 91191, Gif-sur-Yvette, France.
| |
Collapse
|
5
|
Sakae T, Takada K, Kamizawa S, Terunuma T, Ando K. Formulation of Time-Dependent Cell Survival with Saturable Repairability of Radiation Damage. Radiat Res 2023; 200:139-150. [PMID: 37303133 DOI: 10.1667/rade-21-00066.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/10/2023] [Indexed: 06/13/2023]
Abstract
This study aims to provide a model that compounds historically proposed ideas regarding cell survival irradiated with X rays or particles. The parameters used in this model have simple meanings and are closely related to cell death-related phenomena. The model is adaptable to a wide range of doses and dose rates and thus can consistently explain previously published cell survival data. The formulas of the model were derived by using five basic ideas: 1. "Poisson's law"; 2. "DNA affected damage"; 3. "repair"; 4. "clustered affected damage"; and 5. "saturation of reparability". The concept of affected damage is close to but not the same as the effect caused by the double-strand break (DSB). The parameters used in the formula are related to seven phenomena: 1. "linear coefficient of radiation dose"; 2. "probability of making affected damage"; 3. "cell-specific repairability", 4. "irreparable damage by adjacent affected damage"; 5. "recovery of temporally changed repairability"; 6. "recovery of simple damage which will make the affected damage"; 7. "cell division". By using the second parameter, this model includes cases where a single hit results in repairable-lethal and double-hit results in repairable-lethal. The fitting performance of the model for the experimental data was evaluated based on the Akaike information criterion, and practical results were obtained for the published experiments irradiated with a wide range of doses (up to several 10 Gy) and dose rates (0.17 Gy/h to 55.8 Gy/h). The direct association of parameters with cell death-related phenomena has made it possible to systematically fit survival data of different cell types and different radiation types by using crossover parameters.
Collapse
Affiliation(s)
- Takeji Sakae
- Faculty of Medicine, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
- University of Tsukuba Hospital, Proton Medical Research Center, 2-1-1, Amakubo, Tsukuba, Ibaraki, 305-8576, Japan
| | - Kenta Takada
- Graduate School of Radiology, Gunma Prefectural College of Health Sciences, 323-1 Kamiokimachi, Maebashi, Gunma 371-0052, Japan
| | - Satoshi Kamizawa
- University of Tsukuba Hospital, Proton Medical Research Center, 2-1-1, Amakubo, Tsukuba, Ibaraki, 305-8576, Japan
| | - Toshiyuki Terunuma
- Faculty of Medicine, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
- University of Tsukuba Hospital, Proton Medical Research Center, 2-1-1, Amakubo, Tsukuba, Ibaraki, 305-8576, Japan
| | - Koichi Ando
- Gunma University Heavy Ion Medical Center, 3-39, Showamachi, Maebashi, Gunma 371-0034, Japan
| |
Collapse
|
6
|
Gilbert A, Tudor M, Montanari J, Commenchail K, Savu DI, Lesueur P, Chevalier F. Chondrosarcoma Resistance to Radiation Therapy: Origins and Potential Therapeutic Solutions. Cancers (Basel) 2023; 15:cancers15071962. [PMID: 37046623 PMCID: PMC10093143 DOI: 10.3390/cancers15071962] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Chondrosarcoma is a malignant cartilaginous tumor that is particularly chemoresistant and radioresistant to X-rays. The first line of treatment is surgery, though this is almost impossible in some specific locations. Such resistances can be explained by the particular composition of the tumor, which develops within a dense cartilaginous matrix, producing a resistant area where the oxygen tension is very low. This microenvironment forces the cells to adapt and dedifferentiate into cancer stem cells, which are described to be more resistant to conventional treatments. One of the main avenues considered to treat this type of tumor is hadrontherapy, in particular for its ballistic properties but also its greater biological effectiveness against tumor cells. In this review, we describe the different forms of chondrosarcoma resistance and how hadrontherapy, combined with other treatments involving targeted inhibitors, could help to better treat high-grade chondrosarcoma.
Collapse
|
7
|
Konishi T, Kusumoto T, Hiroyama Y, Kobayashi A, Mamiya T, Kodaira S. Induction of DNA strand breaks and oxidative base damages in plasmid DNA by ultra-high dose rate proton irradiation. Int J Radiat Biol 2023; 99:1405-1412. [PMID: 36731459 DOI: 10.1080/09553002.2023.2176562] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/30/2022] [Accepted: 01/26/2023] [Indexed: 02/04/2023]
Abstract
PURPOSE Radiation cancer therapy with ultra-high dose rate (UHDR) exposure, so-called FLASH radiotherapy, appears to reduce normal tissue damage without compromising tumor response to therapy. The aim of this study was to clarify whether a 59.5 MeV proton beam at an UHDR of 48.6 Gy/s could effectively reduce the DNA damage of pBR322 plasmid DNA in solution compared to the conventional dose rate (CONV) of 0.057 Gy/s. MATERIALS AND METHODS A simple system, consisting of pBR322 plasmid DNA in 1× Tris-EDTA buffer, was initially employed for proton beam exposure. We then used formamidopyrimidine-DNA glycosylase (Fpg) enzymes. which convert oxidative base damages of oxidized purines to DNA strand breaks, to quantify DNA single strand breaks (SSBs) and double strand breaks (DSBs) by agarose gel electrophoresis. RESULTS Our findings showed that the SSB induction rate (SSB per plasmid DNA/Gy) at UHDR and the induction of Fpg enzyme sensitive sites (ESS) were significantly reduced in UHDR compared to CONV. However, there was no significant difference in DSB induction and non-DSB cluster damages. CONCLUSIONS UHDR of a 59.5 MeV proton beam could reduce non-clustered, non-DSB damages, such as SSB and sparsely distributed ESS. However, this effect may not be significant in reducing lethal DNA damage that becomes apparent only in acute radiation effects of mammalian cells and in vivo studies.
Collapse
Affiliation(s)
- Teruaki Konishi
- Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Inageku, Japan
- Graduate School of Health Science, Hirosaki University, Hirosaki City, Japan
- Department of Physics, Rikkyo (St. Paul's) University, Tokyo, Japan
| | - Tamon Kusumoto
- Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Inageku, Japan
| | - Yota Hiroyama
- Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Inageku, Japan
- Graduate School of Health Science, Hirosaki University, Hirosaki City, Japan
| | - Alisa Kobayashi
- Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Inageku, Japan
| | - Taisei Mamiya
- Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Inageku, Japan
- Department of Physics, Rikkyo (St. Paul's) University, Tokyo, Japan
| | - Satoshi Kodaira
- Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Inageku, Japan
| |
Collapse
|
8
|
Chaudhary P, Gwynne DC, Odlozilik B, McMurray A, Milluzzo G, Maiorino C, Doria D, Ahmed H, Romagnani L, Alejo A, Padda H, Green J, Carroll D, Booth N, McKenna P, Kar S, Petringa G, Catalano R, Cammarata FP, Cirrone GAP, McMahon SJ, Prise KM, Borghesi M. Development of a portable hypoxia chamber for ultra-high dose rate laser-driven proton radiobiology applications. Radiat Oncol 2022; 17:77. [PMID: 35428301 PMCID: PMC9013042 DOI: 10.1186/s13014-022-02024-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 03/03/2022] [Indexed: 11/22/2022] Open
Abstract
Background There is currently significant interest in assessing the role of oxygen in the radiobiological effects at ultra-high dose rates. Oxygen modulation is postulated to play a role in the enhanced sparing effect observed in FLASH radiotherapy, where particles are delivered at 40–1000 Gy/s. Furthermore, the development of laser-driven accelerators now enables radiobiology experiments in extreme regimes where dose rates can exceed 109 Gy/s, and predicted oxygen depletion effects on cellular response can be tested. Access to appropriate experimental enviroments, allowing measurements under controlled oxygenation conditions, is a key requirement for these studies. We report on the development and application of a bespoke portable hypoxia chamber specifically designed for experiments employing laser-driven sources, but also suitable for comparator studies under FLASH and conventional irradiation conditions. Materials and methods We used oxygen concentration measurements to test the induction of hypoxia and the maintenance capacity of the chambers. Cellular hypoxia induction was verified using hypoxia inducible factor-1α immunostaining. Calibrated radiochromic films and GEANT-4 simulations verified the dosimetry variations inside and outside the chambers. We irradiated hypoxic human skin fibroblasts (AG01522B) cells with laser-driven protons, conventional protons and reference 225 kVp X-rays to quantify DNA DSB damage and repair under hypoxia. We further measured the oxygen enhancement ratio for cell survival after X-ray exposure in normal fibroblast and radioresistant patient- derived GBM stem cells. Results Oxygen measurements showed that our chambers maintained a radiobiological hypoxic environment for at least 45 min and pathological hypoxia for up to 24 h after disconnecting the chambers from the gas supply. We observed a significant reduction in the 53BP1 foci induced by laser-driven protons, conventional protons and X-rays in the hypoxic cells compared to normoxic cells at 30 min post-irradiation. Under hypoxic irradiations, the Laser-driven protons induced significant residual DNA DSB damage in hypoxic AG01522B cells compared to the conventional dose rate protons suggesting an important impact of these extremely high dose-rate exposures. We obtained an oxygen enhancement ratio (OER) of 2.1 ± 0.1 and 2.5 ± 0.1 respectively for the AG01522B and patient-derived GBM stem cells for X-ray irradiation using our hypoxia chambers. Conclusion We demonstrated the design and application of portable hypoxia chambers for studying cellular radiobiological endpoints after exposure to laser-driven protons at ultra-high dose, conventional protons and X-rays. Suitable levels of reduced oxygen concentration could be maintained in the absence of external gassing to quantify hypoxic effects. The data obtained provided indication of an enhanced residual DNA DSB damage under hypoxic conditions at ultra-high dose rate compared to the conventional protons or X-rays. Supplementary Information The online version contains supplementary material available at 10.1186/s13014-022-02024-3.
Collapse
|
9
|
Ohsawa D, Hiroyama Y, Kobayashi A, Kusumoto T, Kitamura H, Hojo S, Kodaira S, Konishi T. DNA strand break induction of aqueous plasmid DNA exposed to 30 MeV protons at ultra-high dose rate. JOURNAL OF RADIATION RESEARCH 2022; 63:255-260. [PMID: 34952540 PMCID: PMC8944314 DOI: 10.1093/jrr/rrab114] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/22/2021] [Indexed: 06/14/2023]
Abstract
Radiation cancer therapy with ultra-high dose rate exposure, so called FLASH radiotherapy, appears to reduce normal tissue damage without compromising tumor response. The aim of this study was to clarify whether FLASH exposure of proton beam would be effective in reducing the DNA strand break induction. We applied a simple model system, pBR322 plasmid DNA in aqueous 1 × TE solution, where DNA single strand breaks (SSBs) and double strand breaks (DSBs) can be precisely quantified by gel electrophoresis. Plasmid DNA were exposed to 27.5 MeV protons in the conventional dose rate of 0.05 Gy/s (CONV) and ultra-high dose rate of 40 Gy/s (FLASH). With both dose rate, the kinetics of the SSB and DSB induction were proportional to absorbed dose. The SSB induction of FLASH was significantly less than CONV, which were 8.79 ± 0.14 (10-3 SSB per Gy per molecule) and 10.8 ± 0.68 (10-3 SSB per Gy per molecule), respectively. The DSB induction of FLASH was also slightly less than CONV, but difference was not significant. Altogether, 27.5 MeV proton beam at 40 Gy/s reduced SSB and not DSB, thus its effect may not be significant in reducing lethal DNA damage that become apparent in acute radiation effect.
Collapse
Affiliation(s)
- Daisuke Ohsawa
- Single Cell Radiation Biology Group, National Institutes for Quantum Science and Technology; 4-9-1 Anagawa, Inageku, Chiba, 263-8555, Japan
| | - Yota Hiroyama
- Single Cell Radiation Biology Group, National Institutes for Quantum Science and Technology; 4-9-1 Anagawa, Inageku, Chiba, 263-8555, Japan
- Graduate School of Health Sciences, Hirosaki University, 66-1 Hommachi, Hirosaki-shi, Aomori, 036-8564, Japan
| | - Alisa Kobayashi
- Single Cell Radiation Biology Group, National Institutes for Quantum Science and Technology; 4-9-1 Anagawa, Inageku, Chiba, 263-8555, Japan
- Electrostatic Accelerator Operation Section, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inageku, Chiba, 263-8555, Japan
| | - Tamon Kusumoto
- Single Cell Radiation Biology Group, National Institutes for Quantum Science and Technology; 4-9-1 Anagawa, Inageku, Chiba, 263-8555, Japan
- Radiation Measurement Research Group, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inageku, Chiba, 263-8555, Japan
| | - Hisashi Kitamura
- Radiation Measurement Research Group, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inageku, Chiba, 263-8555, Japan
| | - Satoru Hojo
- Cyclotron Operation Section, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inageku, Chiba, 263-8555, Japan
| | - Satoshi Kodaira
- Single Cell Radiation Biology Group, National Institutes for Quantum Science and Technology; 4-9-1 Anagawa, Inageku, Chiba, 263-8555, Japan
- Radiation Measurement Research Group, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inageku, Chiba, 263-8555, Japan
| | - Teruaki Konishi
- Single Cell Radiation Biology Group, National Institutes for Quantum Science and Technology; 4-9-1 Anagawa, Inageku, Chiba, 263-8555, Japan
- Graduate School of Health Sciences, Hirosaki University, 66-1 Hommachi, Hirosaki-shi, Aomori, 036-8564, Japan
| |
Collapse
|
10
|
Suckert T, Nexhipi S, Dietrich A, Koch R, Kunz-Schughart LA, Bahn E, Beyreuther E. Models for Translational Proton Radiobiology-From Bench to Bedside and Back. Cancers (Basel) 2021; 13:4216. [PMID: 34439370 PMCID: PMC8395028 DOI: 10.3390/cancers13164216] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/09/2021] [Accepted: 08/17/2021] [Indexed: 12/25/2022] Open
Abstract
The number of proton therapy centers worldwide are increasing steadily, with more than two million cancer patients treated so far. Despite this development, pending questions on proton radiobiology still call for basic and translational preclinical research. Open issues are the on-going discussion on an energy-dependent varying proton RBE (relative biological effectiveness), a better characterization of normal tissue side effects and combination treatments with drugs originally developed for photon therapy. At the same time, novel possibilities arise, such as radioimmunotherapy, and new proton therapy schemata, such as FLASH irradiation and proton mini-beams. The study of those aspects demands for radiobiological models at different stages along the translational chain, allowing the investigation of mechanisms from the molecular level to whole organisms. Focusing on the challenges and specifics of proton research, this review summarizes the different available models, ranging from in vitro systems to animal studies of increasing complexity as well as complementing in silico approaches.
Collapse
Affiliation(s)
- Theresa Suckert
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany; (T.S.); (S.N.); (A.D.); (L.A.K.-S.)
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Sindi Nexhipi
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany; (T.S.); (S.N.); (A.D.); (L.A.K.-S.)
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, 01309 Dresden, Germany
| | - Antje Dietrich
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany; (T.S.); (S.N.); (A.D.); (L.A.K.-S.)
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Robin Koch
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany; (R.K.); (E.B.)
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Leoni A. Kunz-Schughart
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany; (T.S.); (S.N.); (A.D.); (L.A.K.-S.)
- National Center for Tumor Diseases (NCT), Partner Site Dresden, 01307 Dresden, Germany
| | - Emanuel Bahn
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany; (R.K.); (E.B.)
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
- German Cancer Research Center (DKFZ), Clinical Cooperation Unit Radiation Oncology, 69120 Heidelberg, Germany
| | - Elke Beyreuther
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany; (T.S.); (S.N.); (A.D.); (L.A.K.-S.)
- Helmholtz-Zentrum Dresden—Rossendorf, Institute of Radiation Physics, 01328 Dresden, Germany
| |
Collapse
|
11
|
Chan CC, Chen FH, Hsiao YY. Impact of Hypoxia on Relative Biological Effectiveness and Oxygen Enhancement Ratio for a 62-MeV Therapeutic Proton Beam. Cancers (Basel) 2021; 13:2997. [PMID: 34203882 PMCID: PMC8232608 DOI: 10.3390/cancers13122997] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 01/11/2023] Open
Abstract
This study uses the yields of double-strand breaks (DSBs) to determine the relative biological effectiveness (RBE) of proton beams, using cell survival as a biological endpoint. DSB induction is determined when cells locate at different depths (6 positions) along the track of 62 MeV proton beams. The DNA damage yields are estimated using Monte Carlo Damage Simulation (MCDS) software. The repair outcomes are estimated using Monte Carlo excision repair (MCER) simulations. The RBE for cell survival at different oxygen concentrations is calculated using the repair-misrepair-fixation (RMF) model. Using 60Co γ-rays (linear energy transfer (LET) = 2.4 keV/μm) as the reference radiation, the RBE for DSB induction and enzymatic DSB under aerobic condition (21% O2) are in the range 1.0-1.5 and 1.0-1.6 along the track depth, respectively. In accord with RBE obtained from experimental data, RMF model-derived RBE values for cell survival are in the range of 1.0-3.0. The oxygen enhancement ratio (OER) for cell survival (10%) decreases from 3.0 to 2.5 as LET increases from 1.1 to 22.6 keV/μm. The RBE values for severe hypoxia (0.1% O2) are in the range of 1.1-4.4 as LET increases, indicating greater contributions of direct effects for protons. Compared with photon therapy, the overall effect of 62 MeV proton beams results in greater cell death and is further intensified under hypoxic conditions.
Collapse
Affiliation(s)
- Chun-Chieh Chan
- Department of Electrical Engineering, National Chung Hsing University, Taichung 40227, Taiwan;
| | - Fang-Hsin Chen
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan 33302, Taiwan;
- Radiation Biology Research Center, Institute for Radiological Research, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Radiation Oncology, Chang Gung Memorial Hospital—Linkou Branch, Taoyuan 33305, Taiwan
| | - Ya-Yun Hsiao
- Department of Radiology, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
- Department of Medical Imaging and Radiological Sciences, Chung Shan Medical University, Taichung 40201, Taiwan
| |
Collapse
|
12
|
Thariat J, Valable S, Laurent C, Haghdoost S, Pérès EA, Bernaudin M, Sichel F, Lesueur P, Césaire M, Petit E, Ferré AE, Saintigny Y, Skog S, Tudor M, Gérard M, Thureau S, Habrand JL, Balosso J, Chevalier F. Hadrontherapy Interactions in Molecular and Cellular Biology. Int J Mol Sci 2019; 21:E133. [PMID: 31878191 PMCID: PMC6981652 DOI: 10.3390/ijms21010133] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/17/2019] [Accepted: 12/20/2019] [Indexed: 02/06/2023] Open
Abstract
The resistance of cancer cells to radiotherapy is a major issue in the curative treatment of cancer patients. This resistance can be intrinsic or acquired after irradiation and has various definitions, depending on the endpoint that is chosen in assessing the response to radiation. This phenomenon might be strengthened by the radiosensitivity of surrounding healthy tissues. Sensitive organs near the tumor that is to be treated can be affected by direct irradiation or experience nontargeted reactions, leading to early or late effects that disrupt the quality of life of patients. For several decades, new modalities of irradiation that involve accelerated particles have been available, such as proton therapy and carbon therapy, raising the possibility of specifically targeting the tumor volume. The goal of this review is to examine the up-to-date radiobiological and clinical aspects of hadrontherapy, a discipline that is maturing, with promising applications. We first describe the physical and biological advantages of particles and their application in cancer treatment. The contribution of the microenvironment and surrounding healthy tissues to tumor radioresistance is then discussed, in relation to imaging and accurate visualization of potentially resistant hypoxic areas using dedicated markers, to identify patients and tumors that could benefit from hadrontherapy over conventional irradiation. Finally, we consider combined treatment strategies to improve the particle therapy of radioresistant cancers.
Collapse
Affiliation(s)
- Juliette Thariat
- Department of Radiation Oncology, Centre François Baclesse, 14000 Caen, France; (J.T.); (P.L.); (M.C.); (M.G.); (J.-L.H.); (J.B.)
- Laboratoire de Physique Corpusculaire IN2P3/ENSICAEN-UMR6534-Unicaen-Normandie Université, 14000 Caen, France;
- ARCHADE Research Community, 14000 Caen, France; (S.V.); (C.L.); (S.H.); (E.A.P.); (M.B.); (F.S.); (E.P.); (A.E.F.); (Y.S.)
| | - Samuel Valable
- ARCHADE Research Community, 14000 Caen, France; (S.V.); (C.L.); (S.H.); (E.A.P.); (M.B.); (F.S.); (E.P.); (A.E.F.); (Y.S.)
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, GIP CYCERON, 14000 Caen, France
| | - Carine Laurent
- ARCHADE Research Community, 14000 Caen, France; (S.V.); (C.L.); (S.H.); (E.A.P.); (M.B.); (F.S.); (E.P.); (A.E.F.); (Y.S.)
- Normandie Univ, UNICAEN, UNIROUEN, ABTE, 14000 Caen, France
| | - Siamak Haghdoost
- ARCHADE Research Community, 14000 Caen, France; (S.V.); (C.L.); (S.H.); (E.A.P.); (M.B.); (F.S.); (E.P.); (A.E.F.); (Y.S.)
- LARIA, iRCM, François Jacob Institute, DRF-CEA, 14000 Caen, France
- UMR6252 CIMAP, CEA-CNRS-ENSICAEN-Université de Caen Normandie, 14000 Caen, France;
| | - Elodie A. Pérès
- ARCHADE Research Community, 14000 Caen, France; (S.V.); (C.L.); (S.H.); (E.A.P.); (M.B.); (F.S.); (E.P.); (A.E.F.); (Y.S.)
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, GIP CYCERON, 14000 Caen, France
| | - Myriam Bernaudin
- ARCHADE Research Community, 14000 Caen, France; (S.V.); (C.L.); (S.H.); (E.A.P.); (M.B.); (F.S.); (E.P.); (A.E.F.); (Y.S.)
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, GIP CYCERON, 14000 Caen, France
| | - François Sichel
- ARCHADE Research Community, 14000 Caen, France; (S.V.); (C.L.); (S.H.); (E.A.P.); (M.B.); (F.S.); (E.P.); (A.E.F.); (Y.S.)
- Normandie Univ, UNICAEN, UNIROUEN, ABTE, 14000 Caen, France
| | - Paul Lesueur
- Department of Radiation Oncology, Centre François Baclesse, 14000 Caen, France; (J.T.); (P.L.); (M.C.); (M.G.); (J.-L.H.); (J.B.)
- ARCHADE Research Community, 14000 Caen, France; (S.V.); (C.L.); (S.H.); (E.A.P.); (M.B.); (F.S.); (E.P.); (A.E.F.); (Y.S.)
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, GIP CYCERON, 14000 Caen, France
| | - Mathieu Césaire
- Department of Radiation Oncology, Centre François Baclesse, 14000 Caen, France; (J.T.); (P.L.); (M.C.); (M.G.); (J.-L.H.); (J.B.)
- ARCHADE Research Community, 14000 Caen, France; (S.V.); (C.L.); (S.H.); (E.A.P.); (M.B.); (F.S.); (E.P.); (A.E.F.); (Y.S.)
| | - Edwige Petit
- ARCHADE Research Community, 14000 Caen, France; (S.V.); (C.L.); (S.H.); (E.A.P.); (M.B.); (F.S.); (E.P.); (A.E.F.); (Y.S.)
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, GIP CYCERON, 14000 Caen, France
| | - Aurélie E. Ferré
- ARCHADE Research Community, 14000 Caen, France; (S.V.); (C.L.); (S.H.); (E.A.P.); (M.B.); (F.S.); (E.P.); (A.E.F.); (Y.S.)
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, GIP CYCERON, 14000 Caen, France
| | - Yannick Saintigny
- ARCHADE Research Community, 14000 Caen, France; (S.V.); (C.L.); (S.H.); (E.A.P.); (M.B.); (F.S.); (E.P.); (A.E.F.); (Y.S.)
- LARIA, iRCM, François Jacob Institute, DRF-CEA, 14000 Caen, France
- UMR6252 CIMAP, CEA-CNRS-ENSICAEN-Université de Caen Normandie, 14000 Caen, France;
| | - Sven Skog
- Sino-Swed Molecular Bio-Medicine Research Institute, Shenzhen 518057, China;
| | - Mihaela Tudor
- UMR6252 CIMAP, CEA-CNRS-ENSICAEN-Université de Caen Normandie, 14000 Caen, France;
- Department of Life and Environmental Physics, Horia Hulubei National Institute of Physics and Nuclear Engineering, PO Box MG-63, 077125 Magurele, Romania
- Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, R-050095 Bucharest, Romania
| | - Michael Gérard
- Department of Radiation Oncology, Centre François Baclesse, 14000 Caen, France; (J.T.); (P.L.); (M.C.); (M.G.); (J.-L.H.); (J.B.)
- ARCHADE Research Community, 14000 Caen, France; (S.V.); (C.L.); (S.H.); (E.A.P.); (M.B.); (F.S.); (E.P.); (A.E.F.); (Y.S.)
| | - Sebastien Thureau
- Laboratoire de Physique Corpusculaire IN2P3/ENSICAEN-UMR6534-Unicaen-Normandie Université, 14000 Caen, France;
- Department of Radiation Oncology, Centre Henri Becquerel, 76000 Rouen, France
| | - Jean-Louis Habrand
- Department of Radiation Oncology, Centre François Baclesse, 14000 Caen, France; (J.T.); (P.L.); (M.C.); (M.G.); (J.-L.H.); (J.B.)
- ARCHADE Research Community, 14000 Caen, France; (S.V.); (C.L.); (S.H.); (E.A.P.); (M.B.); (F.S.); (E.P.); (A.E.F.); (Y.S.)
- Normandie Univ, UNICAEN, UNIROUEN, ABTE, 14000 Caen, France
| | - Jacques Balosso
- Department of Radiation Oncology, Centre François Baclesse, 14000 Caen, France; (J.T.); (P.L.); (M.C.); (M.G.); (J.-L.H.); (J.B.)
- ARCHADE Research Community, 14000 Caen, France; (S.V.); (C.L.); (S.H.); (E.A.P.); (M.B.); (F.S.); (E.P.); (A.E.F.); (Y.S.)
| | - François Chevalier
- ARCHADE Research Community, 14000 Caen, France; (S.V.); (C.L.); (S.H.); (E.A.P.); (M.B.); (F.S.); (E.P.); (A.E.F.); (Y.S.)
- LARIA, iRCM, François Jacob Institute, DRF-CEA, 14000 Caen, France
- UMR6252 CIMAP, CEA-CNRS-ENSICAEN-Université de Caen Normandie, 14000 Caen, France;
| |
Collapse
|
13
|
Clausen M, Khachonkham S, Gruber S, Kuess P, Seemann R, Knäusl B, Mara E, Palmans H, Dörr W, Georg D. Phantom design and dosimetric characterization for multiple simultaneous cell irradiations with active pencil beam scanning. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2019; 58:563-573. [PMID: 31541343 PMCID: PMC6768893 DOI: 10.1007/s00411-019-00813-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 09/09/2019] [Indexed: 05/04/2023]
Abstract
A new phantom was designed for in vitro studies on cell lines in horizontal particle beams. The phantom enables simultaneous irradiation at multiple positions along the beam path. The main purpose of this study was the detailed dosimetric characterization of the phantom which consists of various heterogeneous structures. The dosimetric measurements described here were performed under non-reference conditions. The experiment involved a CT scan of the phantom, dose calculations performed with the treatment planning system (TPS) RayStation employing both the Pencil Beam (PB) and Monte Carlo (MC) algorithms, and proton beam delivery. Two treatment plans reflecting the typical target location for head and neck cancer and prostate cancer treatment were created. Absorbed dose to water and dose homogeneity were experimentally assessed within the phantom along the Bragg curve with ionization chambers (ICs) and EBT3 films. LETd distributions were obtained from the TPS. Measured depth dose distributions were in good agreement with the Monte Carlo-based TPS data. Absorbed dose calculated with the PB algorithm was 4% higher than the absorbed dose measured with ICs at the deepest measurement point along the spread-out Bragg peak. Results of experiments using melanoma (SKMel) cell line are also presented. The study suggested a pronounced correlation between the relative biological effectiveness (RBE) and LETd, where higher LETd leads to elevated cell death and cell inactivation. Obtained RBE values ranged from 1.4 to 1.8 at the survival level of 10% (RBE10). It is concluded that dosimetric characterization of a phantom before its use for RBE experiments is essential, since a high dosimetric accuracy contributes to reliable RBE data and allows for a clearer differentiation between physical and biological uncertainties.
Collapse
Affiliation(s)
- Monika Clausen
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria.
| | - Suphalak Khachonkham
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- Division of Radiation Therapy, Department of Diagnostic and Therapeutic Radiology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Sylvia Gruber
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
| | - Peter Kuess
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- EBG MedAustron GmbH, Wiener Neustadt, Austria
| | | | - Barbara Knäusl
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- EBG MedAustron GmbH, Wiener Neustadt, Austria
| | - Elisabeth Mara
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- University of Applied Science, Wiener Neustadt, Austria
| | - Hugo Palmans
- EBG MedAustron GmbH, Wiener Neustadt, Austria
- National Physical Laboratory, Teddington, UK
| | - Wolfgang Dörr
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
| | - Dietmar Georg
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- EBG MedAustron GmbH, Wiener Neustadt, Austria
| |
Collapse
|
14
|
Abstract
In 2012, cancer affected 14.1 million people worldwide and was responsible for 8.2 million deaths. The disease predominantly affects aged populations and is one of the leading causes of death in most western countries. In tumors, the aggressive growth of the neoplastic cell population and associated overexpression of pro-angiogenic factors lead to the development of disorganized blood vessel networks that are structurally and functionally different from normal vasculature. A disorganized labyrinth of vessels that are immature, tortuous and hyperpermeable typifies tumor vasculature. Functionally, the ability of the tumor vasculature to deliver nutrients and remove waste products is severely diminished. A critical consequence of the inadequate vascular networks in solid tumors is the development of regions of hypoxia [low oxygen tensions typically defined as oxygen tensions (pO2 values) < 10 mm Hg]. Tumor cells existing in such hypoxic environments have long been known to be resistant to anticancer therapy, display an aggressive phenotype, and promote tumor progression and dissemination. This review discusses the physiological basis of hypoxia, methods of detection, and strategies to overcome the resulting therapy resistance.
Collapse
Affiliation(s)
- Veronica S Hughes
- 1 Department of Radiation Oncology, University of Florida, Cancer Genetic Research Complex , Gainesville, FL , USA
| | - Jennifer M Wiggins
- 1 Department of Radiation Oncology, University of Florida, Cancer Genetic Research Complex , Gainesville, FL , USA
| | - Dietmar W Siemann
- 1 Department of Radiation Oncology, University of Florida, Cancer Genetic Research Complex , Gainesville, FL , USA
| |
Collapse
|
15
|
Hojo H, Dohmae T, Hotta K, Kohno R, Motegi A, Yagishita A, Makinoshima H, Tsuchihara K, Akimoto T. Difference in the relative biological effectiveness and DNA damage repair processes in response to proton beam therapy according to the positions of the spread out Bragg peak. Radiat Oncol 2017; 12:111. [PMID: 28673358 PMCID: PMC5494883 DOI: 10.1186/s13014-017-0849-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 06/28/2017] [Indexed: 12/25/2022] Open
Abstract
Background Cellular responses to proton beam irradiation are not yet clearly understood, especially differences in the relative biological effectiveness (RBE) of high-energy proton beams depending on the position on the Spread-Out Bragg Peak (SOBP). Towards this end, we investigated the differences in the biological effect of a high-energy proton beam on the target cells placed at different positions on the SOBP, using two human esophageal cancer cell lines with differing radiosensitivities. Methods Two human esophageal cancer cell lines (OE21, KYSE450) with different radiosensitivities were irradiated with a 235-MeV proton beam at 4 different positions on the SOBP (position #1: At entry; position #2: At the proximal end of the SOBP; position #3: Center of the SOBP; position #4: At the distal end of the SOBP), and the cell survivals were assessed by the clonogenic assay. The RBE10 for each position of the target cell lines on the SOBP was determined based on the results of the cell survival assay conducted after photon beam irradiation. In addition, the number of DNA double-strand breaks was estimated by quantitating the number of phospho-histone H2AX (γH2AX) foci formed in the nuclei by immunofluorescence analysis. Results In regard to differences in the RBE of a proton beam according to the position on the SOBP, the RBE value tended to increase as the position on the SOBP moved distally. Comparison of the residual number of γH2AX foci at the end 24 h after the irradiation revealed, for both cell lines, a higher number of foci in the cells irradiated at the distal end of the SOPB than in those irradiated at the proximal end or center of the SOBP. Conclusions The results of this study demonstrate that the RBE of a high-energy proton beam and the cellular responses, including the DNA damage repair processes, to high-energy proton beam irradiation, differ according to the position on the SOBP, irrespective of the radiosensitivity levels of the cell lines. Electronic supplementary material The online version of this article (doi:10.1186/s13014-017-0849-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hidehiro Hojo
- Division of Radiation Oncology and Particle Therapy, National Cancer Center Hospital East, 6-5-1, Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan.
| | - Takeshi Dohmae
- High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki, 305-0801, Japan
| | - Kenji Hotta
- Division of Radiation Oncology and Particle Therapy, National Cancer Center Hospital East, 6-5-1, Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
| | - Ryosuke Kohno
- Department of Radiation Physics, The University of Texas M.D. Anderson Cancer Center, 1840 Old Spanish Trail, Houston, TX, 77054, USA
| | - Atsushi Motegi
- Division of Radiation Oncology and Particle Therapy, National Cancer Center Hospital East, 6-5-1, Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
| | - Atsushi Yagishita
- Division of Translational Research, EPOC, National Cancer Center, 6-5-1, Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
| | - Hideki Makinoshima
- Division of Translational Research, EPOC, National Cancer Center, 6-5-1, Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
| | - Katsuya Tsuchihara
- Division of Translational Research, EPOC, National Cancer Center, 6-5-1, Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
| | - Tetsuo Akimoto
- Division of Radiation Oncology and Particle Therapy, National Cancer Center Hospital East, 6-5-1, Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
| |
Collapse
|
16
|
Iwata H, Ogino H, Hashimoto S, Yamada M, Shibata H, Yasui K, Toshito T, Omachi C, Tatekawa K, Manabe Y, Mizoe JE, Shibamoto Y. Spot Scanning and Passive Scattering Proton Therapy: Relative Biological Effectiveness and Oxygen Enhancement Ratio in Cultured Cells. Int J Radiat Oncol Biol Phys 2016; 95:95-102. [PMID: 27084632 DOI: 10.1016/j.ijrobp.2016.01.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 12/16/2015] [Accepted: 01/11/2016] [Indexed: 11/28/2022]
Abstract
PURPOSE To determine the relative biological effectiveness (RBE), oxygen enhancement ratio (OER), and contribution of the indirect effect of spot scanning proton beams, passive scattering proton beams, or both in cultured cells in comparison with clinically used photons. METHODS AND MATERIALS The RBE of passive scattering proton beams at the center of the spread-out Bragg peak (SOBP) was determined from dose-survival curves in 4 cell lines using 6-MV X rays as controls. Survival of 2 cell lines after spot scanning and passive scattering proton irradiation was then compared. Biological effects at the distal end region of the SOBP were also investigated. The OER of passive scattering proton beams and 6 MX X rays were investigated in 2 cell lines. The RBE and OER values were estimated at a 10% cell survival level. The maximum degree of protection of radiation effects by dimethyl sulfoxide was determined to estimate the contribution of the indirect effect against DNA damage. All experiments comparing protons and X rays were made under the same biological conditions. RESULTS The RBE values of passive scattering proton beams in the 4 cell lines examined were 1.01 to 1.22 (average, 1.14) and were almost identical to those of spot scanning beams. Biological effects increased at the distal end of the SOBP. In the 2 cell lines examined, the OER was 2.74 (95% confidence interval, 2.56-2.80) and 3.08 (2.84-3.11), respectively, for X rays, and 2.39 (2.38-2.43) and 2.72 (2.69-2.75), respectively, for protons (P<.05 for both cells between X rays and protons). The maximum degree of protection was significantly higher for X rays than for proton beams (P<.05). CONCLUSIONS The RBE values of spot scanning and passive scattering proton beams were almost identical. The OER was lower for protons than for X rays. The lower contribution of the indirect effect may partly account for the lower OER of protons.
Collapse
Affiliation(s)
- Hiromitsu Iwata
- Department of Radiation Oncology, Nagoya Proton Therapy Center, Nagoya City West Medical Center, Nagoya, Japan; Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan.
| | - Hiroyuki Ogino
- Department of Radiation Oncology, Nagoya Proton Therapy Center, Nagoya City West Medical Center, Nagoya, Japan
| | - Shingo Hashimoto
- Department of Radiation Oncology, Nagoya Proton Therapy Center, Nagoya City West Medical Center, Nagoya, Japan; Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Maho Yamada
- Department of Radiation Oncology, Nagoya City West Medical Center, Nagoya, Japan
| | - Hiroki Shibata
- Department of Proton Therapy Technology, Nagoya Proton Therapy Center, Nagoya, Japan
| | - Keisuke Yasui
- Department of Proton Therapy Technology, Nagoya Proton Therapy Center, Nagoya, Japan
| | - Toshiyuki Toshito
- Department of Proton Therapy Physics, Nagoya Proton Therapy Center, Nagoya, Japan
| | - Chihiro Omachi
- Department of Proton Therapy Physics, Nagoya Proton Therapy Center, Nagoya, Japan
| | - Kotoha Tatekawa
- Department of Radiology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yoshihiko Manabe
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Jun-Etsu Mizoe
- Department of Radiation Oncology, Nagoya Proton Therapy Center, Nagoya City West Medical Center, Nagoya, Japan
| | - Yuta Shibamoto
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
17
|
Takizawa D, Oshiro Y, Mizumoto M, Fukushima H, Fukushima T, Sakurai H. Proton beam therapy for a patient with large rhabdomyosarcoma of the body trunk. Ital J Pediatr 2015; 41:90. [PMID: 26573272 PMCID: PMC4647646 DOI: 10.1186/s13052-015-0200-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 11/08/2015] [Indexed: 12/12/2022] Open
Abstract
Background We present the clinical course of a pediatric patient with large rhabdomyosarcoma of the body trunk who received proton beam therapy (PBT). Case presentation A 1-year-old girl was diagnosed with stage IV alveolar rhabdomyosarcoma in 2008. A large tumor was located in the central diaphragm and had infiltrated the liver and pericardium with peritoneal dissemination. Chemotherapy was immediately started with six courses of vincristine, actinomycin-D and cyclophosphamide (VAC) firstly, and secondly followed by 2 courses of ifosfamide, carboplatin and etoposide (ICE), but a large tumor of 15 cm in size remained. The tumor was inoperable because of its location, and photon radiotherapy could not be performed due to limited liver tolerance. The patient was referred to our hospital and received PBT at a dose of 54 GyE in 30 fractions in June 2009. The tumor quickly responded and 95 % of volume reduction was achieved at the end of PBT. However, marginal recurrence in the caudal part of the irradiated field, where we reduced the proton dose because of the presence of the intestine, was detected in August 2010. The recurrent tumor size was less than 1 cm. Chemotherapy with VAC followed by topotecan and carboplatin (TC) was again tried, but the tumor size was stable. Repeated PBT was not possible because of limited intestinal tolerance; therefore, intraoperative radiotherapy was conducted with 20 Gy of electron beams in April 2011. The tumor was subsequently well controlled, but secondary myelodysplastic syndrome developed and the patient died of hemophagocytic syndrome after umbilical cord blood transplantation in May 2012. Conclusion PBT was performed safely and effectively for a 1-year-old girl with alveolar rhabdomyosarcoma with liver and cardiac invasion that was resistant to surgery and chemotherapy. This case illustrates that PBT can be useful in cases that are difficult to treat with conventional radiotherapy.
Collapse
Affiliation(s)
- Daichi Takizawa
- Departments of Radiation Oncology1 and Child Health3, University of Tsukuba, Ibaraki, Japan. .,Proton Medical Research Center, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8575, Japan.
| | - Yoshiko Oshiro
- Departments of Radiation Oncology1 and Child Health3, University of Tsukuba, Ibaraki, Japan. .,Department of Radiation Oncology, Tsukuba Medical Center Hospital, Ibaraki, Japan.
| | - Masashi Mizumoto
- Departments of Radiation Oncology1 and Child Health3, University of Tsukuba, Ibaraki, Japan. .,Proton Medical Research Center, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8575, Japan.
| | - Hiroko Fukushima
- Departments of Child Health, University of Tsukuba and Proton Medical Research Center, Ibaraki, Japan.
| | - Takashi Fukushima
- Departments of Child Health, University of Tsukuba and Proton Medical Research Center, Ibaraki, Japan.
| | - Hideyuki Sakurai
- Departments of Radiation Oncology1 and Child Health3, University of Tsukuba, Ibaraki, Japan. .,Proton Medical Research Center, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8575, Japan.
| |
Collapse
|
18
|
Qutub MAZ, Klein SB, Buchsbaum JC. Rapid RBE-Weighted Proton Radiation Dosimetry Risk Assessment. Technol Cancer Res Treat 2015; 15:NP1-7. [PMID: 26283051 DOI: 10.1177/1533034615599313] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 07/01/2015] [Indexed: 11/17/2022] Open
Abstract
Proton therapy dose is affected by relative biological effectiveness differently than X-ray therapies. The current clinically accepted weighting factor is 1.1 at all positions along the depth-dose profile. However, the relative biological effectiveness correlates with the linear energy transfer, cell or tissue type, and the dose per fraction causing variation of relative biological effectiveness along the depth-dose profile. In this article, we present a simple relative biological effectiveness-weighted treatment planning risk assessment algorithm in 2-dimensions and compare the results with those derived using the standard relative biological effectiveness of 1.1. The isodose distribution profiles for beams were accomplished using matrices that represent coplanar intersecting beams. These matrices were combined and contoured using MATLAB to achieve the distribution of dose. There are some important differences in dose distribution between the dose profiles resulting from the use of relative biological effectiveness = 1.1 and the empirically derived depth-dependent values of relative biological effectiveness. Significant hot spots of up to twice the intended dose are indicated in some beam configurations. This simple and rapid risk analysis could quickly evaluate the safety of various dose delivery schema.
Collapse
Affiliation(s)
- Mohammad A Z Qutub
- Department of Physics, Indiana University School of Arts and Sciences, Indianapolis, IN, USA
| | - Susan B Klein
- Department of Physics, Indiana University School of Arts and Sciences, Indianapolis, IN, USA
| | - Jeffrey C Buchsbaum
- Department of Physics, Indiana University School of Arts and Sciences, Indianapolis, IN, USA Departments of Radiation Oncology, Pediatrics, and Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
19
|
Paganetti H. Relative biological effectiveness (RBE) values for proton beam therapy. Variations as a function of biological endpoint, dose, and linear energy transfer. Phys Med Biol 2014; 59:R419-72. [PMID: 25361443 DOI: 10.1088/0031-9155/59/22/r419] [Citation(s) in RCA: 657] [Impact Index Per Article: 59.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Proton therapy treatments are based on a proton RBE (relative biological effectiveness) relative to high-energy photons of 1.1. The use of this generic, spatially invariant RBE within tumors and normal tissues disregards the evidence that proton RBE varies with linear energy transfer (LET), physiological and biological factors, and clinical endpoint. Based on the available experimental data from published literature, this review analyzes relationships of RBE with dose, biological endpoint and physical properties of proton beams. The review distinguishes between endpoints relevant for tumor control probability and those potentially relevant for normal tissue complication. Numerous endpoints and experiments on sub-cellular damage and repair effects are discussed. Despite the large amount of data, considerable uncertainties in proton RBE values remain. As an average RBE for cell survival in the center of a typical spread-out Bragg peak (SOBP), the data support a value of ~1.15 at 2 Gy/fraction. The proton RBE increases with increasing LETd and thus with depth in an SOBP from ~1.1 in the entrance region, to ~1.15 in the center, ~1.35 at the distal edge and ~1.7 in the distal fall-off (when averaged over all cell lines, which may not be clinically representative). For small modulation widths the values could be increased. Furthermore, there is a trend of an increase in RBE as (α/β)x decreases. In most cases the RBE also increases with decreasing dose, specifically for systems with low (α/β)x. Data on RBE for endpoints other than clonogenic cell survival are too diverse to allow general statements other than that the RBE is, on average, in line with a value of ~1.1. This review can serve as a source for defining input parameters for applying or refining biophysical models and to identify endpoints where additional radiobiological data are needed in order to reduce the uncertainties to clinically acceptable levels.
Collapse
Affiliation(s)
- Harald Paganetti
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, 30 Fruit Street, Boston, MA 02114, USA
| |
Collapse
|