1
|
Sforza D, Bunz F, Wong J, Miles D, Adhikary A, Rezaee M. Effect of Ultrahigh Dose Rate on Biomolecular Radiation Damage. Radiat Res 2024; 202:825-836. [PMID: 39405451 PMCID: PMC11624112 DOI: 10.1667/rade-24-00100.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 10/04/2024] [Indexed: 10/25/2024]
Abstract
Dose rate is one of the important parameters in radiation-induced biomolecular damage. The effects of dose rate have been known to modify radiation toxicity in biological systems. The rate and extent of sublethal DNA damage (e.g., base damage and single-strand breaks) repair and those of cell proliferation have been manifested by dose rate. However, the recent preclinical application of ultrahigh dose rate [(UHDR) ca. 40 Gy/s and higher] radiation modalities have been shown to lower the type and extent of radiation damage to biological systems. At these UHDR, radiation-induced physicochemical and chemical processes are expected to differ from those observed after irradiation at conventional dose rates (CONV). It is unclear whether these UHDR conditions can affect the quality (type) and quantity (extent) of biomolecular damage such as DNA lesions. Here, we comparatively study the influence of indirect effects of CONV and UHDR on the formation of DNA strand breaks and clustered damage including densely accumulated lesions in an aerated and an anoxic dilute aqueous solution of a plasmid DNA model under low and high hydroxyl radical (•OH) scavenging conditions. Aqueous solutions of purified supercoiled plasmid DNA (pUC19) were prepared in either air- or nitrogen-saturated conditions, with Tris buffer added as the radiation-produced •OH scavenger at low and high scavenging capacities. These DNA samples were irradiated using kV X-ray systems at CONV (0.1 Gy/s) and high dose rate (HDR, 25 Gy/s) as well as UHDR (55 and 125 Gy/s) under different scavenging and environmental conditions. DNA lesions including strand breaks and clustered damage including densely accumulated lesions were quantified by gel electrophoresis and the yields of these lesions were calculated from the dose-response curve. Non-DSB clustered damage including densely accumulated lesions were evaluated by treating DNAs using bacterial endonuclease enzymes (Fpg and Nth) prior to gel electrophoresis. UHDR of 55 and 125 Gy/s induced lower amounts of both isolated strand breaks and clustered DNA damage including densely accumulated lesions at doses >40 Gy in the presence of oxygen, compared to the abundance of these lesions induced by 0.1 and 25 Gy/s irradiation under the same dose conditions. Overall, the strand break and clustered damage including densely accumulated lesions yields decreased by factors of 1.3-3.5 after UHDR. We did not observe these differences either via •OH scavenging or by removing oxygen from the solution. In addition, our results point out that the inter-track recombination reactions did not contribute to the observed dose-rate effects on DNA damage. The effects of dose rate on DNA damage are highly dependent on the total dose, as expected, but also on the •OH scavenging capacity that is employed in the aqueous DNA solutions. These important variables may be relevant in biological systems as well. On a practical level, our in vitro plasmid DNA model, which permits to precisely vary the •OH scavenging capacity and gassing conditions (air saturated vs. N2 saturated) can help to differentiate dose-rate effects on biomolecular damage. Our results indicate that the radical-radical reactions are important in understanding the dose-rate effect on DNA damage.
Collapse
Affiliation(s)
- Daniel Sforza
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Fred Bunz
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD 21231, USA
| | - John Wong
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Devin Miles
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Amitava Adhikary
- Department of Chemistry, 146 Library Drive, Oakland University, Rochester, MI 48309, USA
| | - Mohammad Rezaee
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD 21231, USA
| |
Collapse
|
2
|
Yu C, Geng C, Tang X. Assessing the biological effects of boron neutron capture therapy through cellular DNA damage repair model. Med Phys 2024; 51:9372-9384. [PMID: 39387644 DOI: 10.1002/mp.17446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/27/2024] [Accepted: 09/19/2024] [Indexed: 10/15/2024] Open
Abstract
BACKGROUND Boron neutron capture therapy (BNCT) is a targeted radiotherapy that relies on the 10B (n, α) 7Li reaction, which produces secondary particles with high linear energy transfer (LET), leading to a high relative biological effectiveness (RBE) in tumors. The biological effectiveness of BNCT is influenced by factors such as boron distribution and concentration, necessitating improved methods for assessing its radiobiological effects and clarifying the sensitivity of the differences in different factors to the biological effects. PURPOSE This paper introduces a method to evaluate the biological effects of BNCT using the cellular repair model. This method aims to overcome some of the limitations of current evaluation approaches. The primary goal is to provide guidance for clinical treatments and the development of boron drugs, as well as to investigate the impact of the synergistic effects of mixed radiation fields in BNCT on treatment outcomes. METHODS The approach involves three key steps: first, extending the radial energy deposition distribution of BNCT secondary particles using Geant4-DNA. This allows for the calculation of initial DNA double-strand breaks (DSBs) distributions for a given absorbed dose. Next, the obtained initial DSB distributions are used for DNA damage repair simulations to generate cell survival curves, then thereby quantifying RBE and compound biological effectiveness (CBE). The study also explores the synergistic effects of the mixed radiation fields in BNCT on assessing biological effects were also explored in depth. RESULTS The results showed that the RBE of boronophenylalanine (BPA) and sodium borocaptate (BSH) drugs at cell survival fraction 0.01 was 2.50 and 2.15, respectively. The CBE of the boron dose component was 3.60 and 0.73, respectively, and the RBE of the proton component was 3.21, demonstrating that BPA has a significantly higher biological impact than BSH due to superior cellular permeability. The proton dose significance in BNCT treatment is also underscored, necessitating consideration in both experimental and clinical contexts. The study demonstrates that synergistic effects between disparate radiation fields lead to increased misrepairs and enhanced biological impact. Additionally, the biological effect diminishes with rising boron concentration, emphasizing the need to account for intercellular DNA damage heterogeneity. CONCLUSIONS This methodology offers valuable insights for the development of new boron compounds and precise assessment of bio-weighted doses in clinical settings and can be adapted to other therapeutic modalities.
Collapse
Affiliation(s)
- Chenxi Yu
- Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, People's Republic of China
| | - Changran Geng
- Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, People's Republic of China
- Key Laboratory of Nuclear Technology Application and Radiation Protection in Aerospace, Nanjing University of Aeronautics and Astronautics, Ministry of Industry and Information Technology, Nanjing, People's Republic of China
- Joint International Research Laboratory on Advanced Particle Therapy, Nanjing University of Aeronautics and Astronautics, Nanjing, People's Republic of China
| | - Xiaobin Tang
- Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, People's Republic of China
- Key Laboratory of Nuclear Technology Application and Radiation Protection in Aerospace, Nanjing University of Aeronautics and Astronautics, Ministry of Industry and Information Technology, Nanjing, People's Republic of China
- Joint International Research Laboratory on Advanced Particle Therapy, Nanjing University of Aeronautics and Astronautics, Nanjing, People's Republic of China
| |
Collapse
|
3
|
Matsuya Y, Sato T, Yachi Y, Date H, Hamada N. The impact of dose rate on responses of human lens epithelial cells to ionizing irradiation. Sci Rep 2024; 14:12160. [PMID: 38802452 PMCID: PMC11130169 DOI: 10.1038/s41598-024-62679-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/20/2024] [Indexed: 05/29/2024] Open
Abstract
The knowledge on responses of human lens epithelial cells (HLECs) to ionizing radiation exposure is important to understand mechanisms of radiation cataracts that are of concern in the field of radiation protection and radiation therapy. However, biological effects in HLECs following protracted exposure have not yet fully been explored. Here, we investigated the temporal kinetics of γ-H2AX foci as a marker for DNA double-strand breaks (DSBs) and cell survival in HLECs after exposure to photon beams at various dose rates (i.e., 150 kVp X-rays at 1.82, 0.1, and 0.033 Gy/min, and 137Cs γ-rays at 0.00461 Gy/min (27.7 cGy/h) and 0.00081 Gy/min (4.9 cGy/h)), compared to those in human lung fibroblasts (WI-38). In parallel, we quantified the recovery for DSBs and cell survival using a biophysical model. The study revealed that HLECs have a lower DSB repair rate than WI-38 cells. There is no significant impact of dose rate on cell survival in both cell lines in the dose-rate range of 0.033-1.82 Gy/min. In contrast, the experimental residual γ-H2AX foci showed inverse dose rate effects (IDREs) compared to the model prediction, highlighting the importance of the IDREs in evaluating radiation effects on the ocular lens.
Collapse
Affiliation(s)
- Yusuke Matsuya
- Faculty of Health Sciences, Hokkaido University, Kita-12 Nishi-5, Kita-ku, Sapporo, 060-0812, Japan.
- Research Group for Radiation Transport Analysis, Nuclear Science and Engineering Center, Japan Atomic Energy Agency (JAEA), 2-4 Shirakata, Tokai, Ibaraki, 319-1195, Japan.
| | - Tatsuhiko Sato
- Research Group for Radiation Transport Analysis, Nuclear Science and Engineering Center, Japan Atomic Energy Agency (JAEA), 2-4 Shirakata, Tokai, Ibaraki, 319-1195, Japan
| | - Yoshie Yachi
- Graduate School of Health Sciences, Hokkaido University, Kita-12 Nishi-5, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan
| | - Hiroyuki Date
- Faculty of Health Sciences, Hokkaido University, Kita-12 Nishi-5, Kita-ku, Sapporo, 060-0812, Japan
| | - Nobuyuki Hamada
- Biology and Environmental Chemistry Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Chiba, 270-1194, Japan.
| |
Collapse
|
4
|
Shiraishi Y, Matsuya Y, Kusumoto T, Fukunaga H. Modeling for predicting survival fraction of cells after ultra-high dose rate irradiation. Phys Med Biol 2023; 69:015017. [PMID: 38056015 DOI: 10.1088/1361-6560/ad131b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 12/06/2023] [Indexed: 12/08/2023]
Abstract
Objective. FLASH radiotherapy (FLASH-RT) with ultra-high dose rate (UHDR) irradiation (i.e. > 40 Gy s-1) spares the function of normal tissues while preserving antitumor efficacy, known as the FLASH effect. The biological effects after conventional dose rate-radiotherapy (CONV-RT) with ≤0.1 Gy s-1have been well modeled by considering microdosimetry and DNA repair processes, meanwhile modeling of radiosensitivities under UHDR irradiation is insufficient. Here, we developed anintegrated microdosimetric-kinetic(IMK)model for UHDR-irradiationenabling the prediction of surviving fraction after UHDR irradiation.Approach.TheIMK model for UHDR-irradiationconsiders the initial DNA damage yields by the modification of indirect effects under UHDR compared to CONV dose rate. The developed model is based on the linear-quadratic (LQ) nature with the dose and dose square coefficients, considering the reduction of DNA damage yields as a function of dose rate.Main results.The estimate by the developed model could successfully reproduce thein vitroexperimental dose-response curve for various cell line types and dose rates.Significance.The developed model would be useful for predicting the biological effects under the UHDR irradiation.
Collapse
Affiliation(s)
- Yuta Shiraishi
- Graduate school of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan
- Faculty of Health Sciences, Japan Healthcare University, 3-11-1-50 Tsukisamu-higashi, Toyohira-ku, Sapporo, Hokkaido, 062-0053, Japan
| | - Yusuke Matsuya
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan
- Nuclear Science and Engineering Center, Japan Atomic Energy Agency, 2-4 Shirakata, Tokai, Ibaraki, 319-1195, Japan
| | - Tamon Kusumoto
- National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - Hisanori Fukunaga
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan
| |
Collapse
|
5
|
Seong SY, Kang MK, Kang H, Lee HJ, Kang YR, Lee CG, Sohn DH, Han SJ. Low dose rate radiation impairs early follicles in young mice. Reprod Biol 2023; 23:100817. [PMID: 37890397 DOI: 10.1016/j.repbio.2023.100817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/10/2023] [Accepted: 10/14/2023] [Indexed: 10/29/2023]
Abstract
Low-dose radiation is generally considered less harmful than high-dose radiation. However, its impact on ovaries remains debated. Since previous reports predominantly employed low-dose radiation delivered at a high dose rate on the ovary, the effect of low-dose radiation at a low dose rate on the ovary remains unknown. We investigated the effect of low-dose ionizing radiation delivered at a low dose rate on murine ovaries. Three- and ten-week-old mice were exposed to 0.1 and 0.5 Gy of radiation at a rate of 6 mGy/h and monitored after 3 and 30 days. While neither body weight nor ovarian area showed significant changes, ovarian cells were damaged, showing apoptosis and a decrease in cell proliferation after exposure to 0.1 and 0.5 Gy radiation. Follicle numbers decreased over time in both age groups proportionally to the radiation dose. Younger mice were more susceptible to radiation damage, as evidenced by decreased follicles in 3-week-old mice after 30 days of 0.1 Gy exposure, while 10-week-old mice showed reduced follicles only following 0.5 Gy exposure. Primordial or primary follicles were the most vulnerable to radiation. These findings suggest that even low-dose radiation, delivered at a low dose rate, can adversely affect ovarian function, particularly in the early follicles of younger mice.
Collapse
Affiliation(s)
- Se Yoon Seong
- Institute for Digital Antiaging Healthcare, Inje University, Gimhae 50834, Republic of Korea
| | - Min Kook Kang
- Department of Research Center, Dongnam Institute of Radiological and Medical Sciences, Busan 46033, Republic of Korea
| | - Hyunju Kang
- Institute for Digital Antiaging Healthcare, Inje University, Gimhae 50834, Republic of Korea
| | - Hae-June Lee
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, 75 Nowon-ro, Seoul 01812, Republic of Korea
| | - Yeong-Rok Kang
- Department of Research Center, Dongnam Institute of Radiological and Medical Sciences, Busan 46033, Republic of Korea
| | - Chang Geun Lee
- Department of Research Center, Dongnam Institute of Radiological and Medical Sciences, Busan 46033, Republic of Korea
| | - Dong Hyun Sohn
- Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea
| | - Seung Jin Han
- Institute for Digital Antiaging Healthcare, Inje University, Gimhae 50834, Republic of Korea; Department of Medical Biotechnology, Inje University, Gimhae 50834, Republic of Korea.
| |
Collapse
|
6
|
Swarts SG, Flood AB, Swartz HM. Implications of "flash" radiotherapy for biodosimetry. RADIATION PROTECTION DOSIMETRY 2023; 199:1450-1459. [PMID: 37721059 DOI: 10.1093/rpd/ncad062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 02/19/2023] [Accepted: 02/21/2023] [Indexed: 09/19/2023]
Abstract
Extremely high dose rate radiation delivery (FLASH) for cancer treatment has been shown to produce less damage to normal tissues while having the same radiotoxic effect on tumor tissue (referred to as the FLASH effect). Research on the FLASH effect has two very pertinent implications for the field of biodosimetry: (1) FLASH is a good model to simulate delivery of prompt radiation from the initial moments after detonating a nuclear weapon and (2) the FLASH effect elucidates how dose rate impacts the biological mechanisms that underlie most types of biological biodosimetry. The impact of dose rate will likely differ for different types of biodosimetry, depending on the specific underlying mechanisms. The greatest impact of FLASH effects is likely to occur for assays based on biological responses to radiation damage, but the consequences of differential effects of dose rates on the accuracy of dose estimates has not been taken into account.
Collapse
Affiliation(s)
- Steven G Swarts
- Department of Radiation Oncology, University of Florida, Gainesville, FL 32610, United States
| | - Ann Barry Flood
- Department of Radiology, Geisel School of Medicine at Dartmouth College, Hanover, NH 03755, United States
- Clin-EPR, LLC, Lyme, NH 03769, United States
| | - Harold M Swartz
- Department of Radiology, Geisel School of Medicine at Dartmouth College, Hanover, NH 03755, United States
- Clin-EPR, LLC, Lyme, NH 03769, United States
| |
Collapse
|
7
|
Hirose K, Sato M, Ichise K, Aoki M. Dose Rate Effect on Cell Survival in BNCT. Curr Issues Mol Biol 2023; 45:6986-6994. [PMID: 37754225 PMCID: PMC10530115 DOI: 10.3390/cimb45090441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/16/2023] [Accepted: 08/21/2023] [Indexed: 09/28/2023] Open
Abstract
The output constancy of the accelerator used for boron neutron capture therapy (BNCT) is essential to ensuring anti-tumor efficacy and safety. BNCT as currently practiced requires a wide variety of beam quality assessments to ensure that RBE dose errors are maintained within 5%. However, the necessity of maintaining a constant beam dose rate has not been fully discussed. We therefore clarified the effect of different physical dose rates of the accelerator BNCT on biological effects. SAS and A172 cells exposed to 10B-boronophenylalanine were irradiated using a neutron beam (normal operating current, 100 μA) at the Aomori Quantum Science Center. Thermal neutron flux was attenuated to 50.0 ± 0.96% under 50 μA irradiation compared to that under 100 μA irradiation. Cells were given physical doses of 1.67 and 3.36 Gy at 30 and 60 mC, respectively, and survival was significantly increased after 50 μA irradiation for both cell types (p = 0.0052 for SAS; p = 0.046 for A172, for 60 mC). Differences in accelerator BNCT beam dose rates have non-negligible effects on biological effects. Dose rate fluctuations and differences should not be easily permitted to obtain consistent biological effects.
Collapse
Affiliation(s)
- Katsumi Hirose
- Department of Radiation Oncology, Graduate School of Medicine, Hirosaki University, 5 Zaifu-cho, Hirosaki 036-8562, Japan; (M.S.); (K.I.); (M.A.)
- Southern Tohoku BNCT Research Center, 7-10 Yatsuyamada, Koriyama 963-8052, Japan
| | - Mariko Sato
- Department of Radiation Oncology, Graduate School of Medicine, Hirosaki University, 5 Zaifu-cho, Hirosaki 036-8562, Japan; (M.S.); (K.I.); (M.A.)
- Southern Tohoku BNCT Research Center, 7-10 Yatsuyamada, Koriyama 963-8052, Japan
| | - Koji Ichise
- Department of Radiation Oncology, Graduate School of Medicine, Hirosaki University, 5 Zaifu-cho, Hirosaki 036-8562, Japan; (M.S.); (K.I.); (M.A.)
- Osaka Heavy-Ion Therapy Center, 3-1-10 Otemae, Chuo-ku, Osaka 540-0008, Japan
| | - Masahiko Aoki
- Department of Radiation Oncology, Graduate School of Medicine, Hirosaki University, 5 Zaifu-cho, Hirosaki 036-8562, Japan; (M.S.); (K.I.); (M.A.)
| |
Collapse
|
8
|
Nakano H, Shiinoki T, Tanabe S, Utsunomiya S, Takizawa T, Kaidu M, Nishio T, Ishikawa H. Mathematical model combined with microdosimetric kinetic model for tumor volume calculation in stereotactic body radiation therapy. Sci Rep 2023; 13:10981. [PMID: 37414844 PMCID: PMC10326039 DOI: 10.1038/s41598-023-38232-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/05/2023] [Indexed: 07/08/2023] Open
Abstract
We proposed a new mathematical model that combines an ordinary differential equation (ODE) and microdosimetric kinetic model (MKM) to predict the tumor-cell lethal effect of Stereotactic body radiation therapy (SBRT) applied to non-small cell lung cancer (NSCLC). The tumor growth volume was calculated by the ODE in the multi-component mathematical model (MCM) for the cell lines NSCLC A549 and NCI-H460 (H460). The prescription doses 48 Gy/4 fr and 54 Gy/3 fr were used in the SBRT, and the effect of the SBRT on tumor cells was evaluated by the MKM. We also evaluated the effects of (1) linear quadratic model (LQM) and the MKM, (2) varying the ratio of active and quiescent tumors for the total tumor volume, and (3) the length of the dose-delivery time per fractionated dose (tinter) on the initial tumor volume. We used the ratio of the tumor volume at 1 day after the end of irradiation to the tumor volume before irradiation to define the radiation effectiveness value (REV). The combination of MKM and MCM significantly reduced REV at 48 Gy/4 fr compared to the combination of LQM and MCM. The ratio of active tumors and the prolonging of tinter affected the decrease in the REV for A549 and H460 cells. We evaluated the tumor volume considering a large fractionated dose and the dose-delivery time by combining the MKM with a mathematical model of tumor growth using an ODE in lung SBRT for NSCLC A549 and H460 cells.
Collapse
Affiliation(s)
- Hisashi Nakano
- Department of Radiation Oncology, Niigata University Medical and Dental Hospital, 1-757 Asahimachi-dori, Chuo-ku, Niigata-shi, Niigata, Japan.
- Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, 1-7 Yamadaoka, Suita-shi, Osaka, Japan.
| | - Takehiro Shiinoki
- Department of Radiation Oncology, Yamaguchi University, Minamikogushi 1-1-1 Ube, Yamaguchi, Japan
| | - Satoshi Tanabe
- Department of Radiation Oncology, Niigata University Medical and Dental Hospital, 1-757 Asahimachi-dori, Chuo-ku, Niigata-shi, Niigata, Japan
| | - Satoru Utsunomiya
- Department of Radiological Technology, Niigata University Graduate School of Health Sciences, 2-746 Asahimachi-Dori, Chuo-ku, Niigata-shi, Niigata, Japan
| | - Takeshi Takizawa
- Department of Radiation Oncology, Niigata Neurosurgical Hospital, 3057 Yamada, Nishi-ku, Niigata-shi, Niigata, Japan
- Department of Radiology and Radiation Oncology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata-shi, Niigata, Japan
| | - Motoki Kaidu
- Department of Radiology and Radiation Oncology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata-shi, Niigata, Japan
| | - Teiji Nishio
- Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, 1-7 Yamadaoka, Suita-shi, Osaka, Japan
| | - Hiroyuki Ishikawa
- Department of Radiology and Radiation Oncology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata-shi, Niigata, Japan
| |
Collapse
|
9
|
Nakano H, Takizawa T, Kawahara D, Tanabe S, Utsunomiya S, Kaidu M, Maruyama K, Takeuchi S, Onda K, Koizumi M, Nishio T, Ishikawa H. Radiobiological evaluation considering the treatment time with stereotactic radiosurgery for brain metastases. BJR Open 2022; 4:20220013. [PMID: 38525167 PMCID: PMC10958663 DOI: 10.1259/bjro.20220013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 10/04/2022] [Accepted: 10/27/2022] [Indexed: 12/15/2022] Open
Abstract
Objective We evaluated the radiobiological effect of the irradiation time with the interruption time of stereotactic radiosurgery (SRS) using CyberKnife® (CK) systemfor brain metastases. Methods We used the DICOM data and irradiation log file of the 10 patients with brain metastases from non-small-cell lung cancer (NSCLC) who underwent brain SRS. We defined the treatment time as the sum of the dose-delivery time and the interruption time during irradiations, and we used a microdosimetric kinetic model (MKM) to evaluate the radiobiological effects of the treatment time. The biological parameters, i.e. α0, β0, and the DNA repair constant rate (a + c), were acquired from NCI-H460 cell for the MKM. We calculated the radiobiological dose for the gross tumor volume (GTVbio) to evaluate the treatment time's effect compared with no treatment time as a reference. The D95 (%) and the Radiation Therapy Oncology Group conformity index (RCI) and Paddick conformity index (PCI) were calculated as dosimetric indices. We used several DNA repair constant rates (a + c) (0.46, 1.0, and 2.0) to assess the radiobiological effect by varying the DNA repair date (a + c) values. Results The mean values of D95 (%), RCI, and PCI for GTVbio were 98.8%, 0.90, and 0.80, respectively, and decreased with increasing treatment time. The mean values of D95 (%), RCI, and PCI of GTVbio at 2.0 (a+c) value were 94.9%, 0.71, and 0.49, respectively. Conclusion The radiobiological effect of the treatment time on tumors was accurately evaluated with brain SRS using CK. Advances in knowledge There has been no published investigation of the radiobiological impact of the longer treatment time with multiple interruptions of SRS using a CK on the target dose distribution in a comparison with the use of a linac. Radiobiological dose assessment that takes into account treatment time in the physical dose in this study may allow more accurate dose assessment in SRS for metastatic brain tumors using CK.
Collapse
Affiliation(s)
| | | | - Daisuke Kawahara
- Department of Radiation Oncology, Institute of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima-shi, Hiroshima, Japan
| | - Satoshi Tanabe
- Department of Radiation Oncology, Niigata University Medical and Dental Hospital, 1-757 Asahimachi-dori, Chuo-ku, Niigata-shi, Niigata, Japan
| | - Satoru Utsunomiya
- Department of Radiological Technology, Niigata University Graduate School of Health Sciences, 2-746 Asahimachi-dori, Chuo-ku, Niigata-shi, Niigata, Japan
| | - Motoki Kaidu
- Department of Radiology and Radiation Oncology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata-shi, Niigata, Japan
| | - Katsuya Maruyama
- Department of Radiation Oncology, Niigata Neurosurgical Hospital, 3057 Yamada, Nishi-ku, Niigata-shi, Niigata, Japan
| | - Shigekazu Takeuchi
- Department of Neurosurgery, Niigata Neurosurgical Hospital, 3057 Yamada, Nishi-ku, Niigata-shi, Niigata, Japan
| | - Kiyoshi Onda
- Department of Neurosurgery, Niigata Neurosurgical Hospital, 3057 Yamada, Nishi-ku, Niigata-shi, Niigata, Japan
| | - Masahiko Koizumi
- Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, 1-7 Yamadaoka, Suita-shi, Osaka, Japan
| | - Teiji Nishio
- Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, 1-7 Yamadaoka, Suita-shi, Osaka, Japan
| | - Hiroyuki Ishikawa
- Department of Radiology and Radiation Oncology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata-shi, Niigata, Japan
| |
Collapse
|
10
|
Bae MJ, Kang MK, Kye YU, Baek JH, Sim YJ, Lee HJ, Kang YR, Jo WS, Kim JS, Lee CG. Differential Effects of Low and High Radiation Dose Rates on Mouse Spermatogenesis. Int J Mol Sci 2021; 22:ijms222312834. [PMID: 34884637 PMCID: PMC8657493 DOI: 10.3390/ijms222312834] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 12/17/2022] Open
Abstract
The adverse effects of radiation are proportional to the total dose and dose rate. We aimed to investigate the effects of radiation dose rate on different organs in mice. The mice were subjected to low dose rate (LDR, ~3.4 mGy/h) and high dose rate (HDR, ~51 Gy/h) radiation. LDR radiation caused severe tissue toxicity, as observed in the histological analysis of testis. It adversely influenced sperm production, including sperm count and motility, and induced greater sperm abnormalities. The expression of markers of early stage spermatogonial stem cells, such as Plzf, c-Kit, and Oct4, decreased significantly after LDR irradiation, compared to that following exposure of HDR radiation, in qPCR analysis. The compositional ratios of all stages of spermatogonia and meiotic cells, except round spermatid, were considerably reduced by LDR in FACS analysis. Therefore, LDR radiation caused more adverse testicular damage than that by HDR radiation, contrary to the response observed in other organs. Therefore, the dose rate of radiation may have differential effects, depending on the organ; it is necessary to evaluate the effect of radiation in terms of radiation dose, dose rate, organ type, and other conditions.
Collapse
Affiliation(s)
- Min Ji Bae
- Research Center, Dongnam Institute of Radiological & Medical Sciences, Busan 619-953, Korea; (M.J.B.); (M.K.K.); (Y.U.K.); (J.-H.B.); (Y.-J.S.); (Y.-R.K.); (W.S.J.)
| | - Min Kook Kang
- Research Center, Dongnam Institute of Radiological & Medical Sciences, Busan 619-953, Korea; (M.J.B.); (M.K.K.); (Y.U.K.); (J.-H.B.); (Y.-J.S.); (Y.-R.K.); (W.S.J.)
| | - Yong Uk Kye
- Research Center, Dongnam Institute of Radiological & Medical Sciences, Busan 619-953, Korea; (M.J.B.); (M.K.K.); (Y.U.K.); (J.-H.B.); (Y.-J.S.); (Y.-R.K.); (W.S.J.)
| | - Jeong-Hwa Baek
- Research Center, Dongnam Institute of Radiological & Medical Sciences, Busan 619-953, Korea; (M.J.B.); (M.K.K.); (Y.U.K.); (J.-H.B.); (Y.-J.S.); (Y.-R.K.); (W.S.J.)
| | - Ye-Ji Sim
- Research Center, Dongnam Institute of Radiological & Medical Sciences, Busan 619-953, Korea; (M.J.B.); (M.K.K.); (Y.U.K.); (J.-H.B.); (Y.-J.S.); (Y.-R.K.); (W.S.J.)
| | - Hae-June Lee
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul 01812, Korea;
| | - Yeong-Rok Kang
- Research Center, Dongnam Institute of Radiological & Medical Sciences, Busan 619-953, Korea; (M.J.B.); (M.K.K.); (Y.U.K.); (J.-H.B.); (Y.-J.S.); (Y.-R.K.); (W.S.J.)
| | - Wol Soon Jo
- Research Center, Dongnam Institute of Radiological & Medical Sciences, Busan 619-953, Korea; (M.J.B.); (M.K.K.); (Y.U.K.); (J.-H.B.); (Y.-J.S.); (Y.-R.K.); (W.S.J.)
| | - Joong Sun Kim
- College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea
- Correspondence: (J.S.K.); (C.G.L.); Tel.: +82-62-868-9537 (J.S.K.); +82-51-720-5142 (C.G.L.)
| | - Chang Geun Lee
- Research Center, Dongnam Institute of Radiological & Medical Sciences, Busan 619-953, Korea; (M.J.B.); (M.K.K.); (Y.U.K.); (J.-H.B.); (Y.-J.S.); (Y.-R.K.); (W.S.J.)
- Correspondence: (J.S.K.); (C.G.L.); Tel.: +82-62-868-9537 (J.S.K.); +82-51-720-5142 (C.G.L.)
| |
Collapse
|
11
|
Nakano H, Kawahara D, Tanabe S, Utsunomiya S, Takizawa T, Sakai M, Saito H, Ohta A, Kaidu M, Ishikawa H. Radiobiological effects of the interruption time with Monte Carlo Simulation on multiple fields in photon beams. J Appl Clin Med Phys 2020; 21:288-294. [PMID: 33270984 PMCID: PMC7769402 DOI: 10.1002/acm2.13110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 09/24/2020] [Accepted: 11/08/2020] [Indexed: 11/11/2022] Open
Abstract
PURPOSE The interruption time is the irradiation interruption that occurs at sites and operations such as the gantry, collimator, couch rotation, and patient setup within the field in radiotherapy. However, the radiobiological effect of prolonging the treatment time by the interruption time for tumor cells is little evaluated. We investigated the effect of the interruption time on the radiobiological effectiveness with photon beams based on a modified microdosimetric kinetic (mMK) model. METHODS The dose-mean lineal energy yD (keV/µm) of 6-MV photon beams was calculated by the particle and heavy ion transport system (PHITS). We set the absorbed dose to 2 or 8 Gy, and the interruption time (τ) was set to 1, 3, 5, 10, 30, and 60 min. The biological parameters such as α0, β0, and DNA repair constant rate (a + c) values were acquired from a human non-small-cell lung cancer cell line (NCI-H460) for the mMK model. We used two-field and four-field irradiation with a constant dose rate (3 Gy/min); the photon beams were paused for interruption time τ. We calculated the relative biological effectiveness (RBE) to evaluate the interruption time's effect compared with no interrupted as a reference. RESULTS The yD of 6-MV photon beams was 2.32 (keV/µm), and there was little effect by changing the water depth (standard deviation was 0.01). The RBE with four-field irradiation for 8 Gy was decreased to 0.997, 0.975, 0.900, and 0.836 τ = 1, 10, 30, 60 min, respectively. In addition, the RBE was affected by the repair constant rate (a + c) value, the greater the decrease in RBE with the longer the interruption time when the (a + c) value was large. CONCLUSION The ~10-min interruption of 6-MV photon beams did not significantly impact the radiobiological effectiveness, since the RBE decrease was <3%. Nevertheless, the RBE's effect on tumor cells was decreased about 30% by increasing the 60 min interruption time at 8 Gy with four-field irradiation. It is thus necessary to make the interruption time as short as possible.
Collapse
Affiliation(s)
- Hisashi Nakano
- Department of Radiation Oncology, Niigata University Medical and Dental Hospital, Niigata, Japan
| | - Daisuke Kawahara
- Department of Radiation Oncology, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Satoshi Tanabe
- Department of Radiation Oncology, Niigata University Medical and Dental Hospital, Niigata, Japan
| | - Satoru Utsunomiya
- Department of Radiological Technology, Niigata University Graduate School of Health Sciences, Niigata, Japan
| | - Takeshi Takizawa
- Department of Radiation Oncology, Niigata University Medical and Dental Hospital, Niigata, Japan.,Niigata Neurosurgical Hospital, Niigata, Japan
| | - Madoka Sakai
- Department of Radiation Oncology, Niigata University Medical and Dental Hospital, Niigata, Japan
| | - Hirotake Saito
- Department of Radiation Oncology, Niigata University Medical and Dental Hospital, Niigata, Japan
| | - Atsushi Ohta
- Department of Radiation Oncology, Niigata University Medical and Dental Hospital, Niigata, Japan
| | - Motoki Kaidu
- Department of Radiology and Radiation Oncology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hiroyuki Ishikawa
- Department of Radiology and Radiation Oncology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
12
|
Matsuya Y, Sato T, Nakamura R, Naijo S, Date H. A theoretical cell-killing model to evaluate oxygen enhancement ratios at DNA damage and cell survival endpoints in radiation therapy. Phys Med Biol 2020; 65:095006. [PMID: 32135526 DOI: 10.1088/1361-6560/ab7d14] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Radio-resistance induced under low oxygen pressure plays an important role in malignant progression in fractionated radiotherapy. For the general approach to predict cell killing under hypoxia, cell-killing models (e.g. the Linear-Quadratic model) have to be fitted to in vitro experimental survival data for both normoxia and hypoxia to obtain the oxygen enhancement ratio (OER). In such a case, model parameters for every oxygen condition needs to be considered by model-fitting approaches. This is inefficient for fractionated irradiation planning. Here, we present an efficient model for fractionated radiotherapy the integrated microdosimetric-kinetic model including cell-cycle distribution and the OER at DNA double-strand break endpoint (OERDSB). The cell survival curves described by this model can reproduce the in vitro experimental survival data for both acute and chronic low oxygen concentrations. The OERDSB used for calculating cell survival agrees well with experimental DSB ratio of normoxia to hypoxia. The important parameters of the model are oxygen pressure and cell-cycle distribution, which enables us to predict cell survival probabilities under chronic hypoxia and chronic anoxia. This work provides biological effective dose (BED) under various oxygen conditions including its uncertainty, which can contribute to creating fractionated regimens for multi-fractionated radiotherapy. If the oxygen concentration in a tumor can be quantified by medical imaging, the present model will make it possible to estimate the cell-killing and BED under hypoxia in more realistic intravital situations.
Collapse
Affiliation(s)
- Yusuke Matsuya
- Japan Atomic Energy Agency, Nuclear Science and Engineering Center, Research Group for Radiation Transport Analysis, 2-4 Shirakata, Tokai, Ibaraki 319-1195, Japan. Faculty of Health Sciences, Hokkaido University, Kita-12 Nishi-5, Kita-ku, Sapporo, Hokkaiddo 060-0812, Japan
| | | | | | | | | |
Collapse
|
13
|
Effect of dose-delivery time for flattened and flattening filter-free photon beams based on microdosimetric kinetic model. PLoS One 2018; 13:e0206673. [PMID: 30462672 PMCID: PMC6248938 DOI: 10.1371/journal.pone.0206673] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 10/17/2018] [Indexed: 11/19/2022] Open
Abstract
The effect of dose-delivery time with flattening filter (FF) and flattening filter-free (FFF) photon beams based on microdosimetric kinetic model (MKM) was investigated in this study. Monte Carlo simulation with the particle and heavy ion transport code system (PHITS) was performed to calculate the dose-mean lineal energy yD (keV/μm) of FF and FFF 6 MV photon beams using the IAEA phase-space files of Varian TrueBeam linear accelerator. Human non-small cell lung cancer NCI-H460 cells were used to determine the MKM parameters under the condition that dose-delivery times with continuous irradiation were 1, 5, 10, 30, and 60 min, and the adsorbed dose was 2, 4, and 8 Gy in this study. In addition, the relative biological effectiveness (RBE) of FF and FFF photon beams were calculated for evaluating the effect of dose delivery time. The RBE of FF decreased to 99.8% and 97.5% with 5 and 60 min for 2 Gy in comparison to 99.6% and 95.1% for 8 Gy, respectively. Meanwhile, that of FFF decreased to 99.5% and 94.9% with 5 and 60 min for 2 Gy in comparison to 99.5% and 94.9% for 8 Gy, respectively. Dose-delivery time has an effect on the RBE with photon beams. In other words, the dose-delivery time should be considered during radiation therapy. Furthermore, FFF photon beams were an effective irradiation method compared to FF in dose-delivery time on account of improving clinic throughput.
Collapse
|
14
|
Nakano H, Minami K, Yagi M, Imaizumi H, Otani Y, Inoue S, Takashina M, Seo Y, Takahashi Y, Sumida I, Ogawa K, Koizumi M. Radiobiological effects of flattening filter-free photon beams on A549 non-small-cell lung cancer cells. JOURNAL OF RADIATION RESEARCH 2018; 59:442-445. [PMID: 29850845 PMCID: PMC6054216 DOI: 10.1093/jrr/rry041] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/17/2018] [Indexed: 06/08/2023]
Abstract
Flattening filter-free (FFF) photon beams minimize the intrafraction motion of tumors, and this feature is useful in pulmonary malignancies, such as non-small-cell lung cancer (NSCLC). However, the radiobiological effects of such beams on NSCLC cells, which are often treated with stereotactic body radiotherapy (SBRT), have not been investigated sufficiently. Although cell motility may be promoted by photon beams with a low dose, the relationship between cell motility and the dose rate of photon beams has not been evaluated. The purpose of this study was to evaluate the radiobiological effects of FFF photon beams on cell survival and motility in NSCLC. A human lung cancer cell line (A549) was irradiated with conventional flattening filter (FF) and FFF photon beams at dose rates of 300 (FF), 500 and 2000 MU/min (FFF). While cell survival was estimated using the colony formation assay, cell motility was evaluated using the Boyden chamber and Matrigel invasion assays. FFF photon beams with a high dose rate neither affected the survival of A549 cells nor caused any significant difference in their motility. On the other hand, high-dose irradiation reduced cell survival and motility regardless of the dose rate. Photon beams with a high dose rate used for radiation therapy are suitable for SBRT from the standpoint of both cell survival and motility, in addition to their physical characteristics.
Collapse
Affiliation(s)
- Hisashi Nakano
- Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, 1-7 Yamadaoka, Suita, Osaka, Japan
| | - Kazumasa Minami
- Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, 1-7 Yamadaoka, Suita, Osaka, Japan
| | - Masashi Yagi
- Department of Carbon Ion Radiotherapy, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, Japan
| | - Hiromasa Imaizumi
- Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, 1-7 Yamadaoka, Suita, Osaka, Japan
| | - Yuki Otani
- Kaizuka City Hospital, 3-10-20 Hori, Kaizuka, Osaka, Japan
| | - Shinichi Inoue
- Department of Medical Technology, Osaka University Hospital, 2-15 Yamadaoka, Suita, Osaka, Japan
| | - Masaaki Takashina
- Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, 1-7 Yamadaoka, Suita, Osaka, Japan
| | - Yuji Seo
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, Japan
| | - Yutaka Takahashi
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, Japan
| | - Iori Sumida
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, Japan
| | - Kazuhiko Ogawa
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, Japan
| | - Masahiko Koizumi
- Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, 1-7 Yamadaoka, Suita, Osaka, Japan
| |
Collapse
|
15
|
Matsuya Y, McMahon SJ, Tsutsumi K, Sasaki K, Okuyama G, Yoshii Y, Mori R, Oikawa J, Prise KM, Date H. Investigation of dose-rate effects and cell-cycle distribution under protracted exposure to ionizing radiation for various dose-rates. Sci Rep 2018; 8:8287. [PMID: 29844494 PMCID: PMC5974424 DOI: 10.1038/s41598-018-26556-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 05/04/2018] [Indexed: 01/04/2023] Open
Abstract
During exposure to ionizing radiation, sub-lethal damage repair (SLDR) competes with DNA damage induction in cultured cells. By virtue of SLDR, cell survival increases with decrease of dose-rate, so-called dose-rate effects (DREs). Here, we focused on a wide dose-rate range and investigated the change of cell-cycle distribution during X-ray protracted exposure and dose-response curves via hybrid analysis with a combination of in vitro experiments and mathematical modelling. In the course of flow-cytometric cell-cycle analysis and clonogenic assays, we found the following responses in CHO-K1 cells: (1) The fraction of cells in S phase gradually increases during 6 h exposure at 3.0 Gy/h, which leads to radio-resistance. (2) Slight cell accumulation in S and G2/M phases is observed after exposure at 6.0 Gy/h for more than 10 hours. This suggests that an increase of SLDR rate for cells in S phase during irradiation may be a reproducible factor to describe changes in the dose-response curve at dose-rates of 3.0 and 6.0 Gy/h. By re-evaluating cell survival for various dose-rates of 0.186-60.0 Gy/h considering experimental-based DNA content and SLDR, it is suggested that the change of S phase fraction during irradiation modulates the dose-response curve and is possibly responsible for some inverse DREs.
Collapse
Affiliation(s)
- Yusuke Matsuya
- Graduate School of Health Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | - Stephen J McMahon
- Centre for Cancer Research & Cell Biology, Queen's University Belfast, Belfast, BT9 7AE, UK
| | - Kaori Tsutsumi
- Faculty of Health Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | - Kohei Sasaki
- Faculty of Health Sciences, Hokkaido University of Science, Sapporo, 006-8585, Japan
| | - Go Okuyama
- Faculty of Health Sciences, Hokkaido University of Science, Sapporo, 006-8585, Japan
| | - Yuji Yoshii
- Biological Research, Education and Instrumentation Center, Sapporo Medical University, Sapporo, 060-8556, Japan
| | - Ryosuke Mori
- Graduate School of Health Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | - Joma Oikawa
- Graduate School of Health Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | - Kevin M Prise
- Centre for Cancer Research & Cell Biology, Queen's University Belfast, Belfast, BT9 7AE, UK
| | - Hiroyuki Date
- Faculty of Health Sciences, Hokkaido University, Sapporo, 060-0812, Japan.
| |
Collapse
|
16
|
Matsuya Y, McMahon SJ, Tsutsumi K, Sasaki K, Okuyama G, Yoshii Y, Mori R, Oikawa J, Prise KM, Date H. Investigation of dose-rate effects and cell-cycle distribution under protracted exposure to ionizing radiation for various dose-rates. Sci Rep 2018. [PMID: 29844494 DOI: 10.1038/s41598a018-26556a5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023] Open
Abstract
During exposure to ionizing radiation, sub-lethal damage repair (SLDR) competes with DNA damage induction in cultured cells. By virtue of SLDR, cell survival increases with decrease of dose-rate, so-called dose-rate effects (DREs). Here, we focused on a wide dose-rate range and investigated the change of cell-cycle distribution during X-ray protracted exposure and dose-response curves via hybrid analysis with a combination of in vitro experiments and mathematical modelling. In the course of flow-cytometric cell-cycle analysis and clonogenic assays, we found the following responses in CHO-K1 cells: (1) The fraction of cells in S phase gradually increases during 6 h exposure at 3.0 Gy/h, which leads to radio-resistance. (2) Slight cell accumulation in S and G2/M phases is observed after exposure at 6.0 Gy/h for more than 10 hours. This suggests that an increase of SLDR rate for cells in S phase during irradiation may be a reproducible factor to describe changes in the dose-response curve at dose-rates of 3.0 and 6.0 Gy/h. By re-evaluating cell survival for various dose-rates of 0.186-60.0 Gy/h considering experimental-based DNA content and SLDR, it is suggested that the change of S phase fraction during irradiation modulates the dose-response curve and is possibly responsible for some inverse DREs.
Collapse
Affiliation(s)
- Yusuke Matsuya
- Graduate School of Health Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | - Stephen J McMahon
- Centre for Cancer Research & Cell Biology, Queen's University Belfast, Belfast, BT9 7AE, UK
| | - Kaori Tsutsumi
- Faculty of Health Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | - Kohei Sasaki
- Faculty of Health Sciences, Hokkaido University of Science, Sapporo, 006-8585, Japan
| | - Go Okuyama
- Faculty of Health Sciences, Hokkaido University of Science, Sapporo, 006-8585, Japan
| | - Yuji Yoshii
- Biological Research, Education and Instrumentation Center, Sapporo Medical University, Sapporo, 060-8556, Japan
| | - Ryosuke Mori
- Graduate School of Health Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | - Joma Oikawa
- Graduate School of Health Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | - Kevin M Prise
- Centre for Cancer Research & Cell Biology, Queen's University Belfast, Belfast, BT9 7AE, UK
| | - Hiroyuki Date
- Faculty of Health Sciences, Hokkaido University, Sapporo, 060-0812, Japan.
| |
Collapse
|
17
|
Matsuya Y, Sasaki K, Yoshii Y, Okuyama G, Date H. Integrated Modelling of Cell Responses after Irradiation for DNA-Targeted Effects and Non-Targeted Effects. Sci Rep 2018; 8:4849. [PMID: 29555939 PMCID: PMC5859303 DOI: 10.1038/s41598-018-23202-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 03/07/2018] [Indexed: 01/10/2023] Open
Abstract
Intercellular communication after ionizing radiation exposure, so-called non-targeted effects (NTEs), reduces cell survival. Here we describe an integrated cell-killing model considering NTEs and DNA damage along radiation particle tracks, known as DNA-targeted effects (TEs) based on repair kinetics of DNA damage. The proposed model was applied to a series of experimental data, i.e., signal concentration, DNA damage kinetics, cell survival curve and medium transfer bystander effects (MTBEs). To reproduce the experimental data, the model considers the following assumptions: (i) the linear-quadratic (LQ) function as absorbed dose to express the hit probability to emit cell-killing signals, (ii) the potentially repair of DNA lesions induced by NTEs, and (iii) lower efficiency of repair for the damage in NTEs than that in TEs. By comparing the model results with experimental data, we found that signal-induced DNA damage and lower repair efficiency in non-hit cells are responsible for NTE-related repair kinetics of DNA damage, cell survival curve with low-dose hyper-radiosensitivity (HRS) and MTBEs. From the standpoint of modelling, the integrated cell-killing model with the LQ relation and a different repair function for NTEs provide a reasonable signal-emission probability and a new estimation of low-dose HRS linked to DNA repair efficiency.
Collapse
Affiliation(s)
- Yusuke Matsuya
- Graduate School of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo, 060-0812, Japan
| | - Kohei Sasaki
- Faculty of Health Sciences, Hokkaido University of Science, Maeda 7-15, Teine-ku, Sapporo, 006-8585, Japan
| | - Yuji Yoshii
- Biological Research, Education and Instrumentation Center, Sapporo Medical University, Minami-1, Nichi-17, Chuo-ku, Sapporo, 060-8556, Japan
| | - Go Okuyama
- Faculty of Health Sciences, Hokkaido University of Science, Maeda 7-15, Teine-ku, Sapporo, 006-8585, Japan
| | - Hiroyuki Date
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo, 060-0812, Japan.
| |
Collapse
|
18
|
Matsuya Y, Kimura T, Date H. Markov chain Monte Carlo analysis for the selection of a cell-killing model under high-dose-rate irradiation. Med Phys 2017; 44:5522-5532. [PMID: 28786486 DOI: 10.1002/mp.12508] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/04/2017] [Accepted: 07/27/2017] [Indexed: 12/19/2022] Open
Abstract
PURPOSE High-dose-rate irradiation with 6 MV linac x rays is a wide-spread means to treat cancer tissue in radiotherapy. The treatment planning relies on a mathematical description of surviving fraction (SF), such as the linear-quadratic model (LQM) formula. However, even in the case of high-dose-rate treatment, the repair kinetics of DNA damage during dose-delivery time plays a function in predicting the dose-SF relation. This may call the SF model selection into question when considering the dose-delivery time or dose-rate effects (DREs) in radiotherapy and in vitro cell experiments. In this study, we demonstrate the importance of dose-delivery time at high-dose-rate irradiations used in radiotherapy by means of Bayesian estimation. METHODS To evaluate the model selection for SF, three types of models, the LQM and two microdosimetric-kinetic models with and without DREs (MKMDR and MKM) were applied to describe in vitroSF data (our work and references). The parameters in each model were evaluated by a Markov chain Monte Carlo (MCMC) simulation. RESULTS The MCMC analysis shows that the cell survival curve by the MKMDR fits the experimental data the best in terms of the deviance information criterion (DIC). In the fractionated regimen with 30 fractions to a total dose of 60 Gy, the final cell survival estimated by the MKMDR was higher than that by the LQM. This suggests that additional fractions are required for attaining the total dose equivalent to yield the same effect as the conventional regimen using the LQM in fractionated radiotherapy. CONCLUSIONS Damage repair during dose-delivery time plays a key role in precisely estimating cell survival even at a high dose rate in radiotherapy. Consequently, it was suggested that the cell-killing model without repair factor during a short dose-delivery time may overestimate actual cell killing in fractionated radiotherapy.
Collapse
Affiliation(s)
- Yusuke Matsuya
- Graduate School of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku,, Sapporo, 060-0812, Japan
| | - Takaaki Kimura
- Graduate School of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku,, Sapporo, 060-0812, Japan
| | - Hiroyuki Date
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku,, Sapporo, 060-0812, Japan
| |
Collapse
|
19
|
Matsuya Y, Tsutsumi K, Sasaki K, Yoshii Y, Kimura T, Date H. Modeling cell survival and change in amount of DNA during protracted irradiation. JOURNAL OF RADIATION RESEARCH 2017; 58:302-312. [PMID: 27974510 PMCID: PMC5465389 DOI: 10.1093/jrr/rrw110] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 08/30/2016] [Indexed: 05/21/2023]
Abstract
Hyper-radiosensitivity (HRS) is a well-known bioresponse under low-dose or low-dose-rate exposures. Although disorder of the DNA repair function, non-targeted effects and accumulation of cells in G2 have been experimentally observed, the mechanism for inducing HRS by long-term irradiation is still unclear. On the basis of biological experiments and a theoretical study, we have shown that change in the amount of DNA associated with accumulation of cells in G2 enhances radiosensitivity. To demonstrate continuous irradiation with 250 kVp X-rays, we adopted a fractionated regimen of 0.186 or 1.00 Gy per fraction at intervals of 1 h (i.e. 0.186 Gy/h, 1.00 Gy/h on average) to Chinese Hamster Ovary (CHO)-K1 cells. The change in the amount of DNA during irradiation was quantified by flow cytometric analysis with propidium iodide (PI). Concurrently, we attempted a theoretical evaluation of the DNA damage by using a microdosimetric-kinetic (MK) model that was modified to incorporate the change in the amount of DNA. Our experimental results showed that the fraction of the cells in G2/M phase increased by 6.7% with 0.186 Gy/h and by 22.1% with 1.00 Gy/h after the 12th irradiation. The MK model considering the change in amount of DNA during the irradiation exhibited a higher radiosensitivity at a high dose range, which could account for the experimental clonogenic survival. The theoretical results suggest that HRS in the high dose range is associated with an increase in the total amount of DNA during irradiation.
Collapse
Affiliation(s)
- Yusuke Matsuya
- Graduate School of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo 060-0812, Japan
| | - Kaori Tsutsumi
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo 060-0812, Japan
| | - Kohei Sasaki
- Faculty of Health Sciences, Hokkaido University of Science, Maeda 7-15, Teine-ku, Sapporo 006-8585, Japan
| | - Yuji Yoshii
- Biological Research, Education and Instrumentation Center, Sapporo Medical University, Minami-1, Nichi-17, Chuo-ku, Sapporo 060-8556, Japan
| | - Takaaki Kimura
- Graduate School of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo 060-0812, Japan
| | - Hiroyuki Date
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo 060-0812, Japan
- Corresponding author. Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo 060-0812, Japan. Tel: +81-11-706-3423; Fax: +81-11-706-4916;
| |
Collapse
|
20
|
Dasu A, Toma-Dasu I. Will intrafraction repair have negative consequences on extreme hypofractionation in prostate radiation therapy? Br J Radiol 2015; 88:20150588. [DOI: 10.1259/bjr.20150588] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|