1
|
Jeong SK, Oh SJ, Kang YR, Kim H, Kye YU, Lee SH, Lee CG, Park MT, Baek JH, Kim JS, Jeong MH, Jo WS. Biological dosimetry dose-response curves for residents living near nuclear power plants in South Korea. Sci Prog 2023; 106:368504231198935. [PMID: 37769294 PMCID: PMC10540589 DOI: 10.1177/00368504231198935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
The purpose of this study was to establish the dose-response curves for biological dosimetry of the Dong Nam Institute of Radiological and Medical Sciences to monitor radiation exposure of local residents in the vicinity of the nuclear power plant. The blood samples of five healthy volunteers were irradiated with gamma ray, and each sample was divided equally for analysis of chromosomal aberrations by Giemsa staining and three-color fluorescence in situ hybridization painting of the triplet (chromosomes #1, #2, and #4). The results of chromosomal aberrations followed the Poisson distribution in all individual and averaged data which include inter-individual variation in radiation susceptibility. Cytogenetics Dose Estimate Software version 5.2 was used to fit the dose-response curve and to determine the coefficients of linear-quadratic equations. The goodness of fit of the curves and statistical significance of fitted α and β-coefficients were confirmed in both Giemsa-based dicentric analysis and FISH-based translocation analysis. The coefficients calculated from the five-donor average data were almost identical in both of the analyses. We also present the results that the dose-response curve for dicentric chromosomes plus fragments could be more effective for dose estimation following low-dose radiation accidents.
Collapse
Affiliation(s)
- Soo Kyung Jeong
- Department of Research Center, Dongnam Institute of Radiological & Medical Sciences, Gijang-gun, Busan, Republic of Korea
- Department of Microbiology, Dong-A University College of Medicine, Seo-gu, Busan, Republic of Korea
| | - Su Jung Oh
- Department of Research Center, Dongnam Institute of Radiological & Medical Sciences, Gijang-gun, Busan, Republic of Korea
| | - Yeong-Rok Kang
- Department of Research Center, Dongnam Institute of Radiological & Medical Sciences, Gijang-gun, Busan, Republic of Korea
| | - HyoJin Kim
- Department of Research Center, Dongnam Institute of Radiological & Medical Sciences, Gijang-gun, Busan, Republic of Korea
| | - Yong Uk Kye
- Department of Research Center, Dongnam Institute of Radiological & Medical Sciences, Gijang-gun, Busan, Republic of Korea
| | - Seong Hun Lee
- Department of Research Center, Dongnam Institute of Radiological & Medical Sciences, Gijang-gun, Busan, Republic of Korea
| | - Chang Geun Lee
- Department of Research Center, Dongnam Institute of Radiological & Medical Sciences, Gijang-gun, Busan, Republic of Korea
| | - Moon-Taek Park
- Department of Research Center, Dongnam Institute of Radiological & Medical Sciences, Gijang-gun, Busan, Republic of Korea
| | - Jeong-Hwa Baek
- Department of Research Center, Dongnam Institute of Radiological & Medical Sciences, Gijang-gun, Busan, Republic of Korea
| | - Joong Sun Kim
- College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Gwangju, Republic of Korea
| | - Min Ho Jeong
- Department of Microbiology, Dong-A University College of Medicine, Seo-gu, Busan, Republic of Korea
| | - Wol Soon Jo
- Department of Research Center, Dongnam Institute of Radiological & Medical Sciences, Gijang-gun, Busan, Republic of Korea
| |
Collapse
|
2
|
Lomonosova EE, Nugis VY, Snigiryova GP, Kozlova MG, Nikitina VA, Galstyan IA. Cytogenetic Analysis of the Peripheral Blood Lymphocyte Cultures of a Patient Some Time after Accidental Irradiation Using the Three-Color FISH Method. BIOL BULL+ 2022. [DOI: 10.1134/s1062359022120093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
3
|
Kadlcikova D, Musilova P, Hradska H, Vozdova M, Petrovova M, Svoboda M, Rubes J. Chromosomal damage in occupationally exposed health professionals assessed by two cytogenetic methods. ARCHIVES OF ENVIRONMENTAL & OCCUPATIONAL HEALTH 2022; 78:158-169. [PMID: 36073861 DOI: 10.1080/19338244.2022.2118213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The study assessed occupationally induced chromosomal damage in hospital personnel at risk of exposure to antineoplastic drugs and/or low doses of ionizing radiation by two cytogenetic methods. Cultured peripheral blood lymphocytes of eighty-five hospital workers were examined twice over 2 to 3 years by classical chromosomal aberration analysis and fluorescence in situ hybridization. The comparison of the 1st and the 2nd sampling of hospital workers showed a significant increase in chromatid and chromosomal aberrations (all p < .05) examined by classical chromosomal aberration analysis, and in unstable aberrations (all p < .05) detected by fluorescence in situ hybridization. Both cytogenetic methods were able to detect an increase of unstable aberrations in the 2nd sampling. The raised frequency of unstable cytogenetic parameters suggested higher recent exposure to genotoxic agents.
Collapse
Affiliation(s)
- Dita Kadlcikova
- Department of Genetics and Reproductive Biotechnologies, Central European Institute of Technology - Veterinary Research Institute, Brno, Czech Republic
| | - Petra Musilova
- Department of Genetics and Reproductive Biotechnologies, Central European Institute of Technology - Veterinary Research Institute, Brno, Czech Republic
| | - Hana Hradska
- Department of Genetics and Reproductive Biotechnologies, Central European Institute of Technology - Veterinary Research Institute, Brno, Czech Republic
| | - Miluse Vozdova
- Department of Genetics and Reproductive Biotechnologies, Central European Institute of Technology - Veterinary Research Institute, Brno, Czech Republic
| | - Marketa Petrovova
- Clinic of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Marek Svoboda
- Clinic of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Jiri Rubes
- Department of Genetics and Reproductive Biotechnologies, Central European Institute of Technology - Veterinary Research Institute, Brno, Czech Republic
| |
Collapse
|
4
|
Cheng Z, Wang Y, Guo L, Li J, Zhang W, Zhang C, Liu Y, Huang Y, Xu K. Ku70 affects the frequency of chromosome translocation in human lymphocytes after radiation and T-cell acute lymphoblastic leukemia. Radiat Oncol 2022; 17:144. [PMID: 35986335 PMCID: PMC9389784 DOI: 10.1186/s13014-022-02113-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 08/05/2022] [Indexed: 11/23/2022] Open
Abstract
Background As one of the most common chromosomal causes, chromosome translocation leads to T-cell acute lymphoblastic leukemia (T-ALL). Ku70 is one of the key factors of error-prone DNA repair and it may end in translocation. So far, the direct correlation between Ku70 and translocation has not been assessed. This study aimed to investigate the association between Ku70 and translocation in human lymphocytes after radiation and T-ALL. Methods Peripheral blood lymphocytes (PBLs) from volunteers and human lymphocyte cell line AHH-1 were irradiated with X-rays to form the chromosome translocations. Phytohemagglutinin (PHA) was used to stimulate lymphocytes. The frequency of translocation was detected by fluorescence in situ hybridization (FISH). Meanwhile, the expression of Ku70 was detected by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot. Furthermore, Ku70 interference, overexpression and chemical inhibition were used in AHH-1 cell lines to confirm the correlation. Finally, the expression of Ku70 in T-ALL samples with or without translocation was detected. Results The expression of Ku70 and frequencies of translocation were both significantly increased in PBLs after being irradiated by X-rays, and a positive correlation between the expression (both mRNA and protein level) of Ku70 and the frequency of translocation was detected (r = 0.4877, P = 0.004; r = 0.3038, P = 0.0358 respectively). Moreover, Ku70 interference decreased the frequency of translocations, while the frequency of translocations was not significantly affected after Ku70 overexpression. The expression of Ku70 and frequencies of translocation were both significantly increased in cells after irradiation, combined with chemical inhibition (P < 0.01). The protein level and mRNA level of Ku70 in T-ALL with translocation were obviously higher than T-ALL with normal karyotype (P = 0.009, P = 0.049 respectively). Conclusions Ku70 is closely associated with the frequency of chromosome translocation in human lymphocytes after radiation and T-ALL. Ku70 might be a radiation damage biomarker and a potential tumor therapy target. Supplementary Information The online version contains supplementary material available at 10.1186/s13014-022-02113-3.
Collapse
|
5
|
Lee Y, Kang JK, Lee YH, Yoon HJ, Yang SS, Kim SH, Jang S, Park S, Heo DH, Jang WI, Yoo HJ, Paik EK, Lee HR, Seong KM. Chromosome aberration dynamics in breast cancer patients treated with radiotherapy: Implications for radiation biodosimetry. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2021; 872:503419. [PMID: 34798939 DOI: 10.1016/j.mrgentox.2021.503419] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/17/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
Although radiological accidents often result in partial-body radiation exposure, most biodosimetry studies focus on estimating whole-body exposure doses. We have evaluated time-dependent changes in chromosomal aberrations before, during, and after localized fractionated radiotherapy. Twelve patients with carcinoma in situ of the breast who underwent identical adjuvant radiation therapy (50 Gy in 25 fractions) were included in the study. Lymphocytes were collected from patients before, during, and after radiotherapy, to measure chromosome aberrations, such as dicentric chromosomes and translocations. Chromosome aberrations were then used to calculate whole- and partial-body biological absorbed doses of radiation. Dicentric chromosome frequencies in all study participants increased during radiotherapy (p < 0.05 in Kruskal-Wallis test). Increases of translocation frequencies during radiotherapy were observed in seven of the twelve patients. The increased levels of dicentric chromosomes and translocations persisted throughout our 1-year follow-up, and evidence of partial-body exposure (such as Papworth's U-value > 1.96) was observed more than 1 year after radiotherapy. We found that cytogenetic biomarkers reflected partial-body fractionated radiation exposure more than 1 year post-exposure. Our findings suggest that chromosome aberrations can be used to estimate biological absorbed radiation doses and can inform medical intervention for individuals suspected of fractionated or partial-body radiation exposure.
Collapse
Affiliation(s)
- Younghyun Lee
- Laboratory of Biological Dosimetry, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Republic of Korea
| | - Jin-Kyu Kang
- Dongnam Radiation Emergency Medical Center, Dongnam Institute of Radiological and Medical Sciences, Busan 46033, Republic of Korea; Department of Radiation Oncology, Dongnam Institute of Radiological and Medical Sciences, Busan 46033, Republic of Korea
| | - Yang Hee Lee
- Laboratory of Biological Dosimetry, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Republic of Korea
| | - Hyo Jin Yoon
- Laboratory of Biological Dosimetry, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Republic of Korea
| | - Su San Yang
- Laboratory of Biological Dosimetry, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Republic of Korea
| | - Seung Hyun Kim
- Laboratory of Biological Dosimetry, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Republic of Korea
| | - Seongjae Jang
- Laboratory of Biological Dosimetry, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Republic of Korea
| | - Sunhoo Park
- National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Republic of Korea; Department of Pathology, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Republic of Korea
| | - Da Hye Heo
- National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Republic of Korea
| | - Won Il Jang
- National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Republic of Korea; Department of Radiation Oncology, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - Hyung Jun Yoo
- National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Republic of Korea; Department of Radiation Oncology, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - Eun Kyung Paik
- National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Republic of Korea; Department of Radiation Oncology, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - Hyo Rak Lee
- National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Republic of Korea; Division of Hematology and Medical Oncology, Department of Internal Medicine, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea.
| | - Ki Moon Seong
- Laboratory of Biological Dosimetry, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Republic of Korea.
| |
Collapse
|
6
|
Balajee AS, Hadjidekova V. Retrospective cytogenetic analysis of unstable and stable chromosome aberrations in the victims of radiation accident in Bulgaria. Mutat Res 2020; 861-862:503295. [PMID: 33551098 DOI: 10.1016/j.mrgentox.2020.503295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/23/2020] [Accepted: 11/09/2020] [Indexed: 11/26/2022]
Abstract
Five occupational workers in an industrial sterilization unit at Stamboliyski in Bulgaria were accidentally exposed to a very high specific activity of Cobalt-60 source on June 14, 2011. Initial cytogenetic analysis performed on days 2 and 7 after radiation exposure revealed the whole body absorbed radiation doses of 5.32 Gy for patient 1, 3.40 Gy for patient 2, 2.50 Gy for patient 3, 1.91 Gy for patient 4 and 1.24 Gy for patient 5 [1]. Here, a retrospective multicolor FISH analysis was performed on three patients (patients 1, 2 and 3) using the blood samples collected over a period of 4 years from 2012 through 2015. In all the three patients, cells with stable chromosome aberrations (simple and complex chromosome translocations) were 3-4 folds more than cells with unstable chromosome aberrations (dicentric, rings and excess acentric chromosome fragments). In corroboration with the results reported in the literature, we observed that the time dependent decline of dicentrics, rings and excess acentric fragments occurred much more rapidly than chromosome translocations in the blood samples of the three victims. Further, inter-individual variation in the decline of radiation induced chromosome aberrations was also noticed among the three victims. The reason for the increased persistence of balanced chromosome translocations is not entirely clear but may be attributed to certain subsets of long-lived T-lymphocytes. The retrospective cytogenetic follow up studies on radiation-exposed victims may be useful for determining the extent of genomic/chromosomal instability in the hematopoietic system.
Collapse
Affiliation(s)
- Adayabalam S Balajee
- Cytogenetic Biodosimetry Laboratory, Radiation Emergency Assistance Center/Training Site, Oak Ridge Institute for Science and Education, Oak Ridge Associated Universities, Oak Ridge, TN, USA.
| | | |
Collapse
|
7
|
Lee Y, Seo S, Jin YW, Jang S. Assessment of working environment and personal dosimeter-wearing compliance of industrial radiographers based on chromosome aberration frequencies. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2020; 40:151-164. [PMID: 31539897 DOI: 10.1088/1361-6498/ab4686] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Industrial radiographers are exposed to relatively higher doses of radiation than other radiation-exposed workers in South Korea. The objective of our study was to investigate the impact of specific occupational conditions on chromosome aberration frequency and evaluate dosimeter-wearing compliance of industrial radiographers in Korea. We studied individual and occupational characteristics of 120 industrial radiographers working in South Korea and evaluated the frequency of dicentrics and translocations in chromosomes to estimate radiation exposure. The association between working conditions and chromosome aberration frequencies was assessed by Poisson regression analysis after adjusting for confounding factors. Legal personal dosimeter-wearing compliance among workers was investigated by correlation analysis between recorded dose and chromosome aberration frequency. Daily average number of radiographic films used in the last six months was associated with dicentrics frequency. Workers performing site radiography showed significantly higher translocation frequency than those working predominantly in shielded enclosures. The correlation between chromosome aberration frequency and recorded dose was higher in workers in the radiography occupation since 2012 (new workers) than other veteran workers. Our study found that site radiography could affect actual radiation exposure to workers. Controlling these working conditions and making an effort to improve personal dosimeter-wearing compliance among veteran workers as well as new workers may be necessary to reduce radiation exposure as much as possible in their workplace.
Collapse
Affiliation(s)
- Younghyun Lee
- Laboratory of Biological Dosimetry, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Songwon Seo
- Laboratory of Low Dose Risk Assessment, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Young Woo Jin
- National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Seongjae Jang
- Laboratory of Biological Dosimetry, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| |
Collapse
|
8
|
Mayo T, Haderlein M, Schuster B, Wiesmüller A, Hummel C, Bachl M, Schmidt M, Fietkau R, Distel L. Is in vivo and ex vivo irradiation equally reliable for individual Radiosensitivity testing by three colour fluorescence in situ hybridization? Radiat Oncol 2019; 15:2. [PMID: 31892333 PMCID: PMC6938618 DOI: 10.1186/s13014-019-1444-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 12/11/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Individual radiosensitivity is influencing the outcome of radiation therapy. A general ex vivo testing is very work-intensive. It is of interest to see if a significant prediction concerning the sensitivity can be made by in vivo irradiation during radiation treatment. METHODS Blood samples of 274 patients with rectal cancer and 43 lung cancer patients receiving radiotherapy were examined after 2 Gy ex vivo and in vivo ionizing radiation. Chromosomes # 1, 2 and 4 were stained by the 3-color-fluorescence in situ hybridization. Chromosomal aberrations were analyzed as breaks per metaphase (B/M). The deposited energy per session was calculated for each patient. RESULTS Weak correlation could be found between the chromosomal aberrations ex and in vivo. Though receiving significantly smaller deposited energy during radiation therapy (RT) the lung cancer cohort displayed B/M values similar to the rectal cancer cohort. Considering the individual deposit energy differences improved slightly the correlation. CONCLUSIONS As various factors influence the induction of chromosomal aberrations it seems not feasible to estimate individual radiosensitivity via in vivo irradiation. An ex vivo estimation of individual radiosensitivity should be preferred.
Collapse
Affiliation(s)
- Theresa Mayo
- Department of Radiation Oncology, Friedrich-Alexander-University of Erlangen-Nuernberg, Erlangen, Germany
| | - Marlen Haderlein
- Department of Radiation Oncology, Friedrich-Alexander-University of Erlangen-Nuernberg, Erlangen, Germany
| | - Barbara Schuster
- Department of Radiation Oncology, Friedrich-Alexander-University of Erlangen-Nuernberg, Erlangen, Germany
| | - Anna Wiesmüller
- Department of Radiation Oncology, Friedrich-Alexander-University of Erlangen-Nuernberg, Erlangen, Germany
| | - Christian Hummel
- Department of Radiation Oncology, Friedrich-Alexander-University of Erlangen-Nuernberg, Erlangen, Germany
| | - Maximilian Bachl
- Department of Radiation Oncology, Friedrich-Alexander-University of Erlangen-Nuernberg, Erlangen, Germany
| | - Manfred Schmidt
- Department of Radiation Oncology, Friedrich-Alexander-University of Erlangen-Nuernberg, Erlangen, Germany
| | - Rainer Fietkau
- Department of Radiation Oncology, Friedrich-Alexander-University of Erlangen-Nuernberg, Erlangen, Germany
| | - Luitpold Distel
- Department of Radiation Oncology, Friedrich-Alexander-University of Erlangen-Nuernberg, Erlangen, Germany.
| |
Collapse
|
9
|
Abe Y, Noji H, Miura T, Sugai M, Kurosu Y, Ujiie R, Tsuyama N, Yanagi A, Yanai Y, Ohba T, Ishikawa T, Kamiya K, Yoshida MA, Sakai A. Investigation of the cumulative number of chromosome aberrations induced by three consecutive CT examinations in eight patients. JOURNAL OF RADIATION RESEARCH 2019; 60:729-739. [PMID: 31665444 PMCID: PMC7357232 DOI: 10.1093/jrr/rrz068] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 08/16/2019] [Indexed: 06/10/2023]
Abstract
In our previous study, we found that chromosomes were damaged by the radiation exposure from a single computed tomography (CT) examination, based on an increased number of dicentric chromosomes (Dics) formed in peripheral blood lymphocytes after a CT examination. We then investigated whether a cumulative increase in the frequency of Dics and chromosome translocations (Trs) formation could be observed during three consecutive CT examinations performed over the course of 3-4 years, using lymphocytes in peripheral bloods of eight patients (five males and three females; age range 27-77 years; mean age, 64 years). The effective radiation dose per CT examination estimated from the computational dosimetry system was 22.0-73.5 mSv, and the average dose per case was 40.5 mSv. The frequency of Dics formation significantly increased after a CT examination and tended to decrease before the next examination. Unlike Dics analysis, we found no significant increase in the frequency of Trs formation before and after the CT examination, and we observed no tendency for the frequency to decrease before the next CT examination. The frequency of Trs formation was higher than that of Dics formation regardless of CT examination. Furthermore, neither analysis of Dics nor Trs showed a cumulative increase in the frequency of formation following three consecutive CT examinations.
Collapse
Affiliation(s)
- Yu Abe
- Department of Radiation Life Sciences, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Hideyoshi Noji
- Department of Medical Oncology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Tomisato Miura
- Department of Bioscience and Laboratory Medicine, Hirosaki University Graduate School of Health Sciences, Hirosaki, Japan
| | - Misaki Sugai
- Department of Radiation Life Sciences, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Yumiko Kurosu
- Radiation Medical Science Center for the Fukushima Health Management Survey, Fukushima Medical University, Fukushima, Japan
| | - Risa Ujiie
- Radiation Medical Science Center for the Fukushima Health Management Survey, Fukushima Medical University, Fukushima, Japan
| | - Naohiro Tsuyama
- Department of Radiation Life Sciences, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Aki Yanagi
- Department of Radiation Life Sciences, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Yukari Yanai
- Department of Radiation Life Sciences, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Takashi Ohba
- Department of Radiation Health Management, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Tetsuo Ishikawa
- Department of Radiation Physics and Chemistry, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Kenji Kamiya
- Department of Experimental Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Mitsuaki A Yoshida
- Department of Radiation Biology, Institute of Radiation Emergency Medicine, Hirosaki University, Hirosaki, Japan
| | - Akia Sakai
- Department of Radiation Life Sciences, Fukushima Medical University School of Medicine, Fukushima, Japan
| |
Collapse
|
10
|
Goh VST, Fujishima Y, Abe Y, Sakai A, Yoshida MA, Ariyoshi K, Kasai K, Wilkins RC, Blakely WF, Miura T. Construction of fluorescence in situ hybridization (FISH) translocation dose-response calibration curve with multiple donor data sets using R, based on ISO 20046:2019 recommendations. Int J Radiat Biol 2019; 95:1668-1684. [DOI: 10.1080/09553002.2019.1664788] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Valerie Swee Ting Goh
- Department of Bioscience and Laboratory Medicine, Graduate School of Health Sciences, Hirosaki University, Hirosaki, Japan
| | - Yohei Fujishima
- Department of Bioscience and Laboratory Medicine, Graduate School of Health Sciences, Hirosaki University, Hirosaki, Japan
- Department of Radiation Biology, Tohoku University School of Medicine, Sendai, Japan
| | - Yu Abe
- Department of Radiation Life Sciences, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Akira Sakai
- Department of Radiation Life Sciences, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Mitsuaki A. Yoshida
- Department of Radiation Biology, Institute of Radiation Emergency Medicine, Hirosaki University, Hirosaki, Japan
| | - Kentaro Ariyoshi
- Department of Radiation Biology, Institute of Radiation Emergency Medicine, Hirosaki University, Hirosaki, Japan
| | - Kosuke Kasai
- Department of Bioscience and Laboratory Medicine, Graduate School of Health Sciences, Hirosaki University, Hirosaki, Japan
| | - Ruth C. Wilkins
- Consumer and Clinical Radiation Protection Bureau, Healthy Environments and Consumer Safety Branch, Ottawa, ON, Canada
| | - William F. Blakely
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Tomisato Miura
- Department of Bioscience and Laboratory Medicine, Graduate School of Health Sciences, Hirosaki University, Hirosaki, Japan
- Department of Radiation Biology, Institute of Radiation Emergency Medicine, Hirosaki University, Hirosaki, Japan
| |
Collapse
|
11
|
Lee JK, Lee MS, Moon MH, Woo H, Hong YJ, Jang S, Oh S. Translocation Frequency in Patients with Repeated CT Exposure: Comparison with CT-Naive Patients. Radiat Res 2019; 192:23-27. [DOI: 10.1667/rr15286.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
| | | | | | | | | | - Seongjae Jang
- Department of Laboratory of Biological Dosimetry, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Sohee Oh
- Department of Biostatistics, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
12
|
McKenna MJ, Robinson E, Taylor L, Tompkins C, Cornforth MN, Simon SL, Bailey SM. Chromosome Translocations, Inversions and Telomere Length for Retrospective Biodosimetry on Exposed U.S. Atomic Veterans. Radiat Res 2019; 191:311-322. [PMID: 30714852 PMCID: PMC6492561 DOI: 10.1667/rr15240.1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
It has now been over 60 years since U.S. nuclear testing was conducted in the Pacific islands and Nevada, exposing military personnel to varying levels of ionizing radiation. Actual doses are not well-established, as film badges in the 1950s had many limitations. We sought a means of independently assessing dose for comparison with historical film badge records and dose reconstruction conducted in parallel. For the purpose of quantitative retrospective biodosimetry, peripheral blood samples from 12 exposed veterans and 12 age-matched (>80 years) veteran controls were collected and evaluated for radiation-induced chromosome damage utilizing directional genomic hybridization (dGH), a cytogenomics-based methodology that facilitates simultaneous detection of translocations and inversions. Standard calibration curves were constructed from six male volunteers in their mid-20s to reflect the age range of the veterans at time of exposure. Doses were estimated for each veteran using translocation and inversion rates independently; however, combining them by a weighted-average generally improved the accuracy of dose estimations. Various confounding factors were also evaluated for potential effects on chromosome aberration frequencies. Perhaps not surprisingly, smoking and age-associated increases in background frequencies of inversions were observed. Telomere length was also measured, and inverse relationships with both age and combined weighted dose estimates were observed. Interestingly, smokers in the non-exposed control veteran cohort displayed similar telomere lengths as those in the never-smoker exposed veteran group, suggesting that chronic smoking had as much effect on telomere length as a single exposure to radioactive fallout. Taken together, we find that our approach of combined chromosome aberration-based retrospective biodosimetry provided reliable dose estimation capability, particularly on a group average basis, for exposures above statistical detection limits.
Collapse
Affiliation(s)
- Miles J. McKenna
- Cell and Molecular Biology Program Colorado State University, Fort Collins, Colorado
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado
- KromaTiD, Inc., Fort Collins, Colorado
| | | | - Lynn Taylor
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado
| | | | - Michael N. Cornforth
- Cell and Molecular Biology Program Colorado State University, Fort Collins, Colorado
- Department of Radiation Oncology, University of Texas Medical Branch, Galveston, Texas
| | - Steven L. Simon
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Susan M. Bailey
- Cell and Molecular Biology Program Colorado State University, Fort Collins, Colorado
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado
- KromaTiD, Inc., Fort Collins, Colorado
| |
Collapse
|
13
|
Jang MA, Han EA, Lee JK, Cho KH, Shin HB, Lee YK. Dose Estimation Curves Following In Vitro X-ray Irradiation Using Blood From Four Healthy Korean Individuals. Ann Lab Med 2018; 39:91-95. [PMID: 30215236 PMCID: PMC6143466 DOI: 10.3343/alm.2019.39.1.91] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 02/14/2018] [Accepted: 07/10/2018] [Indexed: 12/27/2022] Open
Abstract
Cytogenetic dosimetry is useful for evaluating the absorbed dose of ionizing radiation based on analysis of radiation-induced chromosomal aberrations. We created two types of in vitro dose-response calibration curves for dicentric chromosomes (DC) and translocations (TR) induced by X-ray irradiation, using an electron linear accelerator, which is the most frequently used medical device in radiotherapy. We irradiated samples from four healthy Korean individuals and compared the resultant curves between individuals. Aberration yields were studied in a total of 31,800 and 31,725 metaphases for DC and TR, respectively, obtained from 11 X-ray irradiation dose-points (0, 0.05, 0.1, 0.25, 0.5, 0.75, 1, 2, 3, 4, and 5 Gy). The dose-response relationship followed a linear-quadratic equation, Y=C+αD+βD², with the coefficients C=0.0011 for DC and 0.0015 for TR, α=0.0119 for DC and 0.0048 for TR, and β=0.0617 for DC and 0.0237 for TR. Correlation coefficients between irradiation doses and chromosomal aberrations were 0.971 for DC and 0.6 for TR, indicating a very strong and a moderate correlation, respectively. This is the first study implementing cytogenetic dosimetry following exposure to ionizing X-radiation.
Collapse
Affiliation(s)
- Mi Ae Jang
- Department of Laboratory Medicine and Genetics, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, Korea
| | - Eun Ae Han
- Department of Laboratory Medicine and Genetics, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, Korea
| | - Jin Kyung Lee
- Department of Laboratory Medicine, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Kwang Hwan Cho
- Department of Radiation Oncology, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, Korea
| | - Hee Bong Shin
- Department of Laboratory Medicine and Genetics, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, Korea.
| | - You Kyoung Lee
- Department of Laboratory Medicine and Genetics, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, Korea.
| |
Collapse
|
14
|
Grégoire E, Roy L, Buard V, Delbos M, Durand V, Martin-Bodiot C, Voisin P, Sorokine-Durm I, Vaurijoux A, Voisin P, Baldeyron C, Barquinero JF. Twenty years of FISH-based translocation analysis for retrospective ionizing radiation biodosimetry. Int J Radiat Biol 2018; 94:248-258. [DOI: 10.1080/09553002.2018.1427903] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Eric Grégoire
- Laboratoire de Radiobiologie des expositions Accidentelles, Institut de Radioprotection et de Sureté Nucléaire (IRSN), Fontenay-aux-Roses Cedex, France
| | - Laurence Roy
- Laboratoire de Radiobiologie des expositions Accidentelles, Institut de Radioprotection et de Sureté Nucléaire (IRSN), Fontenay-aux-Roses Cedex, France
| | - Valérie Buard
- Laboratoire de Radiobiologie des expositions Accidentelles, Institut de Radioprotection et de Sureté Nucléaire (IRSN), Fontenay-aux-Roses Cedex, France
| | - Martine Delbos
- Institut Fédératif de Biologie, CHU Toulouse Purpan, Toulouse, France
| | - Valérie Durand
- Bureau des Etudes Biomédicales chez l’Animal, Commissariat à l’Energie Atomique, Fontenay-aux-Roses, France
| | - Cécile Martin-Bodiot
- Laboratoire de Radiobiologie des expositions Accidentelles, Institut de Radioprotection et de Sureté Nucléaire (IRSN), Fontenay-aux-Roses Cedex, France
| | - Pascale Voisin
- Laboratoire de Radiobiologie des expositions Accidentelles, Institut de Radioprotection et de Sureté Nucléaire (IRSN), Fontenay-aux-Roses Cedex, France
| | - Irène Sorokine-Durm
- Laboratoire de Radiobiologie des expositions Accidentelles, Institut de Radioprotection et de Sureté Nucléaire (IRSN), Fontenay-aux-Roses Cedex, France
| | - Aurélie Vaurijoux
- Laboratoire de Radiobiologie des expositions Accidentelles, Institut de Radioprotection et de Sureté Nucléaire (IRSN), Fontenay-aux-Roses Cedex, France
| | - Philippe Voisin
- Laboratoire de Radiobiologie des expositions Accidentelles, Institut de Radioprotection et de Sureté Nucléaire (IRSN), Fontenay-aux-Roses Cedex, France
| | - Céline Baldeyron
- Laboratoire de Radiobiologie des expositions Accidentelles, Institut de Radioprotection et de Sureté Nucléaire (IRSN), Fontenay-aux-Roses Cedex, France
| | | |
Collapse
|
15
|
Abe Y, Yoshida MA, Fujioka K, Kurosu Y, Ujiie R, Yanagi A, Tsuyama N, Miura T, Inaba T, Kamiya K, Sakai A. Dose-response curves for analyzing of dicentric chromosomes and chromosome translocations following doses of 1000 mGy or less, based on irradiated peripheral blood samples from five healthy individuals. JOURNAL OF RADIATION RESEARCH 2018; 59:35-42. [PMID: 29040682 PMCID: PMC5786284 DOI: 10.1093/jrr/rrx052] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Indexed: 05/03/2023]
Abstract
In terms of biological dosimetry at the time of radiation exposure, the dicentric chromosome (Dic) assay (DCA) is the gold standard for assessing for the acute phase and chromosome translocation (Tr) analysis is the gold standard for assessing the chronic phase. It is desirable to have individual dose-response curves (DRCs) for each laboratory because the analysis criteria differ between laboratories. We constructed the DRCs for radiation dose estimation (with three methods) using peripheral blood (PB) samples from five healthy individuals. Aliquots were irradiated with one of eight gamma-ray doses (0, 10, 20, 50, 100, 200, 500 or 1000 mGy), then cultured for 48 h. The number of chromosome aberrations (CAs) was analyzed by DCA, using Giemsa staining and centromere-fluorescence in situ hybridization (centromere-FISH) and by chromosome painting (chromosome pairs 1, 2 and 4) for Tr analysis. In DCA, there was large variation between individuals in the frequency of Dics formed, and the slopes of the DRCs were different. In Tr analysis, although variation was observed in the frequency of Tr, the slopes of the DRCs were similar after adjusting the background for age. Good correlation between the irradiation dose and the frequency of CAs formed was observed with these three DRCs. However, performing three different biological dosimetry assays simultaneously on PB from five donors nonetheless results in variation in the frequency of CAs formed, especially at doses of 50 mGy or less, highlighting the difficulty of biological dosimetry using these methods. We conclude that it might be difficult to construct universal DRCs.
Collapse
Affiliation(s)
- Yu Abe
- Department of Radiation Life Sciences, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, 960–1295, Japan
| | - Mitsuaki A Yoshida
- Department of Radiation Biology, Institute of Radiation Emergency Medicine, Hirosaki University, Hirosaki, 036-8564, Japan
| | - Kurumi Fujioka
- Department of Molecular Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, 734-8553, Japan
| | - Yumiko Kurosu
- Department of Radiation Life Sciences, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, 960–1295, Japan
| | - Risa Ujiie
- Department of Radiation Life Sciences, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, 960–1295, Japan
| | - Aki Yanagi
- Department of Radiation Life Sciences, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, 960–1295, Japan
| | - Naohiro Tsuyama
- Department of Radiation Life Sciences, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, 960–1295, Japan
| | - Tomisato Miura
- Department of Pathologic Analysis, Hirosaki University Graduate School of Health Sciences, Hirosaki, 036-8564, Japan
| | - Toshiya Inaba
- Department of Molecular Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, 734-8553, Japan
| | - Kenji Kamiya
- Department of Experimental Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Akira Sakai
- Department of Radiation Life Sciences, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, 960–1295, Japan
- Corresponding author. Department of Radiation Life Sciences, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, 960–1295, Japan. Tel: +81-24-547-1420; Fax: +81-24-547-1940;
| |
Collapse
|
16
|
Ko S, Chung HH, Cho SB, Jin YW, Kim KP, Ha M, Bang YJ, Ha YW, Lee WJ. Occupational radiation exposure and its health effects on interventional medical workers: study protocol for a prospective cohort study. BMJ Open 2017; 7:e018333. [PMID: 29248885 PMCID: PMC5778344 DOI: 10.1136/bmjopen-2017-018333] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
INTRODUCTION Although fluoroscopically guided procedures involve a considerably high dose of radiation, few studies have investigated the effects of radiation on medical workers involved in interventional fluoroscopy procedures. Previous research remains in the early stages and has not reached a level comparable with other occupational studies thus far. Furthermore, the study of radiation workers provides an opportunity to estimate health risks at low doses and dose rates of ionising radiation. Therefore, the objectives of this study are (1) to initiate a prospective cohort study by conducting a baseline survey among medical radiation workers who involve interventional fluoroscopy procedures and (2) to assess the effect of occupational radiation exposure and on the overall health status through an in-depth cross-sectional study. METHODS AND ANALYSIS Intervention medical workers in Korea will be enrolled by using a self-administered questionnaire survey, and the survey data will be linked with radiation dosimetry data, National Health Insurance claims data, cancer registry and mortality data. After merging these data, the radiation organ dose, lifetime attributable risk due to cancer and the risk per unit dose will be estimated. For the cross-sectional study, approximately 100 intervention radiology department workers will be investigated for blood tests, clinical examinations such as ultrasonography (thyroid and carotid artery scan) and lens opacity, the validation of badge dose and biodosimetry. ETHICS AND DISSEMINATION This study was reviewed and approved by the institutional review board of Korea University (KU-IRB-12-12-A-1). All participants will provide written informed consent prior to enrolment. The findings of the study will be disseminated through peer-reviewed scientific journals, conference presentations, and a report will be submitted to the relevant public health authorities in the Korea Centers for Disease Control and Prevention to help with the development of appropriate research and management policies.
Collapse
Affiliation(s)
- Seulki Ko
- Department of Preventive Medicine, Korea University College of Medicine, Seoul, South Korea
- Graduate School of Public Health, Korea University, Seoul, South Korea
| | - Hwan Hoon Chung
- Department of Radiology, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, South Korea
| | - Sung Bum Cho
- Department of Radiology, Korea University Anam Hospital, Korea University College of Medicine, Seoul, South Korea
| | - Young Woo Jin
- National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Kwang Pyo Kim
- Department of Nuclear Engineering, Kyung Hee University, Yongin, South Korea
| | - Mina Ha
- Department of Preventive Medicine, Dankook University College of Medicine, Cheonam, South Korea
| | - Ye Jin Bang
- Department of Preventive Medicine, Korea University College of Medicine, Seoul, South Korea
- Graduate School of Public Health, Korea University, Seoul, South Korea
| | - Yae Won Ha
- Department of Preventive Medicine, Korea University College of Medicine, Seoul, South Korea
| | - Won Jin Lee
- Department of Preventive Medicine, Korea University College of Medicine, Seoul, South Korea
- Graduate School of Public Health, Korea University, Seoul, South Korea
| |
Collapse
|
17
|
Jang S, Lee JK, Cho M, Yang SS, Kim SH, Kim WT. Consecutive results of blood cell count and retrospective biodosimetry: useful tools of health protection regulation for radiation workers. Occup Environ Med 2016; 73:694-700. [PMID: 27466611 PMCID: PMC5036271 DOI: 10.1136/oemed-2016-103775] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 06/22/2016] [Accepted: 07/05/2016] [Indexed: 12/04/2022]
Abstract
BACKGROUND Industrial radiography is known to be one of the most vulnerable lines of work among the range of different radiation work. According to the relevant law in Korea, every worker registered in this work should check their blood cell counts every year in addition to their thermoluminescent dosimeter (TLD) doses. Since the law was enacted, however, few follow-up studies have been carried out based on the obtained results. OBJECTIVES To ascertain the clinical usefulness of complete blood cell count (CBC) results and suggest a proper protocol of health protection for radiation workers. METHODS After reviewing all the consecutive results of CBC and TLD doses from radiation workers registered nationwide, we selected two groups of high-risk radiation workers, CBC-high risk (CBC-HR) and TLD-high risk (TLD-HR) groups. A control group of unexposed healthy adults was also included. We compared the absorbed doses calculated by cytogenetic biodosimetry among those three groups, and examined possible confounding factors for each group. RESULTS Both groups of high-risk radiation workers, CBC-HR and TLD-HR, showed higher chromosome aberrations than the control group. In the control group, previous medical history of a CT scan increased the frequency of chromosome aberrations. In contrast, the frequency of chromosome aberrations in the high-risk radiation workers was affected not by the previous CT history but only by the duration of their work. CONCLUSIONS We ascertain that reviewing consecutive results of blood cell counts and cytogenetic biodosimetry are useful complementary tools to TLD doses for health protection regulation. Several confounding factors including work duration and previous medical history need to be considered for the interpretation of biodosimetry results.
Collapse
Affiliation(s)
- Seongjae Jang
- Department of Dose Assessment, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Jin Kyung Lee
- Department of Dose Assessment, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
- Department of Laboratory Medicine, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Minsu Cho
- Department of Dose Assessment, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Su San Yang
- Department of Dose Assessment, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Seung Hyun Kim
- Department of Dose Assessment, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Wan Tae Kim
- Division of Radiation Regulation, Korea Institute of Nuclear Safety, Daejeon, South Korea
| |
Collapse
|
18
|
Shim G, Normil MD, Testard I, Hempel WM, Ricoul M, Sabatier L. Comparison of Individual Radiosensitivity to γ-Rays and Carbon Ions. Front Oncol 2016; 6:137. [PMID: 27379201 PMCID: PMC4904030 DOI: 10.3389/fonc.2016.00137] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 05/23/2016] [Indexed: 12/15/2022] Open
Abstract
Carbon ions are an up-and-coming ion species, currently being used in charged particle radiotherapy. As it is well established that there are considerable interindividual differences in radiosensitivity in the general population that can significantly influence clinical outcomes of radiotherapy, we evaluate the degree of these differences in the context of carbon ion therapy compared with conventional radiotherapy. In this study, we evaluate individual radiosensitivity following exposure to carbon-13 ions or γ-rays in peripheral blood lymphocytes of healthy individuals based on the frequency of ionizing radiation (IR)-induced DNA double strand breaks (DSBs) that was either misrepaired or left unrepaired to form chromosomal aberrations (CAs) (simply referred to here as DSBs for brevity). Levels of DSBs were estimated from the scoring of CAs visualized with telomere/centromere-fluorescence in situ hybridization (TC-FISH). We examine radiosensitivity at the dose of 2 Gy, a routinely administered dose during fractionated radiotherapy, and we determined that a wide range of DSBs were induced by the given dose among healthy individuals, with highly radiosensitive individuals harboring more IR-induced breaks in the genome than radioresistant individuals following exposure to the same dose. Furthermore, we determined the relative effectiveness of carbon irradiation in comparison to γ-irradiation in the induction of DSBs at each studied dose (isodose effect), a quality we term “relative dose effect” (RDE). This ratio is advantageous, as it allows for simple comparison of dose–response curves. At 2 Gy, carbon irradiation was three times more effective in inducing DSBs compared with γ-irradiation (RDE of 3); these results were confirmed using a second cytogenetic technique, multicolor-FISH. We also analyze radiosensitivity at other doses (0.2–15 Gy), to represent hypo- and hyperfractionation doses and determined that RDE is dose dependent: high ratios at low doses, and approaching 1 at high doses. These results could have clinical implications as IR-induced DNA damage and the ensuing CAs and genomic instability can have significant cellular consequences that could potentially have profound implications for long-term human health after IR exposure, such as the emergence of secondary cancers and other pathobiological conditions after radiotherapy.
Collapse
Affiliation(s)
- Grace Shim
- Commissariat à l'Energie Atomique (CEA), DRF/PROCyTOX , Fontenay-aux-Roses , France
| | - Marie Delna Normil
- Commissariat à l'Energie Atomique (CEA), DRF/PROCyTOX , Fontenay-aux-Roses , France
| | - Isabelle Testard
- CEA Grenoble, Laboratoire de Chimie et Biologie des Métaux, BIG, DRF , Grenoble , France
| | - William M Hempel
- Commissariat à l'Energie Atomique (CEA), DRF/PROCyTOX , Fontenay-aux-Roses , France
| | - Michelle Ricoul
- Commissariat à l'Energie Atomique (CEA), DRF/PROCyTOX , Fontenay-aux-Roses , France
| | - Laure Sabatier
- Commissariat à l'Energie Atomique (CEA), DRF/PROCyTOX , Fontenay-aux-Roses , France
| |
Collapse
|
19
|
Construction of a cytogenetic dose–response curve for low-dose range gamma-irradiation in human peripheral blood lymphocytes using three-color FISH. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2015; 794:32-8. [DOI: 10.1016/j.mrgentox.2015.10.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 10/17/2015] [Accepted: 10/20/2015] [Indexed: 11/23/2022]
|