1
|
Gareev I, Jiang J, Beylerli O, Beilerli A, Ilyasova T, Shumadalova A, Bai Y, Du W, Yang B. Adjuvant Anti-tumor Therapy with Polyphenolic Compounds: A Review. Curr Med Chem 2025; 32:1934-1967. [PMID: 40351076 DOI: 10.2174/0109298673284605240301035057] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/25/2023] [Accepted: 01/03/2024] [Indexed: 05/14/2025]
Abstract
The search for effective methods of treatment and prevention of oncological diseases, despite the successes achieved in recent decades, remains one of the most urgent issues in modern medicine. It is known that chemotherapy and radiation therapy are based on the induction of cell death by increasing the intracellular concentration of reactive oxygen species (ROS). To increase the effectiveness of chemo- and radiotherapy, inducing and increasing oxidative stress in tumor cells has been proposed. A new class of promising adjuvants in combination with anticancer therapy, which has already been shown to be effective in preclinical and clinical studies, includes natural and synthetic polyphenols. Polyphenolic compounds not only exhibit antitumor activity but also significantly reduce the resistance of tumor cells to chemo- and radiotherapy. However, almost all chemotherapeutic drugs and regimens of radiation treatment have a damaging toxic effect on normal tissues, which significantly affects the quality of life of patients, and treatment options for managing these side effects are limited. In this regard, some of the most promising agents for the management of toxic side effects are natural polyphenols. This study discusses the possible molecular mechanisms and prospects for the clinical use of natural and synthetic polyphenolic compounds in chemo- and radiotherapy. In addition, the protective role/effect of polyphenols on the effects of chemoand radiotherapy in tumor patients is discussed.
Collapse
Affiliation(s)
- Ilgiz Gareev
- Central Research Laboratory, Department of Pharmacology, Bashkir State Medical University, Republic of Bashkortostan, 3 Lenin Street, Ufa, 450008, Russia
| | - Jianhao Jiang
- The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, 150067, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, 150081, P.R. China
| | - Ozal Beylerli
- Central Research Laboratory, Department of Pharmacology, Bashkir State Medical University, Republic of Bashkortostan, 3 Lenin Street, Ufa, 450008, Russia
| | - Aferin Beilerli
- Department of Obstetrics and Gynecology, Tyumen State Medical University, 54 Odesskaya Street, 625023, Tyumen, Russia
| | - Tatiana Ilyasova
- Department of Internal Diseases, Bashkir State Medical University, Ufa, Republic of Bashkortostan, 3 Lenin Street, Ufa, 450008, Russia
| | - Alina Shumadalova
- Department of General Chemistry, Bashkir State Medical University, Republic of Bashkortostan, 3 Lenin Street, Ufa, 450008, Russia
| | - Yunlong Bai
- The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, 150067, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, 150081, P.R. China
| | - Weijie Du
- The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, 150067, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, 150081, P.R. China
| | - Baofeng Yang
- The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, 150067, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, 150081, P.R. China
| |
Collapse
|
2
|
El Kantar S, Yassin A, Nehmeh B, Labaki L, Mitri S, Naser Aldine F, Hirko A, Caballero S, Monck E, Garcia-Maruniak A, Akoury E. Deciphering the therapeutical potentials of rosmarinic acid. Sci Rep 2022; 12:15489. [PMID: 36109609 PMCID: PMC9476430 DOI: 10.1038/s41598-022-19735-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/02/2022] [Indexed: 12/01/2022] Open
Abstract
Lemon balm is herbal tea used for soothing stomach cramps, indigestion, and nausea. Rosmarinic acid (RA) is one of its chemical constituents known for its therapeutic potentials against cancer, inflammatory and neuronal diseases such as the treatment of neurofibromatosis or prevention from Alzheimer’s diseases (AD). Despite efforts, recovery and purification of RA in high yields has not been entirely successful. Here, we report its aqueous extraction with optimal conditions and decipher the structure by nuclear magnetic resonance (NMR) spectroscopy. Using various physical–chemical and biological assays, we highlight its anti-aggregation inhibition potentials against the formation of Tau filaments, one of the hallmarks of AD. We then examine its anti-cancer potentials through reduction of the mitochondrial reductase activity in tumor cells and investigate its electrochemical properties by cyclic voltammetry. Our data demonstrates that RA is a prominent biologically active natural product with therapeutic potentials for drug discovery in AD, cancer therapy and inflammatory diseases.
Collapse
|
3
|
Protection of the hematopoietic system against radiation-induced damage: drugs, mechanisms, and developments. Arch Pharm Res 2022; 45:558-571. [PMID: 35951164 DOI: 10.1007/s12272-022-01400-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 08/03/2022] [Indexed: 11/12/2022]
Abstract
Sometimes, people can be exposed to moderate or high doses of radiation accidentally or through the environment. Radiation can cause great harm to several systems within organisms, especially the hematopoietic system. Several types of drugs protect the hematopoietic system against radiation damage in different ways. They can be classified as "synthetic drugs" and "natural compounds." Their cellular mechanisms to protect organisms from radiation damage include free radical-scavenging, anti-oxidation, reducing genotoxicity and apoptosis, and alleviating suppression of the bone marrow. These topics have been reviewed to provide new ideas for the development and research of drugs alleviating radiation-induced damage to the hematopoietic system.
Collapse
|
4
|
Huang L, Chen J, Quan J, Xiang D. Rosmarinic acid inhibits proliferation and migration, promotes apoptosis and enhances cisplatin sensitivity of melanoma cells through inhibiting ADAM17/EGFR/AKT/GSK3β axis. Bioengineered 2021; 12:3065-3076. [PMID: 34224305 PMCID: PMC8806498 DOI: 10.1080/21655979.2021.1941699] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 02/06/2023] Open
Abstract
Rosmarinic acid (RA), a naturally occurring polyphenolic compound, exerts multiple biological properties including anti-cancer. The metalloprotease, a disintegrin and metalloproteinase 17 (ADAM17), can activate ligands of the epidermal growth factor receptor (EGFR) and contribute to tumor progression. We aimed to investigate whether RA could exhibit anti-cancer effects in melanoma cells through down-regulating ADAM17. The human melanoma A375 cells were exposed to RA, then cell viability, migration, invasion, apoptosis, melanin content and the expression of ADAM17/EGFR/AKT/GSK3β were evaluated. The viability of cells exposed to RA in the presence of cisplatin (Cis) was measured by CCK-8. Cells were overexpressed with ADAM17 in the absence or presence of RA and ADAM17 inhibitor (TACE prodomain; TPD) co-treatment, then the above cellular processes were also observed. Results showed that A375 cells treated with RA showed significant lower cell viability, proliferation, migrative and invasive abilities, melanin content and expression of related proteins including MMP2 and MMP9, compared with normal cells. RA enhanced the ratio of TUINEL-positive cells, the expression of pro-apoptotic proteins, but reduced Bcl-2 expression. RA co-treatment increased the inhibitory effect of Cis on cell viability. RA inhibited the expression of ADAM17/EGFR/AKT/GSK3β, which was further suppressed by TPD. Moreover, ADAM17 overexpression blocked all the effects of RA whereas TPD treatment generated an opposite function. In conclusion, RA exerted obvious inhibitory effect on melanoma cell proliferation, migration and invasion, but promotive effect on cells apoptosis. Addition, the showing of this characteristic of RA may rely on inhibiting the expression of ADAM17/EGFR/AKT/GSK3β axis.
Collapse
Affiliation(s)
- Lin Huang
- Department of Dermatology, Jiangjin Central Hospital of Chongqing, Chongqing, China
| | - Jiangyan Chen
- Department of Oncology, Jiangjin Central Hospital of Chongqing, Chongqing, China
| | - Jin Quan
- Department of Oncology, Jiangjin Central Hospital of Chongqing, Chongqing, China
| | - Debing Xiang
- Department of Oncology, Jiangjin Central Hospital of Chongqing, Chongqing, China
| |
Collapse
|
5
|
Aldoghachi FEH, Noor Al-Mousawi UM, Shari FH. Antioxidant Activity of Rosmarinic Acid Extracted and Purified from Mentha piperita. ARCHIVES OF RAZI INSTITUTE 2021; 76:1279-1287. [PMID: 35355734 PMCID: PMC8934100 DOI: 10.22092/ari.2021.356072.1770] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 10/10/2021] [Indexed: 03/06/2023]
Abstract
Rosmarinic acid was obtained from methanolic extract of Mentha piperita L. under a reflux condenser. The current study aimed to evaluate the in vitro antioxidant activities and rosmarinic acid levels of the methanol extracts of M. piperita. The analysis of the sample by high-performance liquid chromatography technique (HPLC) indicated that rosmarinic acid was present in high concentration 1.9 mg/mL in the extract. Purification was carried out by column chromatography to give 0.020 g from 1 g of crude extract, and then the antioxidant activity of purified rosmarinic acid was determined by the 2,2-diphenyl-1-picrylhydrazyl (DPPH), H2O2 scavenging, and REDOX methods. It was revealed that the anti-oxidant potential of the rosmarinic acid extract was greater than 95% (at 100 µg/mL) for DPPH assay and 87.83% (at 100 µg/ml) for H2O2 scavenging assay. This study was performed by using a reflux methanolic extraction of M. piperita. This possible instructional technique proved to be a quick and successful method for retaining the antioxidant properties of rosmarinic acid. The rosmarinic acid content was determined using HPLC.
Collapse
Affiliation(s)
| | | | - F H Shari
- College of Pharmacy, Basra University, Basra, Iraq
| |
Collapse
|
6
|
Faramarzi S, Piccolella S, Manti L, Pacifico S. Could Polyphenols Really Be a Good Radioprotective Strategy? Molecules 2021; 26:4969. [PMID: 34443561 PMCID: PMC8398122 DOI: 10.3390/molecules26164969] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/13/2021] [Accepted: 08/15/2021] [Indexed: 11/16/2022] Open
Abstract
Currently, radiotherapy is one of the most effective strategies to treat cancer. However, deleterious toxicity against normal cells indicate for the need to selectively protect them. Reactive oxygen and nitrogen species reinforce ionizing radiation cytotoxicity, and compounds able to scavenge these species or enhance antioxidant enzymes (e.g., superoxide dismutase, catalase, and glutathione peroxidase) should be properly investigated. Antioxidant plant-derived compounds, such as phenols and polyphenols, could represent a valuable alternative to synthetic compounds to be used as radio-protective agents. In fact, their dose-dependent antioxidant/pro-oxidant efficacy could provide a high degree of protection to normal tissues, with little or no protection to tumor cells. The present review provides an update of the current scientific knowledge of polyphenols in pure forms or in plant extracts with good evidence concerning their possible radiomodulating action. Indeed, with few exceptions, to date, the fragmentary data available mostly derive from in vitro studies, which do not find comfort in preclinical and/or clinical studies. On the contrary, when preclinical studies are reported, especially regarding the bioactivity of a plant extract, its chemical composition is not taken into account, avoiding any standardization and compromising data reproducibility.
Collapse
Affiliation(s)
- Shadab Faramarzi
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy; (S.F.); (S.P.)
- Department of Plant Production and Genetics, Razi University, Kermanshah 67149-67346, Iran
| | - Simona Piccolella
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy; (S.F.); (S.P.)
| | - Lorenzo Manti
- Department of Physics E. Pancini, University of Naples “Federico II”, and Istituto Nazionale di Fisica Nucleare, (INFN), Naples Section, Monte S. Angelo, Via Cinthia, 80126 Napoli, Italy;
| | - Severina Pacifico
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy; (S.F.); (S.P.)
| |
Collapse
|
7
|
Zhang T, Ma S, Liu C, Hu K, Xu M, Wang R. Rosmarinic Acid Prevents Radiation-Induced Pulmonary Fibrosis Through Attenuation of ROS/MYPT1/TGFβ1 Signaling Via miR-19b-3p. Dose Response 2020; 18:1559325820968413. [PMID: 33149731 PMCID: PMC7580151 DOI: 10.1177/1559325820968413] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 09/15/2020] [Accepted: 09/28/2020] [Indexed: 12/16/2022] Open
Abstract
The mechanism of pulmonary fibrosis caused by irradiation remains obscure. Since rosmarinic acid (RA) have anti-oxidant and anti-inflammatory properties, we aimed to evaluate the effect of RA on the X-ray-induced lung injury. Male rats received RA (30, 60, or 120 mg/kg) 7 days before 15 Gy of X-ray irradiation. Here, we showed that RA reduced X-ray-induced the expression of inflammatory related factors, and the level of reactive oxygen species. RA down-regulated the phosphorylation of nuclear factor kappa-B (NF-κB). We found that thoracic tumor patients whose lung regions received radiation showed lower level of microRNA-19b-3p (miR-19b-3p). Furthermore, we provided evidence that miR-19b-3p targets myosin phosphatase target subunit 1 (MYPT1), and RA attenuated RhoA/Rock signaling through upregulating miR-19b-3p, leading to the inhibition of fibrosis. In conclusion, RA may be an effective agent to relieve the pulmonary fibrosis caused by radiotherapy of thoracic tumor.
Collapse
Affiliation(s)
- Tingting Zhang
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Shanshan Ma
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Chang Liu
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Kai Hu
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Meng Xu
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Rensheng Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
8
|
Protective Effects of Biscoclaurine Alkaloids on Leukopenia Induced by 60Co- γ Radiation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:2162915. [PMID: 32508944 PMCID: PMC7251465 DOI: 10.1155/2020/2162915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 04/16/2020] [Accepted: 05/09/2020] [Indexed: 01/15/2023]
Abstract
Objective Leukopenia, a common complication of tumor chemoradiotherapy, contributes serious damage to the hematopoietic, gastrointestinal, and immune systems of the body and can cause delay, discontinuation, or even failure to tumor treatment, thereby greatly threatening human health. The present study aims to investigate the protective effects of biscoclaurine alkaloids (BA) on leukopenia. Methods This study was conducted on 60 Kunming mice, which were randomly divided into six groups containing 10 animals each. A hematology analyzer was used to count white blood cells (WBC) in the peripheral blood cell. Mice serum was collected, and the granulocyte-macrophage colony-stimulating factor, vascular cell adhesion molecule 1 (VCAM-1), and interferon-γ (IFN-γ) were detected by enzyme-linked immunosorbent assays. Pathological changes were detected through hematoxylin and eosin staining in the liver and spleen of mice. The spleen and liver ultrastructures were observed via electron microscopy. Results Results showed that BA ameliorated WBC, PLT reduction in the peripheral blood and significantly increased the levels of IFN-γ and VCAM-1 in mice serum. BA reduced ionizing radiation-induced injuries to spleen, mitigated the reduction of superoxide dismutase (SOD), and significantly decreased the malonaldehyde (MDA) and xanthine oxidase (XOD) levels in the liver. Conclusion BA enhanced the immune and hematopoietic functions and ameliorated the oxidative stress induced by 60Co-γ radiation, revealing its therapeutic potential both as a radioprotector and as a radiation mitigator for leukopenia induced by 60Co-γ radiation.
Collapse
|
9
|
Zhang T, Liu C, Ma S, Gao Y, Wang R. Protective Effect and Mechanism of Action of Rosmarinic Acid on Radiation-Induced Parotid Gland Injury in Rats. Dose Response 2020; 18:1559325820907782. [PMID: 32127788 PMCID: PMC7036515 DOI: 10.1177/1559325820907782] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/02/2020] [Accepted: 01/19/2020] [Indexed: 12/16/2022] Open
Abstract
The parotid glands are damaged by oxidative stress and a series of
pathophysiological changes after irradiation. Rosmarinic acid (RA) is a natural
antioxidant that provides a radioprotective effect against harmful damage from
ionizing radiation. The present study aims to explore the protective effects of
RA on radiation-induced parotid gland injury and its underlying mechanism.
Sprague-Dawley rats were irradiated with 15 Gy X-ray and treated with different
concentrations of RA (30, 60, and 120 mg/kg) or amifostine (AMI, 250 mg/kg).
Saliva secretion function, oxidative stress, apoptosis, the inflammatory
response, and fibrosis were determined by the measurement of the salivary flow
rate, enzyme-linked immunosorbent assay, transferase-mediated DUTP Nick end
labeling, Western blot, quantitative real time polymerase chain reaction, and
hematoxylin and eosin staining. Here, we show that RA treatment significantly
attenuated reactive oxygen species by a direct hindrance effect and the indirect
activation of peroxisome proliferator-activated receptor gamma coactivator
1-alpha/nicotinamide adenine dinucleotide phosphate oxidase 4 signaling.
Rosmarinic acid not only reduced apoptosis by inhibiting p53/jun N-terminal
kinase activation but also reduced parotid gland tissue fibrosis by
downregulating inflammatory factor levels. Compared to AMI, RA has the obvious
advantages of late efficacy and convenient usage. Moreover, 60 mg/kg is the
minimum effective dose of RA. Therefore, RA can potentially be applied as a
therapeutic radioprotective agent to treat radiation-induced parotid gland
injury in the future.
Collapse
Affiliation(s)
- Tingting Zhang
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Chang Liu
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Shanshan Ma
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yirong Gao
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Rensheng Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
10
|
Dimitris D, Ekaterina-Michaela T, Christina K, Ioannis S, Ioanna SK, Aggeliki L, Sophia H, Michael R, Helen S. Melissa officinalis ssp. altissima extracts: A therapeutic approach targeting psoriasis in mice. JOURNAL OF ETHNOPHARMACOLOGY 2020; 246:112208. [PMID: 31476443 DOI: 10.1016/j.jep.2019.112208] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/22/2019] [Accepted: 08/29/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Melissa officinalis L., commonly known as lemon balm, is one of the most well known edible and medicinal plants of the Lamiaceae family. It is quoted in almost all known medical treatises, from Antiquity up to modern era, such as Corpus Hippocraticum, Dioscorides' De Materia Medica and later on in medieval medical manuscripts and Pharmacopoeias. Actually, it is widely used as herbal medicine for the relief of mild symptoms of mental stress, to aid sleep and for symptomatic treatment of mild gastrointestinal complaints including bloating and flatulence. In Greece, the empirical physicians "vikoyiatroi" recommended the decoction of dry flowers and leaves to treat tracheobronchitis, hysteria, epilepsy, heart arrhythmias, as hypnotic and against skin disorders. AIM OF THE STUDY The present study was conducted to investigate the potential beneficial effects in psoriasis in mice of M. officinalis ssp. altissima and to carry out the chemical analysis in order to reveal its main bioactive secondary metabolites. MATERIALS AND METHODS Non polar and polar extracts of M. officinalis ssp. altissima aerial parts were prepared by using dichloromethane and methanol, successively; in addition a decoction was made upon oral information by local users in Crete, where the plant was collected. All three preparations were chemically analyzed in order to isolate their main constituents. Chemical structures of all isolated compounds were determined by 1D, 2D-NMR and UV-Vis spectroscopy. Furthermore, the antioxidant potential of extracts and decoction was evaluated through DPPH radical scavenging capability. The in vivo in mice anti-psoriatic efficacy of all preparations was estimated through clinical and histopathological assessment and measurements of TEWL and hydration. RESULTS The dichloromethane extract yielded ursolic acid, 2α-hydroxy-ursolic acid, pomolic acid, 3β-stearyloxy-urs-12-ene, oleanolic acid, noropacursane and campesterol; the methanol extract afforded rosmarinic acid and methyl rosmarinate, while from the decoction caffeic acid, 3-(3,4-dihydroxyphenyl)lactic acid and rosmarinic acid were isolated. The psoriasis evaluation, based on PASI score, photodocumentation and histopathological estimation showed that the decoction primarily and the dichloromethane extract secondly could significantly contribute to psoriasis treatment. The decoction seems able to reestablish skin physiology by decreasing dryness and enhancing skin barrier function. Moreover, the decoction showed the best antioxidant activity, while the dichloromethane extract the weakest. CONCLUSIONS The triterpene derivatives of the dichloromethane extract are likely to be responsible for its anti-psoriatic activity. The abundant polyphenolic load of the decoction contributes to its high antioxidant activity and the most effective results against psoriasis. The anti-psoriatic activity of the decoction confirmed the traditional use of this plant as antioxidant, wound healing and skin barrier repair agent.
Collapse
Affiliation(s)
- Dimas Dimitris
- Department of Pharmacognosy and Chemistry of Natural Products, School of Pharmacy, National & Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15771, Athens, Greece.
| | - Tomou Ekaterina-Michaela
- Department of Pharmacognosy and Chemistry of Natural Products, School of Pharmacy, National & Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15771, Athens, Greece.
| | - Karamani Christina
- Department of Pharmaceutical Technology, School of Pharmacy, National & Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15771, Athens, Greece.
| | | | - Siakavella K Ioanna
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, University of Patras, 26504, Rio, Greece.
| | - Liakopoulou Aggeliki
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, University of Patras, 26504, Rio, Greece.
| | - Hatziantoniou Sophia
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, University of Patras, 26504, Rio, Greece.
| | - Rallis Michael
- Department of Pharmaceutical Technology, School of Pharmacy, National & Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15771, Athens, Greece.
| | - Skaltsa Helen
- Department of Pharmacognosy and Chemistry of Natural Products, School of Pharmacy, National & Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15771, Athens, Greece.
| |
Collapse
|
11
|
Ding Y, Zhang Z, Yue Z, Ding L, Zhou Y, Huang Z, Huang H. Rosmarinic Acid Ameliorates H 2O 2-Induced Oxidative Stress in L02 Cells Through MAPK and Nrf2 Pathways. Rejuvenation Res 2019; 22:289-298. [PMID: 30379115 DOI: 10.1089/rej.2018.2107] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Liver cells are easily damaged by oxidative stress during progression both in liver development and throughout adult life, resulting in tissue pathology that ranges from simple hepatitis to nonalcoholic fatty liver disease. In this study, we determined the attenuation of oxidative stress in liver cells with pretreatment of rosmarinic acid (RA), which is an antioxidant agent from Rosmarinus officinalis. The human liver cell line L02 was damaged by hydrogen peroxide (H2O2). In the RA treatment group, the viability of L02 cells increased and the intracellular reactive oxygen species levels decreased compared with the H2O2-induced damage group. Analysis of flow cytometry revealed that the percentage of G2/M cell cycle arrest and cell apoptosis decreased in the RA treatment group. This alteration was associated with activation of a G2/M DNA damage and oxidative stress apoptotic signal. Furthermore, we determined the redox-sensitive protein expression of mitogen-activated protein kinases (MAPKs), quinone acceptor oxidoreductase 1 (NQO1), and nuclear factor E2-related factor 2 (Nrf2), and the expression of both MAPKs and Nrf2 was activated in the RA group. Results showed that the relevant protein expression of MAPKs and Nrf2 was activated in the RA group. Thus, RA protected L02 cells from oxidative damage through suppressing cell cycle arrest and cell apoptosis with the activation of MAPK and Nrf2 signaling pathways.
Collapse
Affiliation(s)
- Yahui Ding
- 1School of Biosciences & Biopharmaceutics and Center for Bioresources & Drug Discovery, Guangdong Pharmaceutical University, Guangzhou, China
- 2School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Zhiyang Zhang
- 1School of Biosciences & Biopharmaceutics and Center for Bioresources & Drug Discovery, Guangdong Pharmaceutical University, Guangzhou, China
- 2School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Zhongbao Yue
- 3Research and Development Centre, Infinitus (China) Company Ltd., Guangzhou, China
| | - Liugang Ding
- 3Research and Development Centre, Infinitus (China) Company Ltd., Guangzhou, China
| | - Yong Zhou
- 3Research and Development Centre, Infinitus (China) Company Ltd., Guangzhou, China
| | - Zebo Huang
- 1School of Biosciences & Biopharmaceutics and Center for Bioresources & Drug Discovery, Guangdong Pharmaceutical University, Guangzhou, China
- 4School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Hongliang Huang
- 1School of Biosciences & Biopharmaceutics and Center for Bioresources & Drug Discovery, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
12
|
Park BK, Lee JH, Seo HW, Oh KS, Lee JH, Lee BH. Icariin protects against radiation-induced mortality and damage in vitro and in vivo. Int J Radiat Biol 2019; 95:1094-1102. [PMID: 30831047 DOI: 10.1080/09553002.2019.1589021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Purpose: The present study aimed to investigate the potential protective effects of icariin both in vivo and in vitro, an active flavonoid glucoside derived from medicinal herb Epimedium, and its possible mechanisms against radiation-induced injury. Methods: Male C57BL/6 mice were exposed to lethal dose (7 Gy) or sub-lethal dose (4 Gy) of whole body radiation by X-ray at a dose rate of ∼0.55 Gy/min, and icariin was given three times at 24 h and 30 min before and 24 h after the irradiation. After irradiation, hematological, biochemical, and histological evaluations were performed. We further determined the effect of icariin on radiation-induced cytotoxicity and changes in apoptosis-related protein expression. Results: Icariin enhanced the 30-day survival rates (20 and 40 mg/kg) in a dose-dependent manner, and protected the radiosensitive organs such as intestine and testis from the radiation damages. Moreover, hematopoietic damage by radiation was significantly decreased in icariin-treated mice as demonstrated by the increases in number of peripheral blood cells, bone marrow cells (1.7-fold), and spleen colony forming units (1.7-fold). In addition, icariin decreased the radiation-induced oxidative stress by modulating endogenous antioxidant levels. Subsequent in vitro studies showed that icariin effectively increased cell viability (1.4-fold) and suppressed the expression of apoptosis-related proteins after irradiation. Conclusion: These results suggest that icariin has significant protective effects against radiation-induced damages partly through its anti-oxidative and anti-apoptotic properties.
Collapse
Affiliation(s)
- Byung Kil Park
- a Information-Based Drug Research Center, Korea Research Institute of Chemical Technology , Daejeon , Republic of Korea.,b Graduate School of New Drug Discovery and Development, Chungnam National University , Daejeon , Republic of Korea
| | - Ju Hee Lee
- a Information-Based Drug Research Center, Korea Research Institute of Chemical Technology , Daejeon , Republic of Korea
| | - Ho Won Seo
- a Information-Based Drug Research Center, Korea Research Institute of Chemical Technology , Daejeon , Republic of Korea
| | - Kwang-Seok Oh
- a Information-Based Drug Research Center, Korea Research Institute of Chemical Technology , Daejeon , Republic of Korea.,c Department of Medicinal and Pharmaceutical Chemistry, University of Science and Technology , Daejeon , Republic of Korea
| | - Jeong Hyun Lee
- a Information-Based Drug Research Center, Korea Research Institute of Chemical Technology , Daejeon , Republic of Korea
| | - Byung Ho Lee
- a Information-Based Drug Research Center, Korea Research Institute of Chemical Technology , Daejeon , Republic of Korea.,b Graduate School of New Drug Discovery and Development, Chungnam National University , Daejeon , Republic of Korea
| |
Collapse
|
13
|
Ding F, Zhang N, Wang Z, Qiu J. The Radioprotective Effect of Polyphenols From Pinecones of Pinus koraiensis
and Their Synergistic Effect With Auricularia auricula-judae
(Bull.) J. Schröt Polysaccharides. STARCH-STARKE 2018. [DOI: 10.1002/star.201800009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Fangli Ding
- Department of Food Science; School of Chemistry and Chemical Engineering; Harbin Institute of Technology; Harbin 150001 China
| | - Naixun Zhang
- Department of Food Science and Engineering; School of Forestry; Northeast Forestry University; Harbin 150040 China
| | - Zhenyu Wang
- Department of Food Science; School of Chemistry and Chemical Engineering; Harbin Institute of Technology; Harbin 150001 China
| | - Junqiang Qiu
- Department of Food Science; School of Chemistry and Chemical Engineering; Harbin Institute of Technology; Harbin 150001 China
| |
Collapse
|
14
|
Karabulutoglu M, Finnon R, Imaoka T, Friedl AA, Badie C. Influence of diet and metabolism on hematopoietic stem cells and leukemia development following ionizing radiation exposure. Int J Radiat Biol 2018; 95:452-479. [PMID: 29932783 DOI: 10.1080/09553002.2018.1490042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE The review aims to discuss the prominence of dietary and metabolic regulators in maintaining hematopoietic stem cell (HSC) function, long-term self-renewal, and differentiation. RESULTS Most adult stem cells are preserved in a quiescent, nonmotile state in vivo which acts as a "protective state" for stem cells to reduce endogenous stress provoked by DNA replication and cellular respiration as well as exogenous environmental stress. The dynamic balance between quiescence, self-renewal and differentiation is critical for supporting a functional blood system throughout life of an organism. Stress-conditions, for example ionizing radiation exposure can trigger the blood forming HSCs to proliferate and migrate through extramedullary tissues to expand the number of HSCs and increase hematopoiesis. In addition, a wealth of investigation validated that deregulation of this balance plays a critical pathogenic role in various different hematopoietic diseases including the leukemia development. CONCLUSION The review summarizes the current knowledge on how alterations in dietary and metabolic factors could alter the risk of leukemia development following ionizing radiation exposure by inhibiting or even reversing the leukemic progression. Understanding the influence of diet, metabolism, and epigenetics on radiation-induced leukemogenesis may lead to the development of practical interventions to reduce the risk in exposed populations.
Collapse
Affiliation(s)
- Melis Karabulutoglu
- a Cancer Mechanisms and Biomarkers group, Biological Effects Department, Centre for Radiation, Chemical and Environmental Hazards , Public Health England , Didcot , UK.,b CRUK & MRC Oxford Institute for Radiation Oncology, Department of Oncology , University of Oxford , Oxford , UK
| | - Rosemary Finnon
- a Cancer Mechanisms and Biomarkers group, Biological Effects Department, Centre for Radiation, Chemical and Environmental Hazards , Public Health England , Didcot , UK
| | - Tatsuhiko Imaoka
- c Department of Radiation Effects Research, National Institute of Radiological Sciences , National Institutes for Quantum and Radiological Science and Technology , Chiba , Japan
| | - Anna A Friedl
- d Department of Radiation Oncology , University Hospital, LMU Munich , Munich , Germany
| | - Christophe Badie
- a Cancer Mechanisms and Biomarkers group, Biological Effects Department, Centre for Radiation, Chemical and Environmental Hazards , Public Health England , Didcot , UK
| |
Collapse
|
15
|
Swamy MK, Sinniah UR, Ghasemzadeh A. Anticancer potential of rosmarinic acid and its improved production through biotechnological interventions and functional genomics. Appl Microbiol Biotechnol 2018; 102:7775-7793. [PMID: 30022261 DOI: 10.1007/s00253-018-9223-y] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 07/04/2018] [Accepted: 07/04/2018] [Indexed: 12/19/2022]
Abstract
Rosmarinic acid (RA) is a highly valued natural phenolic compound that is very commonly found in plants of the families Lamiaceae and Boraginaceae, including Coleus blumei, Heliotropium foertherianum, Rosmarinus officinalis, Perilla frutescens, and Salvia officinalis. RA is also found in other members of higher plant families and in some fern and horned liverwort species. The biosynthesis of RA is catalyzed by the enzymes phenylalanine ammonia lyase and cytochrome P450-dependent hydroxylase using the amino acids tyrosine and phenylalanine. Chemically, RA can be produced via methods involving the esterification of 3,4-dihydroxyphenyllactic acid and caffeic acid. Some of the derivatives of RA include melitric acid, salvianolic acid, lithospermic acid, and yunnaneic acid. In plants, RA is known to have growth-promoting and defensive roles. Studies have elucidated the varied pharmacological potential of RA and its derived molecules, including anticancer, antiangiogenic, anti-inflammatory, antioxidant, and antimicrobial activities. The demand for RA is therefore, very high in the pharmaceutical industry, but this demand cannot be met by plants alone because RA content in plant organs is very low. Further, many plants that synthesize RA are under threat and near extinction owing to biodiversity loss caused by unscientific harvesting, over-collection, environmental changes, and other inherent features. Moreover, the chemical synthesis of RA is complicated and expensive. Alternative approaches using biotechnological methodologies could overcome these problems. This review provides the state of the art information on the chemistry, sources, and biosynthetic pathways of RA, as well as its anticancer properties against different cancer types. Biotechnological methods are also discussed for producing RA using plant cell, tissue, and organ cultures and hairy-root cultures using flasks and bioreactors. The recent developments and applications of the functional genomics approach and heterologous production of RA in microbes are also highlighted. This chapter will be of benefit to readers aiming to design studies on RA and its applicability as an anticancer agent.
Collapse
Affiliation(s)
- Mallappa Kumara Swamy
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| | - Uma Rani Sinniah
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Ali Ghasemzadeh
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| |
Collapse
|
16
|
Li Y, Kong S, Yang F, Xu W. Protective Effects of 2-Amino-5,6-dihydro-4 H-1,3-thiazine and Its Derivative against Radiation-Induced Hematopoietic and Intestinal Injury in Mice. Int J Mol Sci 2018; 19:ijms19051530. [PMID: 29883417 PMCID: PMC5983608 DOI: 10.3390/ijms19051530] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/15/2018] [Accepted: 05/16/2018] [Indexed: 12/17/2022] Open
Abstract
Ionizing radiation (IR) acts as an external stimulating factor, when it acts on the body, it will activate NF- κ B and cause the up-regulation of inducible nitric oxide synthase (iNOS) and induce a large amount of nitric oxide (NO) production. NO and other reactive nitrogen and oxygen species (RNS and ROS) can cause damage to biological molecules and affect their physiological functions. Our study investigated the protective role of 2-amino-5,6-dihydro-4H-1,3-thiazine hydrobromide (2-ADT) and 2-acetylamino-5,6-dihydro-4H-1,3-thiazine hydrobromide (2-AADT), two nitric oxide synthase inhibitors, against radiation-induced hematopoietic and intestinal injury in mice. Pretreatment with 2-ADT and 2-AADT improved the survival of mice exposed to a lethal dose of radiation, especially, the survival rate of the 2-ADT 20 mg/kg group was significantly higher than that of the vehicle group (p < 0.001). Our findings indicated that the radioprotective actions of 2-ADT and 2-AADT are achieved via accelerating hematopoietic system recovery, decreasing oxidative and nitrosative stress by enhancing the antioxidant defense system and reducing NO as well as peroxynitrite (ONOO − ) content, and mitigating the radiation-induced DNA damage evaluated by comet assay. These results suggest that 2-ADT and 2-AADT may have great application potential in ameliorating the damages of radiotherapy.
Collapse
Affiliation(s)
- Yuanyuan Li
- Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical Collage, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin 300192, China.
| | - Shaofan Kong
- Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical Collage, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin 300192, China.
| | - Fujun Yang
- Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical Collage, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin 300192, China.
| | - Wenqing Xu
- Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical Collage, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin 300192, China.
| |
Collapse
|
17
|
Bykov VN, Drachev IS, Kraev SY, Maydin MA, Gubareva EA, Pigarev SE, Anisimov VN, Baldueva IA, Fedoros EI, Panchenko AV. Radioprotective and radiomitigative effects of BP-C2, a novel lignin-derived polyphenolic composition with ammonium molybdate, in two mouse strains exposed to total body irradiation. Int J Radiat Biol 2017; 94:114-123. [DOI: 10.1080/09553002.2018.1416204] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Vladimir N. Bykov
- Department of Carcinogenesis and Oncogerontology, N. N. Petrov National Medical Research Center of Oncology, Saint Petersburg, Russia
| | - Igor S. Drachev
- Department of Carcinogenesis and Oncogerontology, N. N. Petrov National Medical Research Center of Oncology, Saint Petersburg, Russia
| | - Sergey Yu. Kraev
- Department of Carcinogenesis and Oncogerontology, N. N. Petrov National Medical Research Center of Oncology, Saint Petersburg, Russia
| | - Mikhail A. Maydin
- Department of Carcinogenesis and Oncogerontology, N. N. Petrov National Medical Research Center of Oncology, Saint Petersburg, Russia
| | - Ekaterina A. Gubareva
- Department of Carcinogenesis and Oncogerontology, N. N. Petrov National Medical Research Center of Oncology, Saint Petersburg, Russia
| | | | - Vladimir N. Anisimov
- Department of Carcinogenesis and Oncogerontology, N. N. Petrov National Medical Research Center of Oncology, Saint Petersburg, Russia
| | - Irina A. Baldueva
- Department of Oncoimmunology, N. N. Petrov National Medical Research Center of Oncology, Saint Petersburg, Russia
| | - Elena I. Fedoros
- Department of Carcinogenesis and Oncogerontology, N. N. Petrov National Medical Research Center of Oncology, Saint Petersburg, Russia
- Meabco A/S, Copenhagen, Denmark
| | - Andrey V. Panchenko
- Department of Carcinogenesis and Oncogerontology, N. N. Petrov National Medical Research Center of Oncology, Saint Petersburg, Russia
| |
Collapse
|
18
|
Alagawany M, Abd El-Hack ME, Farag MR, Gopi M, Karthik K, Malik YS, Dhama K. Rosmarinic acid: modes of action, medicinal values and health benefits. Anim Health Res Rev 2017; 18:167-176. [PMID: 29110743 DOI: 10.1017/s1466252317000081] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The supplementation of livestock rations with herbs containing bioactive components, such as rosmarinic acid (RA), have shown promising results as a natural feed additive in promoting growth, productive and reproductive performance, feed utilization, fertility, anti-oxidant status and immunologic indices. Furthermore, RA reportedly reduces the risks of various animal diseases and mitigates side effects of chemical and synthetic drugs. RA is a natural polyphenol present in several Lamiaceae herbs like Perilla frutescens, and RA is becoming an integral component of animal nutrition as it counters the effect of reactive oxygen species induced in the body as a consequence of different kinds of stressors. Studies have further ascertained the capability of RA to work as an anti-microbial, immunomodulatory, anti-diabetic, anti-allergic, anti-inflammatory, hepato- and renal-protectant agent, as well as to have beneficial effects during skin afflictions. Additionally, RA is favored in meat industries due to enhancing the quality of meat products by reportedly improving shelf-life and imparting desirable flavor. This review describes the beneficial applications and recent findings with RA, including its natural sources, modes of action and various useful applications in safeguarding livestock health as well as important aspects of human health.
Collapse
Affiliation(s)
- Mahmoud Alagawany
- Poultry Department,Faculty of Agriculture,Zagazig University,Zagazig 44511,Egypt
| | | | - Mayada Ragab Farag
- Forensic Medicine and Toxicology Department,Faculty of Veterinary Medicine,Zagazig University,Zagazig 44511,Egypt
| | - Marappan Gopi
- Division of Avian Physiology and Reproduction,ICAR-Central Avian Research Institute,Izatnagar-243122, Uttar Pradesh,India
| | - Kumaragurubaran Karthik
- Central University Laboratory,Tamil Nadu Veterinary and Animal Sciences University,Chennai, Tamil Nadu,India
| | - Yashpal Singh Malik
- Division of Biological Standardization,ICAR-Indian Veterinary Research Institute,Izatnagar,Bareilly, 243122 Uttar Pradesh,India
| | - Kuldeep Dhama
- Division of Pathology,ICAR-Indian Veterinary Research Institute,Izatnagar,Bareilly, 243122 Uttar Pradesh,India
| |
Collapse
|