1
|
Qu K, Zhou C, Liu D, Han B, Jiao Z, Niu S, El-Kassaby YA, Li W. CONSTANS-Like and SHORT VEGETATIVE PHASE-Like Genes Coordinately Modulate TERMINAL FLOWER 2 to Control Dormancy Transitions in Pinus tabuliformis. PLANT, CELL & ENVIRONMENT 2025; 48:3066-3084. [PMID: 39676713 DOI: 10.1111/pce.15313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/17/2024] [Accepted: 11/18/2024] [Indexed: 12/17/2024]
Abstract
With global climate change, understanding how conifers manage seasonal dormancy is increasingly important. This study explores the physiological and molecular processes controlling dormancy transitions in P. tabuliformis, a key species in northern China. Using dormancy simulations and Time-Ordered Gene Co-Expression Network (TO-GCN) analysis, we identified low temperature, rather than photoperiod, as the primary trigger for dormancy release. The PtTFL2 gene functions as both an environmental sensor and dormancy marker, regulated by cold-dependent and independent pathways involving the photoperiod-responsive PtCOL1 and PtSVP-like (SVL) genes. During the autumn-to-winter transition, PtSVL controls PtTFL2 transcription, forming a regulatory complex to fine-tune dormancy. PtCOL1 also directly regulates PtTFL2 and indirectly modulates it by affecting PtSVL expression. The CO-TFL module controls fall dormancy (ecodormancy), while the SVP-TFL module manages the shift to endodormancy in winter. These findings reveal dual regulatory pathways governing dormancy in conifers, offering insights into their adaptation to cold environments and laying the foundation for further research into dormancy mechanisms in gymnosperms.
Collapse
Affiliation(s)
- Kai Qu
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Chengcheng Zhou
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Dan Liu
- Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan, China
| | - Biao Han
- Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan, China
| | - Zhiyuan Jiao
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Shihui Niu
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yousry A El-Kassaby
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Wei Li
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| |
Collapse
|
2
|
Zhu JD, Liang YP, Yan HR, Wu QQ, Zhang YY, Zhou FY, Zhang X, Zhao X. Membrane-localized orientation of NONPHOTOTROPIC HYPOCOTYL3 affects the necessity of its phosphorylation for phototropism. PLANT PHYSIOLOGY 2025; 197:kiae537. [PMID: 39365781 DOI: 10.1093/plphys/kiae537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 10/06/2024]
Abstract
NONPHOTOTROPIC HYPOCOTYL3 (NPH3) is a key regulator of hypocotyl phototropism under both low- and high-intensity blue light (LBL/HBL), mediating phototropin1 (phot1) and phot2 signaling. NPH3 undergoes dephosphorylation and is released from the plasma membrane (PM) upon blue light irradiation. However, how its phosphorylation status and PM localization mediate phot1 and phot2 signaling in Arabidopsis (Arabidopsis thaliana) remains elusive. In this study, we found that fusing NPH3 with GFP at its C-terminus (N3G) impaired its release from the PM, a defect exacerbated by a phosphorylation-deficient mutation, resulting in a dephosphorylated NPH3-GFP (N3AG). Unlike N3G, transgenic lines expressing N3AG exhibited defective hypocotyl phototropism under HBL, which could be rescued by myristoylation at the N-terminus of N3AG (mN3AG), indicating that NPH3 phosphorylation is not essential for HBL-induced phototropic responses when it is artificially anchored at the PM via its N-terminus. Furthermore, genetic analysis revealed that N3AG anchored to the PM by its N-terminus (as in mN3AG) only rescues phot1-mediated HBL responses, which require RPT2. However, N3AG failed to regulate phot2-mediated HBL signaling, regardless of its PM orientation. Taken together, our results revealed that NPH3 phosphorylation is essential for phot2-mediated hypocotyl phototropism under HBL, but is not required for phot1-mediated HBL signaling when the NPH3 N-terminus is PM-anchored.
Collapse
Affiliation(s)
- Jin-Dong Zhu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Yu-Ping Liang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Hong-Ru Yan
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Qi-Qi Wu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Yue-Yue Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Fang-Yuan Zhou
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Xiao Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Xiang Zhao
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| |
Collapse
|
3
|
Bustamante JA, Miller ND, Spalding EP. Separate sites of action for cry1 and phot1 blue-light receptors in the Arabidopsis hypocotyl. Curr Biol 2025; 35:100-108.e4. [PMID: 39662465 DOI: 10.1016/j.cub.2024.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/14/2024] [Accepted: 11/12/2024] [Indexed: 12/13/2024]
Abstract
Rapid cell expansion pushes the Arabidopsis hypocotyl (juvenile stem) through the soil until blue light, acting first through phototropin 1 (phot1) and then through cryptochrome 1 (cry1), suppresses elongation to produce a length characteristic of established, photosynthetically capable seedlings. To determine where these two different blue-light receptors act to suppress hypocotyl elongation, we measured relative elemental growth rate, specifically along the hypocotyl midline at 5-min intervals before and during blue light, using a machine-learning-based image analysis pipeline designed specifically for this kinematic analysis of growth. In darkness, hypocotyl material expanded most rapidly (approximately 4% h-1) in a broad zone approximately 1 mm below the apical terminus of the hypocotyl (cotyledonary node). Blue light, acting through phot1, rapidly inhibited expansion in this zone, while simultaneously stimulating unexpanded cells in a very narrow, more apical region. Nuclear cry1, and not its cytoplasmic pool, counteracted the phot1-initiated expansion of the small cells in this apical region, preventing them from entering the more basal elongation zone. In a cry1 mutant, expansion of these apical cells proceeded unchecked, reaching rates as high as 6% h-1 to produce the iconic cry1 long-hypocotyl phenotype. The new spatial information shows where to focus future cell and molecular studies of cry1 and phot1 signaling mechanisms and, ecologically, indicates that a seedling may use an apical reservoir of elongation potential to reenter a lit environment should a natural darkening event such as soil disturbance deactivate cry1.
Collapse
Affiliation(s)
- Julian A Bustamante
- Department of Botany, University of Wisconsin-Madison, 430 Lincoln Dr., Madison, WI 53706, USA
| | - Nathan D Miller
- Department of Botany, University of Wisconsin-Madison, 430 Lincoln Dr., Madison, WI 53706, USA
| | - Edgar P Spalding
- Department of Botany, University of Wisconsin-Madison, 430 Lincoln Dr., Madison, WI 53706, USA.
| |
Collapse
|
4
|
Yong S, Chen Q, Xu F, Fu H, Liang G, Guo Q. Exploring the interplay between angiosperm chlorophyll metabolism and environmental factors. PLANTA 2024; 260:25. [PMID: 38861219 PMCID: PMC11166782 DOI: 10.1007/s00425-024-04437-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 05/09/2024] [Indexed: 06/12/2024]
Abstract
MAIN CONCLUSION In this review, we summarize how chlorophyll metabolism in angiosperm is affected by the environmental factors: light, temperature, metal ions, water, oxygen, and altitude. The significance of chlorophyll (Chl) in plant leaf morphogenesis and photosynthesis cannot be overstated. Over time, researchers have made significant advancements in comprehending the biosynthetic pathway of Chl in angiosperms, along with the pivotal enzymes and genes involved in this process, particularly those related to heme synthesis and light-responsive mechanisms. Various environmental factors influence the stability of Chl content in angiosperms by modulating Chl metabolic pathways. Understanding the interplay between plants Chl metabolism and environmental factors has been a prominent research topic. This review mainly focuses on angiosperms, provides an overview of the regulatory mechanisms governing Chl metabolism, and the impact of environmental factors such as light, temperature, metal ions (iron and magnesium), water, oxygen, and altitude on Chl metabolism. Understanding these effects is crucial for comprehending and preserving the homeostasis of Chl metabolism.
Collapse
Affiliation(s)
- Shunyuan Yong
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, People's Republic of China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences of Southwest University, Chongqing, 400715, People's Republic of China
| | - Qian Chen
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, People's Republic of China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences of Southwest University, Chongqing, 400715, People's Republic of China
| | - Fan Xu
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, People's Republic of China
| | - Hao Fu
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, People's Republic of China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences of Southwest University, Chongqing, 400715, People's Republic of China
| | - Guolu Liang
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, People's Republic of China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences of Southwest University, Chongqing, 400715, People's Republic of China
| | - Qigao Guo
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, People's Republic of China.
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences of Southwest University, Chongqing, 400715, People's Republic of China.
| |
Collapse
|
5
|
Zeng F, Ma Z, Feng Y, Shao M, Li Y, Wang H, Yang S, Mao J, Chen B. Mechanism of the Pulvinus-Driven Leaf Movement: An Overview. Int J Mol Sci 2024; 25:4582. [PMID: 38731801 PMCID: PMC11083266 DOI: 10.3390/ijms25094582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
Leaf movement is a manifestation of plant response to the changing internal and external environment, aiming to optimize plant growth and development. Leaf movement is usually driven by a specialized motor organ, the pulvinus, and this movement is associated with different changes in volume and expansion on the two sides of the pulvinus. Blue light, auxin, GA, H+-ATPase, K+, Cl-, Ca2+, actin, and aquaporin collectively influence the changes in water flux in the tissue of the extensor and flexor of the pulvinus to establish a turgor pressure difference, thereby controlling leaf movement. However, how these factors regulate the multicellular motility of the pulvinus tissues in a species remains obscure. In addition, model plants such as Medicago truncatula, Mimosa pudica, and Samanea saman have been used to study pulvinus-driven leaf movement, showing a similarity in their pulvinus movement mechanisms. In this review, we summarize past research findings from the three model plants, and using Medicago truncatula as an example, suggest that genes regulating pulvinus movement are also involved in regulating plant growth and development. We also propose a model in which the variation of ion flux and water flux are critical steps to pulvinus movement and highlight questions for future research.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Baihong Chen
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (F.Z.); (Z.M.); (Y.F.); (M.S.); (Y.L.); (H.W.); (S.Y.); (J.M.)
| |
Collapse
|
6
|
Tseng TS, Chen CA, Lo MH. PHOTOTROPIN1 lysine 526 functions to enhance phototropism in Arabidopsis. PLANTA 2024; 259:56. [PMID: 38305934 DOI: 10.1007/s00425-024-04332-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/04/2024] [Indexed: 02/03/2024]
Abstract
MAIN CONCLUSION After blue-light exposure, ubiquitination of PHOTOTROPIN1 lysine 526 enhances phototropic responses. Arabidopsis blue-light photoreceptor, PHOTOTROPIN1 (PHOT1) mediates a series of blue-light responses that function to optimize photosynthesis efficiency. Blue-light sensing through the N-terminal sensory domain activates the C-terminal kinase activity of PHOT1, resulting in autophosphorylation. In addition to phosphorylation, PHOT1 lysine residue 526 (Lys526), after blue-light exposure, was found to carry a double glycine attachment, indicative of a possible ubiquitination modification. The functionality of PHOT1 Lys526 was investigated by reverse genetic approaches. Arginine replacements of PHOT1 Lys526, together with Lys527, complemented phot1-5 phot2-1 double mutant with attenuated phototropic bending, while blue-light responses: leaf expansion and stomatal opening, were restored to wild type levels. Transgenic seedlings were not different in protein levels of phot1 Lys526 527Arg than the wild type control, suggesting the reduced phototropic responses was not caused by reduction in protein levels. Treating the transformants with proteosome inhibitor, MG132, did not restore phototropic sensitivity. Both transgenic protein and wild type PHOT1 also had similar dark recovery of kinase activity, suggesting that phot1 Lys526 527Arg replacement did not affect the protein stability to cause the phenotype. Together, our results indicate that blocking Lys526 ubiquitination by arginine substitution may have caused the reduced phototropic phenotype. Therefore, the putative ubiquitination on Lys526 functions to enhance PHOT1-mediated phototropism, rather than targeting PHOT1 for proteolysis.
Collapse
Affiliation(s)
- Tong-Seung Tseng
- Department of Agricultural Biotechnology, National Chiayi University, 300 Syuefu Road, Chiayi, 600, Taiwan.
| | - Chih-An Chen
- Department of Agricultural Biotechnology, National Chiayi University, 300 Syuefu Road, Chiayi, 600, Taiwan
| | - Ming-Hung Lo
- Department of Agricultural Biotechnology, National Chiayi University, 300 Syuefu Road, Chiayi, 600, Taiwan
| |
Collapse
|
7
|
Depaepe T, Vanhaelewyn L, Van Der Straeten D. UV-B responses in the spotlight: Dynamic photoreceptor interplay and cell-type specificity. PLANT, CELL & ENVIRONMENT 2023; 46:3194-3205. [PMID: 37554043 DOI: 10.1111/pce.14680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/26/2023] [Accepted: 07/30/2023] [Indexed: 08/10/2023]
Abstract
Plants are constantly exposed to a multitude of external signals, including light. The information contained within the full spectrum of light is perceived by a battery of photoreceptors, each with specific and shared signalling outputs. Recently, it has become clear that UV-B radiation is a vital component of the electromagnetic spectrum, guiding growth and being crucial for plant fitness. However, given the large overlap between UV-B specific signalling pathways and other photoreceptors, understanding how plants can distinguish UV-B specific signals from other light components deserves more scrutiny. With recent evidence, we propose that UV-B signalling and other light signalling pathways occur within distinct tissues and cell-types and that the contribution of each pathway depends on the type of response and the developmental stage of the plant. Elucidating the precise site(s) of action of each molecular player within these signalling pathways is key to fully understand how plants are able to orchestrate coordinated responses to light within the whole plant body. Focusing our efforts on the molecular study of light signal interactions to understand plant growth in natural environments in a cell-type specific manner will be a next step in the field of photobiology.
Collapse
Affiliation(s)
- Thomas Depaepe
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, Ghent, Belgium
| | - Lucas Vanhaelewyn
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, Ghent, Belgium
- Department of Agricultural Economics, Ghent University, Coupure Links 653 B-9000, Ghent, Belgium
| | | |
Collapse
|
8
|
Fichman Y, Xiong H, Sengupta S, Morrow J, Loog H, Azad RK, Hibberd JM, Liscum E, Mittler R. Phytochrome B regulates reactive oxygen signaling during abiotic and biotic stress in plants. THE NEW PHYTOLOGIST 2023; 237:1711-1727. [PMID: 36401805 DOI: 10.1111/nph.18626] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
Reactive oxygen species (ROS) and the photoreceptor protein phytochrome B (phyB) play a key role in plant acclimation to stress. However, how phyB that primarily functions in the nuclei impacts ROS signaling mediated by respiratory burst oxidase homolog (RBOH) proteins that reside on the plasma membrane, during stress, is unknown. Arabidopsis thaliana and Oryza sativa mutants, RNA-Seq, bioinformatics, biochemistry, molecular biology, and whole-plant ROS imaging were used to address this question. Here, we reveal that phyB and RBOHs function as part of a key regulatory module that controls apoplastic ROS production, stress-response transcript expression, and plant acclimation in response to excess light stress. We further show that phyB can regulate ROS production during stress even if it is restricted to the cytosol and that phyB, respiratory burst oxidase protein D (RBOHD), and respiratory burst oxidase protein F (RBOHF) coregulate thousands of transcripts in response to light stress. Surprisingly, we found that phyB is also required for ROS accumulation in response to heat, wounding, cold, and bacterial infection. Our findings reveal that phyB plays a canonical role in plant responses to biotic and abiotic stresses, regulating apoplastic ROS production, possibly while at the cytosol, and that phyB and RBOHD/RBOHF function in the same regulatory pathway.
Collapse
Affiliation(s)
- Yosef Fichman
- Division of Plant Sciences & Technology, College of Agricultural, Food and Natural Resources, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211-7310, USA
- Interdisciplinary Plant Group, University of Missouri, Columbia, MO, 65211-7310, USA
| | - Haiyan Xiong
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Soham Sengupta
- Department of Biological Sciences, College of Science, University of North Texas, Denton, TX, 76203-5017, USA
| | - Johanna Morrow
- Division of Biological Sciences, College of Arts & Sciences, University of Missouri, Columbia, MO, 65211-7400, USA
- Department of Biology and Environmental Sciences, Westminster College, 501 Westminster Ave, Fulton, MO, 65251, USA
| | - Hailey Loog
- Division of Plant Sciences & Technology, College of Agricultural, Food and Natural Resources, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211-7310, USA
- Interdisciplinary Plant Group, University of Missouri, Columbia, MO, 65211-7310, USA
| | - Rajeev K Azad
- Department of Biological Sciences, College of Science, University of North Texas, Denton, TX, 76203-5017, USA
- Department of Mathematics, College of Science, University of North Texas, Denton, TX, 76203-5017, USA
| | - Julian M Hibberd
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Emmanuel Liscum
- Interdisciplinary Plant Group, University of Missouri, Columbia, MO, 65211-7310, USA
- Division of Biological Sciences, College of Arts & Sciences, University of Missouri, Columbia, MO, 65211-7400, USA
| | - Ron Mittler
- Division of Plant Sciences & Technology, College of Agricultural, Food and Natural Resources, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211-7310, USA
- Interdisciplinary Plant Group, University of Missouri, Columbia, MO, 65211-7310, USA
- Department of Surgery, Christopher S. Bond Life Sciences Center, University of Missouri School of Medicine, University of Missouri, Columbia, MO, 65211-7310, USA
| |
Collapse
|
9
|
Fichman Y, Xiong H, Sengupta S, Morrow J, Loog H, Azad RK, Hibberd JM, Liscum E, Mittler R. Phytochrome B regulates reactive oxygen signaling during abiotic and biotic stress in plants. THE NEW PHYTOLOGIST 2023. [PMID: 36401805 DOI: 10.1101/2021.11.29.470478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Reactive oxygen species (ROS) and the photoreceptor protein phytochrome B (phyB) play a key role in plant acclimation to stress. However, how phyB that primarily functions in the nuclei impacts ROS signaling mediated by respiratory burst oxidase homolog (RBOH) proteins that reside on the plasma membrane, during stress, is unknown. Arabidopsis thaliana and Oryza sativa mutants, RNA-Seq, bioinformatics, biochemistry, molecular biology, and whole-plant ROS imaging were used to address this question. Here, we reveal that phyB and RBOHs function as part of a key regulatory module that controls apoplastic ROS production, stress-response transcript expression, and plant acclimation in response to excess light stress. We further show that phyB can regulate ROS production during stress even if it is restricted to the cytosol and that phyB, respiratory burst oxidase protein D (RBOHD), and respiratory burst oxidase protein F (RBOHF) coregulate thousands of transcripts in response to light stress. Surprisingly, we found that phyB is also required for ROS accumulation in response to heat, wounding, cold, and bacterial infection. Our findings reveal that phyB plays a canonical role in plant responses to biotic and abiotic stresses, regulating apoplastic ROS production, possibly while at the cytosol, and that phyB and RBOHD/RBOHF function in the same regulatory pathway.
Collapse
Affiliation(s)
- Yosef Fichman
- Division of Plant Sciences & Technology, College of Agricultural, Food and Natural Resources, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211-7310, USA
- Interdisciplinary Plant Group, University of Missouri, Columbia, MO, 65211-7310, USA
| | - Haiyan Xiong
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Soham Sengupta
- Department of Biological Sciences, College of Science, University of North Texas, Denton, TX, 76203-5017, USA
| | - Johanna Morrow
- Division of Biological Sciences, College of Arts & Sciences, University of Missouri, Columbia, MO, 65211-7400, USA
- Department of Biology and Environmental Sciences, Westminster College, 501 Westminster Ave, Fulton, MO, 65251, USA
| | - Hailey Loog
- Division of Plant Sciences & Technology, College of Agricultural, Food and Natural Resources, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211-7310, USA
- Interdisciplinary Plant Group, University of Missouri, Columbia, MO, 65211-7310, USA
| | - Rajeev K Azad
- Department of Biological Sciences, College of Science, University of North Texas, Denton, TX, 76203-5017, USA
- Department of Mathematics, College of Science, University of North Texas, Denton, TX, 76203-5017, USA
| | - Julian M Hibberd
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Emmanuel Liscum
- Interdisciplinary Plant Group, University of Missouri, Columbia, MO, 65211-7310, USA
- Division of Biological Sciences, College of Arts & Sciences, University of Missouri, Columbia, MO, 65211-7400, USA
| | - Ron Mittler
- Division of Plant Sciences & Technology, College of Agricultural, Food and Natural Resources, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211-7310, USA
- Interdisciplinary Plant Group, University of Missouri, Columbia, MO, 65211-7310, USA
- Department of Surgery, Christopher S. Bond Life Sciences Center, University of Missouri School of Medicine, University of Missouri, Columbia, MO, 65211-7310, USA
| |
Collapse
|
10
|
Jessup LH, Halloway AH, Mickelbart MV, McNickle GG. Information theory and plant ecology. OIKOS 2022. [DOI: 10.1111/oik.09352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Laura H. Jessup
- Dept of Forestry and Natural Resources, Purdue Univ. West Lafayette IN USA
- Dept of Ecological Sciences and Engineering, Purdue Univ. West Lafayette IN USA
| | - Abdel H. Halloway
- Dept of Botany and Plant Pathology, Purdue Univ. West Lafayette IN USA
- Purdue Center for Plant Biology, Purdue Univ. West Lafayette IN USA
| | - Michael V. Mickelbart
- Dept of Botany and Plant Pathology, Purdue Univ. West Lafayette IN USA
- Purdue Center for Plant Biology, Purdue Univ. West Lafayette IN USA
| | - Gordon G. McNickle
- Dept of Botany and Plant Pathology, Purdue Univ. West Lafayette IN USA
- Purdue Center for Plant Biology, Purdue Univ. West Lafayette IN USA
| |
Collapse
|
11
|
Lazar D, Stirbet A, Björn L, Govindjee G. Light quality, oxygenic photosynthesis and more. PHOTOSYNTHETICA 2022; 60:25-28. [PMID: 39648998 PMCID: PMC11559484 DOI: 10.32615/ps.2021.055] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/15/2021] [Indexed: 12/10/2024]
Abstract
Oxygenic photosynthesis takes place in thylakoid membranes (TM) of cyanobacteria, algae, and higher plants. It begins with light absorption by pigments in large (modular) assemblies of pigment-binding proteins, which then transfer excitation energy to the photosynthetic reaction centers of photosystem (PS) I and PSII. In green algae and plants, these light-harvesting protein complexes contain chlorophylls (Chls) and carotenoids (Cars). However, cyanobacteria, red algae, and glaucophytes contain, in addition, phycobiliproteins in phycobilisomes that are attached to the stromal surface of TM, and transfer excitation energy to the reaction centers via the Chl a molecules in the inner antennas of PSI and PSII. The color and the intensity of the light to which these photosynthetic organisms are exposed in their environment have a great influence on the composition and the structure of the light-harvesting complexes (the antenna) as well as the rest of the photosynthetic apparatus, thus affecting the photosynthetic process and even the entire organism. We present here a perspective on 'Light Quality and Oxygenic Photosynthesis', in memory of George Christos Papageorgiou (9 May 1933-21 November 2020; see notes a and b). Our review includes (1) the influence of the solar spectrum on the antenna composition, and the special significance of Chl a; (2) the effects of light quality on photosynthesis, measured using Chl a fluorescence; and (3) the importance of light quality, intensity, and its duration for the optimal growth of photosynthetic organisms.
Collapse
Affiliation(s)
- D. Lazar
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 11, 783 71 Olomouc, Czech Republic
| | - A. Stirbet
- Anne Burras Lane, Newport News, 23606 Virginia, USA
| | - L.O. Björn
- Department of Biology, Molecular Cell Biology, Lund University, Sölvegatan 35, SE-22462 Lund, Sweden
| | - G. Govindjee
- Department of Plant Biology, Department of Biochemistry, and Center of Biophysics & Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
12
|
Chin S, Blancaflor EB. Plant Gravitropism: From Mechanistic Insights into Plant Function on Earth to Plants Colonizing Other Worlds. Methods Mol Biol 2022; 2368:1-41. [PMID: 34647245 DOI: 10.1007/978-1-0716-1677-2_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Gravitropism, the growth of roots and shoots toward or away from the direction of gravity, has been studied for centuries. Such studies have not only led to a better understanding of the gravitropic process itself, but also paved new paths leading to deeper mechanistic insights into a wide range of research areas. These include hormone biology, cell signal transduction, regulation of gene expression, plant evolution, and plant interactions with a variety of environmental stimuli. In addition to contributions to basic knowledge about how plants function, there is accumulating evidence that gravitropism confers adaptive advantages to crops, particularly under marginal agricultural soils. Therefore, gravitropism is emerging as a breeding target for enhancing agricultural productivity. Moreover, research on gravitropism has spawned several studies on plant growth in microgravity that have enabled researchers to uncouple the effects of gravity from other tropisms. Although rapid progress on understanding gravitropism witnessed during the past decade continues to be driven by traditional molecular, physiological, and cell biological tools, these tools have been enriched by technological innovations in next-generation omics platforms and microgravity analog facilities. In this chapter, we review the field of gravitropism by highlighting recent landmark studies that have provided unique insights into this classic research topic while also discussing potential contributions to agriculture on Earth and beyond.
Collapse
Affiliation(s)
- Sabrina Chin
- Department of Botany, University of Wisconsin, Madison, WI, USA.
| | | |
Collapse
|
13
|
Rai N, Morales LO, Aphalo PJ. Perception of solar UV radiation by plants: photoreceptors and mechanisms. PLANT PHYSIOLOGY 2021; 186:1382-1396. [PMID: 33826733 PMCID: PMC8260113 DOI: 10.1093/plphys/kiab162] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 03/25/2021] [Indexed: 05/04/2023]
Abstract
About 95% of the ultraviolet (UV) photons reaching the Earth's surface are UV-A (315-400 nm) photons. Plant responses to UV-A radiation have been less frequently studied than those to UV-B (280-315 nm) radiation. Most previous studies on UV-A radiation have used an unrealistic balance between UV-A, UV-B, and photosynthetically active radiation (PAR). Consequently, results from these studies are difficult to interpret from an ecological perspective, leaving an important gap in our understanding of the perception of solar UV radiation by plants. Previously, it was assumed UV-A/blue photoreceptors, cryptochromes and phototropins mediated photomorphogenic responses to UV-A radiation and "UV-B photoreceptor" UV RESISTANCE LOCUS 8 (UVR8) to UV-B radiation. However, our understanding of how UV-A radiation is perceived by plants has recently improved. Experiments using a realistic balance between UV-B, UV-A, and PAR have demonstrated that UVR8 can play a major role in the perception of both UV-B and short-wavelength UV-A (UV-Asw, 315 to ∼350 nm) radiation. These experiments also showed that UVR8 and cryptochromes jointly regulate gene expression through interactions that alter the relative sensitivity to UV-B, UV-A, and blue wavelengths. Negative feedback loops on the action of these photoreceptors can arise from gene expression, signaling crosstalk, and absorption of UV photons by phenolic metabolites. These interactions explain why exposure to blue light modulates photomorphogenic responses to UV-B and UV-Asw radiation. Future studies will need to distinguish between short and long wavelengths of UV-A radiation and to consider UVR8's role as a UV-B/UV-Asw photoreceptor in sunlight.
Collapse
Affiliation(s)
- Neha Rai
- Organismal and Evolutionary Biology, Viikki Plant Science Center (ViPS), Faculty of Biological and Environmental Sciences, University of Helsinki, 00014 Helsinki, Finland
- Author for communication: . Present address: Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
| | - Luis Orlando Morales
- School of Science and Technology, The Life Science Center-Biology, Örebro University, SE-70182 Örebro, Sweden
| | - Pedro José Aphalo
- Organismal and Evolutionary Biology, Viikki Plant Science Center (ViPS), Faculty of Biological and Environmental Sciences, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
14
|
Kilambi HV, Dindu A, Sharma K, Nizampatnam NR, Gupta N, Thazath NP, Dhanya AJ, Tyagi K, Sharma S, Kumar S, Sharma R, Sreelakshmi Y. The new kid on the block: a dominant-negative mutation of phototropin1 enhances carotenoid content in tomato fruits. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:844-861. [PMID: 33608974 DOI: 10.1111/tpj.15206] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/15/2021] [Accepted: 02/10/2021] [Indexed: 06/12/2023]
Abstract
Phototropins, the UVA-blue light photoreceptors, endow plants to detect the direction of light and optimize photosynthesis by regulating positioning of chloroplasts and stomatal gas exchange. Little is known about their functions in other developmental responses. A tomato Non-phototropic seedling1 (Nps1) mutant, bearing an Arg495His substitution in the vicinity of LOV2 domain in phototropin1, dominant-negatively blocks phototropin1 responses. The fruits of Nps1 mutant were enriched in carotenoids, particularly lycopene, compared with its parent, Ailsa Craig. On the contrary, CRISPR/CAS9-edited loss of function phototropin1 mutants displayed subdued carotenoids compared with the parent. The enrichment of carotenoids in Nps1 fruits is genetically linked with the mutation and exerted in a dominant-negative fashion. Nps1 also altered volatile profiles with high levels of lycopene-derived 6-methyl 5-hepten2-one. The transcript levels of several MEP and carotenogenesis pathway genes were upregulated in Nps1. Nps1 fruits showed altered hormonal profiles with subdued ethylene emission and reduced respiration. Proteome profiles showed a causal link between higher carotenogenesis and increased levels of protein protection machinery, which may stabilize proteins contributing to MEP and carotenogenesis pathways. The enhancement of carotenoid content by Nps1 in a dominant-negative fashion offers a potential tool for high lycopene-bearing hybrid tomatoes.
Collapse
Affiliation(s)
- Himabindu Vasuki Kilambi
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Alekhya Dindu
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Kapil Sharma
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Narasimha Rao Nizampatnam
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Neha Gupta
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Nikhil Padmanabhan Thazath
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Ajayakumar Jaya Dhanya
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Kamal Tyagi
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Sulabha Sharma
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Sumit Kumar
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Rameshwar Sharma
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Yellamaraju Sreelakshmi
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| |
Collapse
|
15
|
Casal JJ, Estevez JM. Auxin-Environment Integration in Growth Responses to Forage for Resources. Cold Spring Harb Perspect Biol 2021; 13:a040030. [PMID: 33431585 PMCID: PMC8015692 DOI: 10.1101/cshperspect.a040030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Plant fitness depends on the adequate morphological adjustment to the prevailing conditions of the environment. Therefore, plants sense environmental cues through their life cycle, including the presence of full darkness, light, or shade, the range of ambient temperatures, the direction of light and gravity vectors, and the presence of water and mineral nutrients (such as nitrate and phosphate) in the soil. The environmental information impinges on different aspects of the auxin system such as auxin synthesis, degradation, transport, perception, and downstream transcriptional regulation to modulate organ growth. Although a single environmental cue can affect several of these points, the relative impacts differ significantly among the various growth processes and cues. While stability in the generation of precise auxin gradients serves to guide the basic developmental pattern, dynamic changes in the auxin system fine-tune body shape to optimize the capture of environmental resources.
Collapse
Affiliation(s)
- Jorge J Casal
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Facultad de Agronomía, Buenos Aires 1417, Argentina
- Fundación Instituto Leloir and IIBBA-CONICET, Buenos Aires C1405BWE, Argentina
| | - José M Estevez
- Fundación Instituto Leloir and IIBBA-CONICET, Buenos Aires C1405BWE, Argentina
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello and Millennium Institute for Integrative Biology (iBio), Santiago 8370146, Chile
| |
Collapse
|
16
|
Glanc M, Van Gelderen K, Hoermayer L, Tan S, Naramoto S, Zhang X, Domjan D, Včelařová L, Hauschild R, Johnson A, de Koning E, van Dop M, Rademacher E, Janson S, Wei X, Molnár G, Fendrych M, De Rybel B, Offringa R, Friml J. AGC kinases and MAB4/MEL proteins maintain PIN polarity by limiting lateral diffusion in plant cells. Curr Biol 2021; 31:1918-1930.e5. [PMID: 33705718 PMCID: PMC8112251 DOI: 10.1016/j.cub.2021.02.028] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/22/2021] [Accepted: 02/12/2021] [Indexed: 12/22/2022]
Abstract
Polar subcellular localization of the PIN exporters of the phytohormone auxin is a key determinant of directional, intercellular auxin transport and thus a central topic of both plant cell and developmental biology. Arabidopsis mutants lacking PID, a kinase that phosphorylates PINs, or the MAB4/MEL proteins of unknown molecular function display PIN polarity defects and phenocopy pin mutants, but mechanistic insights into how these factors convey PIN polarity are missing. Here, by combining protein biochemistry with quantitative live-cell imaging, we demonstrate that PINs, MAB4/MELs, and AGC kinases interact in the same complex at the plasma membrane. MAB4/MELs are recruited to the plasma membrane by the PINs and in concert with the AGC kinases maintain PIN polarity through limiting lateral diffusion-based escape of PINs from the polar domain. The PIN-MAB4/MEL-PID protein complex has self-reinforcing properties thanks to positive feedback between AGC kinase-mediated PIN phosphorylation and MAB4/MEL recruitment. We thus uncover the molecular mechanism by which AGC kinases and MAB4/MEL proteins regulate PIN localization and plant development. MAB4/MEL proteins are recruited to the plasma membrane by PINs PINs, MAB4/MELs, and AGC kinases directly interact in a multiprotein complex PIN phosphorylation and MAB4/MEL recruitment form a positive feedback loop MAB4/MELs and AGC kinases maintain PIN polarity by limiting PIN lateral diffusion
Collapse
Affiliation(s)
- Matouš Glanc
- Institute of Science and Technology Austria (IST Austria), 3400 Klosterneuburg, Austria; Department of Experimental Plant Biology, Faculty of Science, Charles University, 12844 Prague, Czechia; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Kasper Van Gelderen
- Plant Developmental Genetics, Institute of Biology Leiden, Leiden University, 2333 BE Leiden, the Netherlands; Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Lukas Hoermayer
- Institute of Science and Technology Austria (IST Austria), 3400 Klosterneuburg, Austria
| | - Shutang Tan
- Institute of Science and Technology Austria (IST Austria), 3400 Klosterneuburg, Austria
| | - Satoshi Naramoto
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Xixi Zhang
- Institute of Science and Technology Austria (IST Austria), 3400 Klosterneuburg, Austria
| | - David Domjan
- Institute of Science and Technology Austria (IST Austria), 3400 Klosterneuburg, Austria
| | - Ludmila Včelařová
- Institute of Science and Technology Austria (IST Austria), 3400 Klosterneuburg, Austria
| | - Robert Hauschild
- Institute of Science and Technology Austria (IST Austria), 3400 Klosterneuburg, Austria
| | - Alexander Johnson
- Institute of Science and Technology Austria (IST Austria), 3400 Klosterneuburg, Austria
| | - Edward de Koning
- Plant Developmental Genetics, Institute of Biology Leiden, Leiden University, 2333 BE Leiden, the Netherlands
| | - Maritza van Dop
- Plant Developmental Genetics, Institute of Biology Leiden, Leiden University, 2333 BE Leiden, the Netherlands
| | - Eike Rademacher
- Plant Developmental Genetics, Institute of Biology Leiden, Leiden University, 2333 BE Leiden, the Netherlands
| | - Stef Janson
- Plant Developmental Genetics, Institute of Biology Leiden, Leiden University, 2333 BE Leiden, the Netherlands
| | - Xiaoyu Wei
- Plant Developmental Genetics, Institute of Biology Leiden, Leiden University, 2333 BE Leiden, the Netherlands
| | - Gergely Molnár
- Institute of Science and Technology Austria (IST Austria), 3400 Klosterneuburg, Austria; Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, (BOKU), 1190 Vienna, Austria
| | - Matyáš Fendrych
- Institute of Science and Technology Austria (IST Austria), 3400 Klosterneuburg, Austria; Department of Experimental Plant Biology, Faculty of Science, Charles University, 12844 Prague, Czechia
| | - Bert De Rybel
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Remko Offringa
- Plant Developmental Genetics, Institute of Biology Leiden, Leiden University, 2333 BE Leiden, the Netherlands.
| | - Jiří Friml
- Institute of Science and Technology Austria (IST Austria), 3400 Klosterneuburg, Austria.
| |
Collapse
|
17
|
Devireddy AR, Liscum E, Mittler R. Phytochrome B Is Required for Systemic Stomatal Responses and Reactive Oxygen Species Signaling during Light Stress. PLANT PHYSIOLOGY 2020; 184:1563-1572. [PMID: 32913044 PMCID: PMC7608177 DOI: 10.1104/pp.20.01084] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 08/27/2020] [Indexed: 05/12/2023]
Abstract
Perception of a change in light intensity leads to the activation of multiple physiological, metabolic, and molecular responses in plants. These responses allow acclimation to fluctuating light conditions, e.g. sunflecks in field grown plants, preventing cellular damage associated with excess light stress. Perception of light stress by a single Arabidopsis (Arabidopsis thaliana) leaf was recently shown to activate different local and systemic responses that include rapid changes in stomatal aperture size; these were found to be coordinated by a systemic process of reactive oxygen species (ROS)-derived ROS production (i.e. the ROS wave). How light intensity is perceived, and how long the ROS wave stays "on" during this process are, however, unknown. Here we show that triggering of the ROS wave by a local excess light stress treatment results in the induction and maintenance of high levels of systemic ROS for up to 6 h. Despite these high systemic ROS levels, stomatal aperture size returns to control size within 3 h, and the systemic stomatal response can be retriggered within 6 h. These findings suggest that the ROS wave triggers a systemic stress memory mechanism that lasts for 3 to 6 h, but that within 3 h of its activation, stomata become insensitive to ROS and open. We further show that the excess light stress-triggered ROS wave, as well as the excess light stress-triggered local and systemic stomatal aperture closure responses, are dependent on phytochrome B function. Our findings reveal a delicate interplay between excess light stress, phytochrome B, ROS production, and rapid systemic stomatal responses.
Collapse
Affiliation(s)
- Amith R Devireddy
- Division of Plant Sciences, College of Agriculture, Food and Natural Resources, and Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65201
| | - Emmanuel Liscum
- Department of Biological Sciences, College of Arts and Sciences, and Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65201
| | - Ron Mittler
- Division of Plant Sciences, College of Agriculture, Food and Natural Resources, and Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65201
| |
Collapse
|
18
|
Peck S, Mittler R. Plant signaling in biotic and abiotic stress. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:1649-1651. [PMID: 32163587 DOI: 10.1093/jxb/eraa051] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Affiliation(s)
- Scott Peck
- Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center University of Missouri, Columbia, USA
| | - Ron Mittler
- Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center University of Missouri, Columbia, USA
| |
Collapse
|