1
|
Zhang L, Li H, Wei X, Li Y, Liu Z, Liu M, Huang W, Wang H, Zhao J. The ZjMYB44-ZjPOD51 module enhances jujube defense response against phytoplasma by upregulating lignin biosynthesis. HORTICULTURE RESEARCH 2025; 12:uhaf083. [PMID: 40343351 PMCID: PMC12058307 DOI: 10.1093/hr/uhaf083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 03/03/2025] [Indexed: 05/11/2025]
Abstract
Lignin is a major component of the plant cell wall and has a conserved basic defense function in higher plants, helping the plants cope with pathogen infection. However, the regulatory mechanism of lignin biosynthesis in plants under phytoplasma stress remains unclear. In this study, we reported that peroxidase 51 (ZjPOD51), which is involved in lignin monomer polymerization, was induced by phytoplasma infection and that overexpression of ZjPOD51 in phytoplasma-infected jujube seedlings and Arabidopsis plants significantly increased their defense response against phytoplasma. Yeast one-hybrid (Y1H) and luciferase (LUC) assays showed that ZjPOD51 transcription was directly upregulated by ZjMYB44. Genetic validation demonstrated that ZjMYB44 expression was also induced by phytoplasma infection and contributed to lignin accumulation, which consequently enhanced phytoplasma defense in a ZjPOD51-dependent manner. These results demonstrated that the ZjMYB44-ZjPOD51 module enhanced the jujube defense response against phytoplasma by upregulating lignin biosynthesis. Overall, our study first elucidates how plants regulate lignin to enhance their defense response against phytoplasma and provides clues for jujube resistance breeding.
Collapse
Affiliation(s)
- Liman Zhang
- College of Life Science, Hebei Agricultural University, Baoding 071000, China
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding 071000, China
| | - Hongtai Li
- College of Life Science, Hebei Agricultural University, Baoding 071000, China
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding 071000, China
| | - Ximeng Wei
- College of Life Science, Hebei Agricultural University, Baoding 071000, China
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding 071000, China
| | - Yuanyuan Li
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zhiguo Liu
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding 071000, China
| | - Mengjun Liu
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding 071000, China
| | - Weijie Huang
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Huibin Wang
- College of Life Science, Hebei Agricultural University, Baoding 071000, China
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding 071000, China
| | - Jin Zhao
- College of Life Science, Hebei Agricultural University, Baoding 071000, China
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding 071000, China
| |
Collapse
|
2
|
Honjo MN, Emura N, Kamitani M, Kudoh H. Cold suppresses virus accumulation and alters the host transcriptomic response in the turnip mosaic virus-Arabidopsis halleri system. PLANT & CELL PHYSIOLOGY 2025; 66:596-615. [PMID: 39829324 DOI: 10.1093/pcp/pcaf010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 01/06/2025] [Accepted: 01/13/2025] [Indexed: 01/22/2025]
Abstract
Since plant viruses cause lifelong infections, virus-plant interactions are exposed to large temperature fluctuations in evergreen perennials. In such circumstances, virus-plant interactions are expected to change significantly between the warm and cold seasons. However, few studies have investigated the effects of cold temperatures on virus-plant interactions. Here, we show that in a persistent infection system of the turnip mosaic virus (TuMV)-Arabidopsis halleri, cold temperatures lead to slow viral replication/spreading within the host, attenuated host symptoms, and cold-specific transcriptomic responses. Many differentially expressed genes (DEGs) were detected between virus-inoculated and mock-inoculated plants under warm and cold conditions; however, the sets of DEGs and response timings were temperature-dependent. At cold temperatures, the expression of photosynthesis-related genes decreased in the early stages of infection. However, it recovered to the same level as that in uninfected plants in the later stages. In contrast, the transcriptomic changes under warm conditions suggest that viral infections cause auxin signaling disruption. These responses coincided with the inhibition of host growth. We identified 6 cold- and 38 warm-specific DEGs, which changed their expression in response to TuMV infection under more than half of the conditions for either cold or warm temperatures. Further validation of the putative relationships between transcriptomic and phenotypic responses of the host is required. Our findings on temperature-dependent host responses at both symptomatic and transcriptomic levels help us understand how warm and cold temperatures affect virus-plant interactions in seasonal environments.
Collapse
Affiliation(s)
- Mie N Honjo
- Center for Ecological Research, Kyoto University, Hirano 2-509-3, Otsu 520-2113, Japan
| | - Naoko Emura
- Center for Ecological Research, Kyoto University, Hirano 2-509-3, Otsu 520-2113, Japan
- Faculty of Agriculture, Kagoshima University, Korimoto 1-21-24, Kagoshima 890-0065, Japan
| | - Mari Kamitani
- Center for Ecological Research, Kyoto University, Hirano 2-509-3, Otsu 520-2113, Japan
- CiRA Foundation, Kyoto University, Shogoin kawahara-cho 53, Sakyo-ku, Kyoto 606-8397, Japan
| | - Hiroshi Kudoh
- Center for Ecological Research, Kyoto University, Hirano 2-509-3, Otsu 520-2113, Japan
| |
Collapse
|
3
|
Cruz JMFDL, de Farias OR, Araújo BCL, Rivera AV, de Souza CR, de Souza JT. A New Root and Trunk Rot Disease of Grapevine Plantlets Caused by Fusarium in Four Species Complexes. J Fungi (Basel) 2025; 11:230. [PMID: 40137267 PMCID: PMC11942937 DOI: 10.3390/jof11030230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/11/2025] [Accepted: 03/13/2025] [Indexed: 03/27/2025] Open
Abstract
Grapevines are propagated by grafting, but the rootstocks used in commercial plantations are susceptible to several diseases. In this study, we focused on a novel root and trunk rot disease of grapevine plantlets that show symptoms during cold storage, before field establishment. Our objectives were to study the aetiology, symptomatology, plant resistance responses, and mode of action of the pathogen that was initially identified as Fusarium. The characterisation of this pathosystem was performed by isolation, pathogenicity assays, genetic diversity studies with BOX-PCR, and identification by sequencing a fragment of the tef1 gene. Scanning electron microscopy and X-ray spectroscopy were used to study the mode of action and plant resistance responses. The results showed that 12 species of Fusarium, initially isolated from both healthy and diseased plantlets, and classified into 4 species complexes, were pathogenic to grapevines. Comparative analyses between diseased and healthy roots showed typical resistance responses in diseased plantlets, including tyloses formation, translocation of Ca, and accumulation of Si. Field experiments confirmed that 100% of the diseased plantlets died within 90 days of transplantation. This study contributes to a better understanding of root and trunk rot disease under cold storage and provides insights for the development of management strategies.
Collapse
Affiliation(s)
| | - Otília Ricardo de Farias
- Department of Plant Pathology, Federal University of Lavras, Lavras 37200-900, MG, Brazil; (J.M.F.d.L.C.); (O.R.d.F.); (B.C.L.A.)
| | - Brunno Cassiano Lemos Araújo
- Department of Plant Pathology, Federal University of Lavras, Lavras 37200-900, MG, Brazil; (J.M.F.d.L.C.); (O.R.d.F.); (B.C.L.A.)
| | - Alejandra Valencia Rivera
- Faculty of Agricultural Sciences, Jaime Isaza Cadavid Colombian Polytechnic, Medellín 050022, ANT, Colombia;
| | - Cláudia Rita de Souza
- Technological Centre of Grape and Wine Research, Agricultural Research Agency of the State of Minas Gerais, Caldas 37780-000, MG, Brazil;
| | - Jorge Teodoro de Souza
- Department of Plant Pathology, Federal University of Lavras, Lavras 37200-900, MG, Brazil; (J.M.F.d.L.C.); (O.R.d.F.); (B.C.L.A.)
| |
Collapse
|
4
|
Benatto Perino EH, Smolka U, Gorzolka K, Grützner R, Marillonnet S, Vahabi K, Rosahl S. The suberin transporter StABCG1 is required for barrier formation in potato leaves. Sci Rep 2025; 15:7930. [PMID: 40050620 PMCID: PMC11885807 DOI: 10.1038/s41598-025-89032-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 02/03/2025] [Indexed: 03/09/2025] Open
Abstract
Suberin is a hydrophobic biopolymer that acts as an internal and external diffusion and transpiration barrier in plants. It is involved in two phases of wound healing, i.e. initial closing layer formation and subsequent wound periderm development. Transcriptomic and metabolomic analyses of wounded potato leaf tissue revealed preferential induction of cell wall modifying processes during closing layer formation, accompanied by a highly active defense response. To address the importance of suberin in this process, we generated loss of function mutants by CRISPR-Cas9 editing the suberin transporter gene StABCG1. Both wound-induced StABCG1 transcript levels and suberin formation around wounded leaf tissue were reduced in CRISPR-lines. Moreover, wound-induced tissue damage was characterized by browning of wound-adjacent areas. Transcriptome analyses of these areas revealed up-regulation of genes encoding defense proteins and enzymes of the phenylpropanoid pathway. Levels of hydroxycinnamic acid amides, acting in defense and in cell wall reinforcement, were drastically enhanced in CRISPR compared to control plants. These results suggest that the reduction in suberin formation around wounded tissue leads to a loss of barrier function, resulting in tissue browning due to enhanced exposure to oxygen.
Collapse
Affiliation(s)
- Elvio Henrique Benatto Perino
- Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany
- Anhalt University of Applied Sciences, Bernburger Str. 55, 06366, Köthen, Germany
- Bioprocess Engineering, University Hohenheim, Stuttgart, Germany
| | - Ulrike Smolka
- Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany
| | - Karin Gorzolka
- Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany
- Ecological Chemistry, Plant Analysis and Stored Product Protection, Julius-Kühn-Institute, Berlin, Germany
| | - Ramona Grützner
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany
| | - Sylvestre Marillonnet
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany
| | - Khabat Vahabi
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany
- Science Support Platform/Biotic Interactions2, Leibniz Institute of Vegetable and Ornamental Crops (IGZ) e.V., Theodor-Echtermeyer-Weg 1, 14979, Großbeeren, Germany
| | - Sabine Rosahl
- Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany.
- Anhalt University of Applied Sciences, Bernburger Str. 55, 06366, Köthen, Germany.
| |
Collapse
|
5
|
Liyanapathiranage P, Avin FA, Bonkowski J, Beckerman JL, Munster M, Hadziabdic D, Trigiano RN, Baysal-Gurel F. Vascular Streak Dieback: A Novel Threat to Redbud and Other Woody Ornamental Production in the United States. PLANT DISEASE 2025:PDIS04240905FE. [PMID: 39115954 DOI: 10.1094/pdis-04-24-0905-fe] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Eastern redbud (Cercis canadensis L.) is a popular and high-value woody ornamental plant native to the Eastern and South Central United States. In recent years, redbud production in the Southeastern United States has been greatly affected by a novel threat: vascular streak dieback (VSD). Infected plants exhibit a common set of symptoms, including leaf scorch, tip dieback, and vascular streaking that creates a marbled pattern in stem cross-section. Based on both conventional diagnosis and molecular identification, it has been found that the fungus Ceratobasidium sp. D.P. Rogers (Csp) is consistently associated with VSD-symptomatic eastern redbuds. However, the causal agent(s) of VSD has not yet been conclusively confirmed. Although eastern redbud has been the most frequently identified host tree, more than 25 other native plant genera have been confirmed to have VSD associated with Csp. The near-obligate nature of this fungus has made it challenging to culture, extract DNA, and conduct further studies to confirm its pathogenicity. This article highlights the emerging challenges of VSD, focusing on the following: (i) the recent history of VSD; (ii) the increasing importance of VSD to woody ornamental nursery production in the United States; (iii) the currently available protocols for isolating, culturing, storing, and maintaining the putative causal agent; (iv) the rapid molecular detection of Csp; (v) phylogenetic findings on the origin and relatedness of Csp to previously recorded diseases, especially VSD in cacao (Theobroma cacao L.); and (vi) preliminary results and observations from fungicide trials and cultivar screening in Tennessee. The article also outlines research needed to comprehensively understand VSD and accelerate the development of effective management strategies.
Collapse
Affiliation(s)
| | - Farhat A Avin
- Otis L. Floyd Nursery Research Center, Tennessee State University, McMinnville, TN 37110, U.S.A
| | - John Bonkowski
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, U.S.A
| | - Janna L Beckerman
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, U.S.A
| | - Michael Munster
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695, U.S.A
| | - Denita Hadziabdic
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, U.S.A
| | - Robert N Trigiano
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, U.S.A
| | - Fulya Baysal-Gurel
- Otis L. Floyd Nursery Research Center, Tennessee State University, McMinnville, TN 37110, U.S.A
| |
Collapse
|
6
|
Lipps S, Bohn M, Rutkoski J, Butts-Wilmsmeyer C, Mideros S, Jamann T. Comparative Review of Fusarium graminearum Infection in Maize and Wheat: Similarities in Resistance Mechanisms and Future Directions. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2025; 38:142-159. [PMID: 39700336 DOI: 10.1094/mpmi-08-24-0083-fi] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Fusarium graminearum is one of the most important plant-pathogenic fungi that causes disease on wheat and maize, as it decreases yield in both crops and produces mycotoxins that pose a risk to human and animal health. Resistance to Fusarium head blight (FHB) in wheat is well studied and documented. However, resistance to Gibberella ear rot (GER) in maize is less understood, despite several similarities to FHB. In this review, we synthesize existing literature on the colonization strategies, toxin accumulation, genetic architecture, and potential mechanisms of resistance to GER in maize and compare it with what is known regarding FHB in wheat. There are several similarities in the infection and colonization strategies of F. graminearum in maize and wheat. We describe multiple types of GER resistance in maize and identify distinct genetic regions for each resistance type. We discuss the potential of phenylpropanoids for biochemical resistance to F. graminearum. Phenylpropanoids are well characterized, and there are many similarities in their functional roles for resistance between wheat and maize. These insights can be utilized to improve maize germplasm for GER resistance and are also useful for FHB resistance breeding and management. [Formula: see text] Copyright © 2025 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Sarah Lipps
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Champaign, IL, U.S.A
| | - Martin Bohn
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Champaign, IL, U.S.A
| | - Jessica Rutkoski
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Champaign, IL, U.S.A
| | - Carolyn Butts-Wilmsmeyer
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL, U.S.A
- Center for Predictive Analytics, Southern Illinois University Edwardsville, Edwardsville, IL, U.S.A
| | - Santiago Mideros
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Champaign, IL, U.S.A
| | - Tiffany Jamann
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Champaign, IL, U.S.A
| |
Collapse
|
7
|
Herath Dissanayakalage SS, Kaur J, Achari SR, Sawbridge TI. Identification of in planta bioprotectants against Fusarium wilt in Medicago sativa L. (lucerne) from a collection of bacterial isolates derived from Medicago seeds. Front Microbiol 2025; 16:1544521. [PMID: 40078546 PMCID: PMC11897269 DOI: 10.3389/fmicb.2025.1544521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 02/10/2025] [Indexed: 03/14/2025] Open
Abstract
Fusarium wilt caused by Fusarium oxysporum f. sp. medicaginis (Fom) is an important disease affecting lucerne/alfalfa cultivations worldwide. Medicago sativa L. (lucerne) is one of the major legume crops in global forage industry. This study aimed to identify bacteria capable of biologically controlling the wilt pathogen through a comprehensive screening of bacterial isolates obtained from domesticated and wild growing Medicago seeds. Using a multi-tiered evaluation pipeline, including in vitro, soil-free and potting mix-based pathogenicity and bioprotection assay systems, the bioprotection efficacy of 34 bacterial isolates derived from Medicago seeds was initially evaluated against six Fusarium strains in vitro. Fusarium oxysporum (Fo) F5189, which has previously been characterized as a Fusarium oxysporum f. sp. medicaginis isolate causing Fusarium wilt in lucerne was selected for in planta assays. Lucerne cultivars Grazer and Sequel, representing susceptible and resistant genotypes were chosen to assess the disease progression. Pathogenicity and bioprotection time-course studies were conducted to understand the temporal dynamics of host-pathogen interactions and efficacy of the bioprotectants. The disease symptoms were scored using a disease rating index developed in this study. The results indicated variability in bioprotection efficacy across bacterial isolates, with some strains suppressing disease in both soil-free and potting mix-based systems. Paenibacillus sp. (Lu_MgY_007; NCBI: PQ756884) and Pseudomonas sp. (Lu_LA164_018; NCBI: PQ756887) were identified as promising bioprotectants against Fusarium wilt under tested growth conditions. The time-course studies highlighted the critical role of persistent biocontrol activity and precise timing of biocontrol application for achieving long-term disease suppression. Overall, the observed reduction in disease severity underscores the potential of these bioprotectants as sustainable strategies for managing Fusarium wilt in lucerne cultivars. However, comprehensive molecular-level analyses are warranted to elucidate the underlying pathogenicity and bioprotection mechanisms, offering valuable insights for the development of more precise and effective future biocontrol strategies in agricultural systems.
Collapse
Affiliation(s)
- Shenali Subodha Herath Dissanayakalage
- Agriculture Victoria, AgriBio Centre for AgriBioscience, Bundoora, VIC, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia
| | - Jatinder Kaur
- Agriculture Victoria, AgriBio Centre for AgriBioscience, Bundoora, VIC, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia
| | - Saidi R. Achari
- Agriculture Victoria, AgriBio Centre for AgriBioscience, Bundoora, VIC, Australia
| | - Timothy I. Sawbridge
- Agriculture Victoria, AgriBio Centre for AgriBioscience, Bundoora, VIC, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia
| |
Collapse
|
8
|
López-Arellanes ME, López-Pacheco LD, Elizondo-Luevano JH, González-Meza GM. Algae and Cyanobacteria Fatty Acids and Bioactive Metabolites: Natural Antifungal Alternative Against Fusarium sp. Microorganisms 2025; 13:439. [PMID: 40005804 PMCID: PMC11858688 DOI: 10.3390/microorganisms13020439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/08/2025] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
Fungal diseases caused by Fusarium spp. significantly threaten food security and sustainable agriculture. One of the traditional strategies for eradicating Fusarium spp. incidents is the use of chemical and synthetic fungicides. The excessive use of these products generates environmental damage and has negative effects on crop yield. It puts plants in stressful conditions, kills the natural soil microbiome, and makes phytopathogenic fungi resistant. Finally, it also causes health problems in farmers. This drives the search for and selection of natural alternatives, such as bio-fungicides. Among natural products, algae and cyanobacteria are promising sources of antifungal bio-compounds. These organisms can synthesize different bioactive molecules, such as fatty acids, phenolic acids, and some volatile organic compounds with antifungal activity, which can damage the fungal cell membrane that surrounds the hyphae and spores, either by solubilization or by making them porous and disrupted. Research in this area is still developing, but significant progress has been made in the identification of the compounds with potential for controlling this important pathogen. Therefore, this review focuses on the knowledge about the mechanisms of action of the fatty acids from macroalgae, microalgae, and cyanobacteria as principal biomolecules with antifungal activity, as well as on the benefits and challenges of applying these natural metabolites against Fusarium spp. to achieve sustainable agriculture.
Collapse
Affiliation(s)
- Miguel E. López-Arellanes
- School of Engineering and Sciences, Tecnológico de Monterrey, Monterrey 64700, Nuevo León, Mexico; (M.E.L.-A.); (L.D.L.-P.)
| | - Lizbeth Denisse López-Pacheco
- School of Engineering and Sciences, Tecnológico de Monterrey, Monterrey 64700, Nuevo León, Mexico; (M.E.L.-A.); (L.D.L.-P.)
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnológico de Monterrey, Monterrey 64700, Nuevo León, Mexico
| | - Joel H. Elizondo-Luevano
- Faculty of Agronomy, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, Nuevo León, Mexico;
| | - Georgia María González-Meza
- School of Engineering and Sciences, Tecnológico de Monterrey, Monterrey 64700, Nuevo León, Mexico; (M.E.L.-A.); (L.D.L.-P.)
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnológico de Monterrey, Monterrey 64700, Nuevo León, Mexico
| |
Collapse
|
9
|
Prévitali T, Rouault M, Pichereaux C, Gourion B. Lotus resistance against Ralstonia is enhanced by Mesorhizobium and does not impair mutualism. THE NEW PHYTOLOGIST 2025; 245:1249-1262. [PMID: 39562505 DOI: 10.1111/nph.20276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/24/2024] [Indexed: 11/21/2024]
Abstract
Legumes establish nitrogen-fixing symbioses with rhizobia. On the contrary, they can be attacked concomitantly by pathogens, raising the question of potential trade-offs between mutualism and immunity. In order to study such trade-offs, we used a tripartite system involving the model legume Lotus japonicus, its rhizobial symbiont Mesorhizobium loti and the soilborne pathogen Ralstonia solanacearum. We investigated the impact of mutualism on plant defense and the reciprocal influence of plant defense on mutualism. We found that Lotus age-related resistance against Ralstonia was improved by the interaction with rhizobia especially when nodulation is triggered. Conversely, age-related resistance did not compromise nodule organogenesis or functioning under pathogen attack. Proteomic characterization indicates that this resistance is associated with distinct proteome modifications in roots and nodules. This resistance questions the concept of interference between efficient defense reactions and mutualistic interactions and is of great interest for agricultural purposes as it not only restricts pathogen colonization, but would also preserve nitrogen fixation and yield.
Collapse
Affiliation(s)
- Thomas Prévitali
- Laboratoire des Interactions Plantes-Microbes-Environnement (LIPME), Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, F-31326, France
| | - Mathilde Rouault
- Laboratoire des Interactions Plantes-Microbes-Environnement (LIPME), Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, F-31326, France
| | - Carole Pichereaux
- Fédération de Recherche Agrobiosciences, Interactions et Biodiversité (FRAIB), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Castanet-Tolosan, F-31326, France
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, F-31077, France
- Infrastructure Nationale de Protéomique, ProFI, FR 2048, Toulouse, F-31077, France
| | - Benjamin Gourion
- Laboratoire des Interactions Plantes-Microbes-Environnement (LIPME), Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, F-31326, France
| |
Collapse
|
10
|
Chen Z, Shao S, Zhu X, Zhang Y, Lan Z, Jin H. Transcriptome responses to Ralstonia solanacearum infection in tetraploid potato. Heliyon 2025; 11:e41903. [PMID: 39897796 PMCID: PMC11786733 DOI: 10.1016/j.heliyon.2025.e41903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 02/04/2025] Open
Abstract
Potato (Solanum tuberosum) is an important global food source, the growth of which can be severely impacted by Ralstonia solanacearum bacterial infection. Despite extensive research, the molecular mechanisms of potato resistance to this pathogen are imperfectly known. Huashu No. 12, a tetraploid potato genotype, is highly resistant to R. solanacearum. We inoculate Huashu No. 12 and Longshu No. 7 (highly susceptible to R. solanacearum) with R. solanacearum to compare disease resistance in these two potato varieties. Huashu No. 12 has significantly higher resistance to R. solanacearum infection than Longshu No. 7, with increased lignin content, and an abundance of callose and strong autofluorescence in the phloem sieve tube. Enzymes (e.g., superoxide dismutase, catalase, peroxidase, phenylalanine ammonia-lyase, and polyphenol oxidase) contribute to R. solanacearum resistance in Huashu No. 12. Transcriptome sequencing reveals 659 differentially expressed genes between the two varieties, with the ethylene responsive factor family containing the most differentially expressed genes. Gene ontology and KEGG analyses provided further insights into the genetic basis and molecular mechanisms underlying plant defense against R. solanacearum disease. By demonstrating the importance of enzymes and differential gene expression in Huashu No. 12 resistance to R. solanacearum infection, the breeding of disease-resistant potato becomes increasingly feasible.
Collapse
Affiliation(s)
- Zhuo Chen
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture and Rural Affairs of China, Zhanjiang, China
| | - Shunwei Shao
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, China
| | - Xi Zhu
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture and Rural Affairs of China, Zhanjiang, China
| | - Yu Zhang
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture and Rural Affairs of China, Zhanjiang, China
| | - Zhendong Lan
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, China
| | - Hui Jin
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture and Rural Affairs of China, Zhanjiang, China
| |
Collapse
|
11
|
Wang B, Luo C, Li X, Jimenez A, Cai J, Chen J, Li C, Zhang C, Ou L, Pu W, Peng Y, Zhang Z, Cai Y, Valls M, Wu D, Yu F. The FERONIA-RESPONSIVE TO DESICCATION 26 module regulates vascular immunity to Ralstonia solanacearum. THE PLANT CELL 2024; 37:koae302. [PMID: 39535787 DOI: 10.1093/plcell/koae302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/19/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Some pathogens colonize plant leaves, but others invade the roots, including the vasculature, causing severe disease symptoms. Plant innate immunity has been extensively studied in leaf pathosystems; however, the precise regulation of immunity against vascular pathogens remains largely unexplored. We previously demonstrated that loss of function of the receptor kinase FERONIA (FER) increases plant resistance to the typical vascular bacterial pathogen Ralstonia solanacearum. Here, we show that upon infection with R. solanacearum, root xylem cell walls in Arabidopsis thaliana become highly lignified. FER is specifically upregulated in the root xylem in response to R. solanacearum infection, and inhibits lignin biosynthesis and resistance to this pathogen. We determined that FER interacts with and phosphorylates the transcription factor RESPONSIVE TO DESICCATION 26 (RD26), leading to its degradation. Overexpression and knockout of RD26 demonstrated that it positively regulates plant resistance to R. solanacearum by directly activating the expression of lignin-related genes. Tissue-specific expression of RD26 in the root xylem confirmed its role in vascular immunity. We confirmed that the FER-RD26 module regulates lignin biosynthesis and resistance against R. solanacearum in tomato (Solanum lycopersicum). Taken together, our findings unveil that the FER-RD26 cascade governs plant immunity against R. solanacearum in vascular tissues by regulating lignin deposition. This cascade may represent a key defense mechanism against vascular pathogens in plants.
Collapse
Affiliation(s)
- Bingqian Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China
| | - Cailin Luo
- State Key Laboratory of Chemo/Biosensing and Chemometrics, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China
| | - Xiaoxu Li
- Technology Center, China Tobacco Hunan Industrial Co., Ltd., Changsha 410021, China
| | - Alvaro Jimenez
- Department of Genetics, University of Barcelona, Barcelona, Catalonia 08007, Spain
- Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Bellaterra, Catalonia 08193, Spain
| | - Jun Cai
- State Key Laboratory of Chemo/Biosensing and Chemometrics, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China
| | - Jia Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China
| | - Changsheng Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China
| | - Chunhui Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China
| | - Lijun Ou
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410125, China
| | - Wenxuan Pu
- Technology Center, China Tobacco Hunan Industrial Co., Ltd., Changsha 410021, China
| | - Yu Peng
- Technology Center, China Tobacco Hunan Industrial Co., Ltd., Changsha 410021, China
| | - Zhenchen Zhang
- Guangdong Key Laboratory for Crops Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences (GAAS), Guangzhou 510640, China
| | - Yong Cai
- State Key Laboratory of Chemo/Biosensing and Chemometrics, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China
- Yuelushan Laboratory, Changsha 410128, China
| | - Marc Valls
- Department of Genetics, University of Barcelona, Barcelona, Catalonia 08007, Spain
- Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Bellaterra, Catalonia 08193, Spain
| | - Dousheng Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China
- Yuelushan Laboratory, Changsha 410128, China
| | - Feng Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China
- Yuelushan Laboratory, Changsha 410128, China
| |
Collapse
|
12
|
Chen A, Chou TY, Chen Y, Fallatah SMA, Anderson J, Sun J, Cosgrove H, Gao S, Ferguson BJ, Soper A, Gardiner DM, Aitken EAB. Histological Dissection of Fusarium-Banana Interaction Using a GFP-Tagged Subtropical Race 4 Strain of Fusarium oxysporum f. sp. cubense on Banana Cultivars with Differing Levels of Resistance. Microorganisms 2024; 12:2472. [PMID: 39770675 PMCID: PMC11727742 DOI: 10.3390/microorganisms12122472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/20/2024] [Accepted: 11/29/2024] [Indexed: 01/05/2025] Open
Abstract
Fusarium wilt, caused by Fusarium oxysporum f. sp. cubense (Foc), poses a significant threat to global banana production. This study used a GFP-tagged subtropical race 4 strain of Foc (GFP-Foc-STR4) to trace the pathogen's movement in different banana cultivars. These include a race 4 resistant cultivar FHIA25 and the Cavendish somaclone 'GCTCV119', as well as susceptible cultivars including 'Lady Finger', 'FHIA02', and 'Williams' Cavendish. GFP localization revealed that GFP-Foc-STR4 was able to infect all tested cultivars, moving from the roots to the rhizome and aerial parts of the plant. Tyloses formation in root and rhizome vasculature, visualised with GFP autofluorescence and confirmed by scanning electron microscopy, was found to restrict Foc within the xylem vessels, slowing its spread but not fully preventing infection. This containment mechanism contributes to the host tolerance of 'FHIA25' and 'GCTCV119', though it does not confer complete immunity. The use of the fluorescently tagged Foc strain provides valuable insight into the infection process, and supports efforts in the integrated management of Fusarium wilt of banana.
Collapse
Affiliation(s)
- Andrew Chen
- School of Agriculture and Food Sustainability, The University of Queensland, St. Lucia, QLD 4072, Australia; (T.-Y.C.); (Y.C.); (S.M.A.F.); (J.A.); (J.S.); (H.C.); (A.S.)
| | - Ting-Yan Chou
- School of Agriculture and Food Sustainability, The University of Queensland, St. Lucia, QLD 4072, Australia; (T.-Y.C.); (Y.C.); (S.M.A.F.); (J.A.); (J.S.); (H.C.); (A.S.)
| | - Yi Chen
- School of Agriculture and Food Sustainability, The University of Queensland, St. Lucia, QLD 4072, Australia; (T.-Y.C.); (Y.C.); (S.M.A.F.); (J.A.); (J.S.); (H.C.); (A.S.)
| | - Sumayyah M. A. Fallatah
- School of Agriculture and Food Sustainability, The University of Queensland, St. Lucia, QLD 4072, Australia; (T.-Y.C.); (Y.C.); (S.M.A.F.); (J.A.); (J.S.); (H.C.); (A.S.)
| | - Jay Anderson
- School of Agriculture and Food Sustainability, The University of Queensland, St. Lucia, QLD 4072, Australia; (T.-Y.C.); (Y.C.); (S.M.A.F.); (J.A.); (J.S.); (H.C.); (A.S.)
| | - Jiaman Sun
- School of Agriculture and Food Sustainability, The University of Queensland, St. Lucia, QLD 4072, Australia; (T.-Y.C.); (Y.C.); (S.M.A.F.); (J.A.); (J.S.); (H.C.); (A.S.)
| | - Harry Cosgrove
- School of Agriculture and Food Sustainability, The University of Queensland, St. Lucia, QLD 4072, Australia; (T.-Y.C.); (Y.C.); (S.M.A.F.); (J.A.); (J.S.); (H.C.); (A.S.)
| | - Siyuan Gao
- School of Agriculture and Food Sustainability, The University of Queensland, St. Lucia, QLD 4072, Australia; (T.-Y.C.); (Y.C.); (S.M.A.F.); (J.A.); (J.S.); (H.C.); (A.S.)
| | - Brett J. Ferguson
- Integrative Legume Research Group, School of Agriculture and Food Sustainability, The University of Queensland, St. Lucia, QLD 4072, Australia;
| | - Amelie Soper
- School of Agriculture and Food Sustainability, The University of Queensland, St. Lucia, QLD 4072, Australia; (T.-Y.C.); (Y.C.); (S.M.A.F.); (J.A.); (J.S.); (H.C.); (A.S.)
| | - Donald M. Gardiner
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD 4072, Australia;
| | - Elizabeth A. B. Aitken
- School of Agriculture and Food Sustainability, The University of Queensland, St. Lucia, QLD 4072, Australia; (T.-Y.C.); (Y.C.); (S.M.A.F.); (J.A.); (J.S.); (H.C.); (A.S.)
| |
Collapse
|
13
|
Jian Y, Liu Z, He P, Shan L. An emerging connected view: Phytocytokines in regulating stomatal, apoplastic, and vascular immunity. CURRENT OPINION IN PLANT BIOLOGY 2024; 82:102623. [PMID: 39236593 DOI: 10.1016/j.pbi.2024.102623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/22/2024] [Accepted: 08/11/2024] [Indexed: 09/07/2024]
Abstract
Foliar pathogens exploit natural openings, such as stomata and hydathodes, to invade plants, multiply in the apoplast, and potentially spread through the vasculature. To counteract these threats, plants dynamically regulate stomatal movement and apoplastic water potential, influencing hydathode guttation and water transport. This review highlights recent advances in understanding how phytocytokines, plant small peptides with immunomodulatory functions, regulate these processes to limit pathogen entry and proliferation. Additionally, we discuss the coordinated actions of stomatal movement, hydathode guttation, and the vascular system in restricting pathogen entry, multiplication, and dissemination. We also explore future perspectives and key questions arising from these findings, aiming to advance our knowledge of plant immunity and improve disease resistance strategies.
Collapse
Affiliation(s)
- Yunqing Jian
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Zunyong Liu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ping He
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Libo Shan
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
14
|
Pang S, Li Z, Zhang Q, Tian Z, Deng S, Zhang P, Liu S, Yang B, Zhou Z. Physiological characteristics during the formation of aromatic components in xylem of Aquilaria sinensis induced by exogenous substances. FRONTIERS IN PLANT SCIENCE 2024; 15:1461048. [PMID: 39628533 PMCID: PMC11612829 DOI: 10.3389/fpls.2024.1461048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 09/30/2024] [Indexed: 12/06/2024]
Abstract
An inductive combination of plant growth regulators, inorganic salts, and fungi is essential for the formation of aromatic components in the xylem of Aquilaria sinensis. However, the dynamics of xylem physiology and the relationships between physiological properties and aromatic components after artificial induction remain unclear. In this study, the changes in physiological properties of A. sinensis xylem during induction were determined and analyzed under four induction treatments and a control group. The defense hormone contents of jasmonic acid, salicylic acid, aminocyclopropane-1-carboxylic acid, and abscisic acid obtained from the four induction treatments increased significantly. However, the concentrations of gibberellin and indoleacetic acid were decreased compared to the control group. An initially upward and then downward trend was observed in the main antioxidant enzyme activities. Additionally, malonaldehyde content decreased obviously, while proline content tended to increase and then decrease as induction continued. The total and soluble sugar content was evidently reduced after treatment, and the soluble sugar content recovered more rapidly with time. Thirty-three aromatic components were identified in all treatments, and the primary aromatic components were terpenes, aromatics and chromones, the relative contents of which varied among treatments. These results provide new insights for optimization and innovation of agarwood induction techniques by exploring the formation of aromatics in the xylem of A. sinensis and its physiological responses following induction with exogenous substances (ethephon, NaCl, CaCl2 and fungal mixed solution).
Collapse
Affiliation(s)
- Shengjiang Pang
- Experimental Center of Tropical Forestry, Chinese Academy of Forestry, Pingxiang, China
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, China
- College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Zhongguo Li
- Experimental Center of Tropical Forestry, Chinese Academy of Forestry, Pingxiang, China
| | - Qingqing Zhang
- Institute of Flower, Fujian Academy of Forestry, Fuzhou, China
| | - Zuwei Tian
- Experimental Center of Tropical Forestry, Chinese Academy of Forestry, Pingxiang, China
| | - Shuokun Deng
- Experimental Center of Tropical Forestry, Chinese Academy of Forestry, Pingxiang, China
| | - Pei Zhang
- Experimental Center of Tropical Forestry, Chinese Academy of Forestry, Pingxiang, China
| | - Shiling Liu
- Experimental Center of Tropical Forestry, Chinese Academy of Forestry, Pingxiang, China
| | - Baoguo Yang
- Experimental Center of Tropical Forestry, Chinese Academy of Forestry, Pingxiang, China
| | - Zaizhi Zhou
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, China
| |
Collapse
|
15
|
Spooren J, van Bentum S, Thomashow LS, Pieterse CMJ, Weller DM, Berendsen RL. Plant-Driven Assembly of Disease-Suppressive Soil Microbiomes. ANNUAL REVIEW OF PHYTOPATHOLOGY 2024; 62:1-30. [PMID: 38857541 DOI: 10.1146/annurev-phyto-021622-100127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Plants have coevolved together with the microbes that surround them and this assemblage of host and microbes functions as a discrete ecological unit called a holobiont. This review outlines plant-driven assembly of disease-suppressive microbiomes. Plants are colonized by microbes from seed, soil, and air but selectively shape the microbiome with root exudates, creating microenvironment hot spots where microbes thrive. Using plant immunity for gatekeeping and surveillance, host-plant genetic properties govern microbiome assembly and can confer adaptive advantages to the holobiont. These advantages manifest in disease-suppressive soils, where buildup of specific microbes inhibits the causal agent of disease, that typically develop after an initial disease outbreak. Based on disease-suppressive soils such as take-all decline, we developed a conceptual model of how plants in response to pathogen attack cry for help and recruit plant-protective microbes that confer increased resistance. Thereby, plants create a soilborne legacy that protects subsequent generations and forms disease-suppressive soils.
Collapse
Affiliation(s)
- Jelle Spooren
- Plant-Microbe Interactions, Institute of Environmental Biology, Department of Biology, Science4Life, Utrecht University, Utrecht, The Netherlands
| | - Sietske van Bentum
- Plant-Microbe Interactions, Institute of Environmental Biology, Department of Biology, Science4Life, Utrecht University, Utrecht, The Netherlands
| | - Linda S Thomashow
- Wheat Health, Genetics and Quality Research Unit, US Department of Agriculture, Agricultural Research Service, Pullman, Washington, USA;
| | - Corné M J Pieterse
- Plant-Microbe Interactions, Institute of Environmental Biology, Department of Biology, Science4Life, Utrecht University, Utrecht, The Netherlands
| | - David M Weller
- Wheat Health, Genetics and Quality Research Unit, US Department of Agriculture, Agricultural Research Service, Pullman, Washington, USA;
| | - Roeland L Berendsen
- Plant-Microbe Interactions, Institute of Environmental Biology, Department of Biology, Science4Life, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
16
|
Malinowski R, Singh D, Kasprzewska A, Blicharz S, Basińska-Barczak A. Vascular tissue - boon or bane? How pathogens usurp long-distance transport in plants and the defence mechanisms deployed to counteract them. THE NEW PHYTOLOGIST 2024; 243:2075-2092. [PMID: 39101283 DOI: 10.1111/nph.20030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/13/2024] [Indexed: 08/06/2024]
Abstract
Evolutionary emergence of specialised vascular tissues has enabled plants to coordinate their growth and adjust to unfavourable external conditions. Whilst holding a pivotal role in long-distance transport, both xylem and phloem can be encroached on by various biotic factors for systemic invasion and hijacking of nutrients. Therefore, a complete understanding of the strategies deployed by plants against such pathogens to restrict their entry and establishment within plant tissues, is of key importance for the future development of disease-tolerant crops. In this review, we aim to describe how microorganisms exploit the plant vascular system as a route for gaining access and control of different host tissues and metabolic pathways. Highlighting several biological examples, we detail the wide range of host responses triggered to prevent or hinder vascular colonisation and effectively minimise damage upon biotic invasions.
Collapse
Affiliation(s)
- Robert Malinowski
- Department of Integrative Plant Biology, Institute of Plant Genetics of the Polish Academy of Sciences, ul. Strzeszynska 34, Poznań, 60-479, Poland
| | - Deeksha Singh
- Department of Integrative Plant Biology, Institute of Plant Genetics of the Polish Academy of Sciences, ul. Strzeszynska 34, Poznań, 60-479, Poland
| | - Anna Kasprzewska
- Regulation of Gene Expression Team, Institute of Plant Genetics of the Polish Academy of Sciences, ul. Strzeszynska 34, Poznań, 60-479, Poland
| | - Sara Blicharz
- Department of Integrative Plant Biology, Institute of Plant Genetics of the Polish Academy of Sciences, ul. Strzeszynska 34, Poznań, 60-479, Poland
| | - Aneta Basińska-Barczak
- Department of Integrative Plant Biology, Institute of Plant Genetics of the Polish Academy of Sciences, ul. Strzeszynska 34, Poznań, 60-479, Poland
| |
Collapse
|
17
|
Shi H, Jiang J, Yu W, Cheng Y, Wu S, Zong H, Wang X, Ding A, Wang W, Sun Y. Naringenin restricts the colonization and growth of Ralstonia solanacearum in tobacco mutant KCB-1. PLANT PHYSIOLOGY 2024; 195:1818-1834. [PMID: 38573326 PMCID: PMC11213252 DOI: 10.1093/plphys/kiae185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 02/21/2024] [Indexed: 04/05/2024]
Abstract
Bacterial wilt severely jeopardizes plant growth and causes enormous economic loss in the production of many crops, including tobacco (Nicotiana tabacum). Here, we first demonstrated that the roots of bacterial wilt-resistant tobacco mutant KCB-1 can limit the growth and reproduction of Ralstonia solanacearum. Secondly, we demonstrated that KCB-1 specifically induced an upregulation of naringenin content in root metabolites and root secretions. Further experiments showed that naringenin can disrupt the structure of R. solanacearum, inhibit the growth and reproduction of R. solanacearum, and exert a controlling effect on bacterial wilt. Exogenous naringenin application activated the resistance response in tobacco by inducing the burst of reactive oxygen species and salicylic acid deposition, leading to transcriptional reprogramming in tobacco roots. Additionally, both external application of naringenin in CB-1 and overexpression of the Nicotiana tabacum chalcone isomerase (NtCHI) gene, which regulates naringenin biosynthesis, in CB-1 resulted in a higher complexity of their inter-root bacterial communities than in untreated CB-1. Further analysis showed that naringenin could be used as a marker for resistant tobacco. The present study provides a reference for analyzing the resistance mechanism of bacterial wilt-resistant tobacco and controlling tobacco bacterial wilt.
Collapse
Affiliation(s)
- Haoqi Shi
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jiale Jiang
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wen Yu
- Fujian Institute of Tobacco Agricultural Sciences, Fuzhou 350003, China
| | - Yazhi Cheng
- Fujian Institute of Tobacco Agricultural Sciences, Fuzhou 350003, China
| | - Shengxin Wu
- Fujian Institute of Tobacco Agricultural Sciences, Fuzhou 350003, China
| | - Hao Zong
- Shandong Linyi Tobacco Co., Ltd., Linyi 276000, China
| | - Xiaoqiang Wang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Anming Ding
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Weifeng Wang
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Yuhe Sun
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| |
Collapse
|
18
|
Armer VJ, Urban M, Ashfield T, Deeks MJ, Hammond-Kosack KE. The trichothecene mycotoxin deoxynivalenol facilitates cell-to-cell invasion during wheat-tissue colonization by Fusarium graminearum. MOLECULAR PLANT PATHOLOGY 2024; 25:e13485. [PMID: 38877764 PMCID: PMC11178975 DOI: 10.1111/mpp.13485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/19/2024] [Accepted: 05/22/2024] [Indexed: 06/16/2024]
Abstract
Fusarium head blight disease on small-grain cereals is primarily caused by the ascomycete fungal pathogen Fusarium graminearum. Infection of floral spike tissues is characterized by the biosynthesis and secretion of potent trichothecene mycotoxins, of which deoxynivalenol (DON) is widely reported due to its negative impacts on grain quality and consumer safety. The TRI5 gene encodes an essential enzyme in the DON biosynthesis pathway and the single gene deletion mutant, ΔTri5, is widely reported to restrict disease progression to the inoculated spikelet. In this study, we present novel bioimaging evidence revealing that DON facilitates the traversal of the cell wall through plasmodesmata, a process essential for successful colonization of host tissue. Chemical complementation of ΔTri5 did not restore macro- or microscopic phenotypes, indicating that DON secretion is tightly regulated both spatially and temporally. A comparative qualitative and quantitative morphological cellular analysis revealed infections had no impact on plant cell wall thickness. Immunolabelling of callose at plasmodesmata during infection indicates that DON can increase deposits when applied exogenously but is reduced when F. graminearum hyphae are present. This study highlights the complexity of the interconnected roles of mycotoxin production, cell wall architecture and plasmodesmata in this highly specialized interaction.
Collapse
Affiliation(s)
- Victoria J Armer
- Protecting Crops and the Environment, Rothamsted Research, Harpenden, UK
- Biosciences, University of Exeter, Exeter, UK
| | - Martin Urban
- Protecting Crops and the Environment, Rothamsted Research, Harpenden, UK
| | - Tom Ashfield
- Protecting Crops and the Environment, Rothamsted Research, Harpenden, UK
- Crop Health and Protection (CHAP), Rothamsted Research, Harpenden, UK
| | | | | |
Collapse
|
19
|
Oerke EC, Steiner U. Hyperspectral imaging reveals small-scale water gradients in apple leaves due to minimal cuticle perforation by Venturia inaequalis conidiophores. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:3125-3140. [PMID: 38386894 DOI: 10.1093/jxb/erae065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 02/21/2024] [Indexed: 02/24/2024]
Abstract
Effects of Venturia inaequalis on water relations of apple leaves were studied under controlled conditions without limitation of water supply to elucidate their impact on the non-haustorial biotrophy of this pathogen. Leaf water relations, namely leaf water content and transpiration, were spatially resolved by hyperspectral imaging and thermography; non-imaging techniques-gravimetry, a pressure chamber, and porometry-were used for calibration and validation. Reduced stomatal transpiration 3-4 d after inoculation coincided with a transient increase of water potential. Perforation of the plant cuticle by protruding conidiophores subsequently increased cuticular transpiration even before visible symptoms occurred. With sufficient water supply, cuticular transpiration remained at elevated levels for several weeks. Infections did not affect the leaf water content before scab lesions became visible. Only hyperspectral imaging was suitable to demonstrate that a decreased leaf water content was strictly limited to sites of emerging conidiophores and that cuticle porosity increased with sporulation. Microscopy confirmed marginal cuticle injury; although perforated, it tightly surrounded the base of conidiophores throughout sporulation and restricted water loss. The role of sustained redirection of water flow to the pathogen's hyphae in the subcuticular space above epidermal cells, to facilitate the acquisition and uptake of nutrients by V. inaequalis, is discussed.
Collapse
Affiliation(s)
- Erich-Christian Oerke
- Rheinische Friedrich-Wilhelms-Universitaet Bonn, INRES-Plant Pathology, Nussallee 9, D-53115 Bonn, Germany
| | - Ulrike Steiner
- Rheinische Friedrich-Wilhelms-Universitaet Bonn, INRES-Plant Pathology, Nussallee 9, D-53115 Bonn, Germany
| |
Collapse
|
20
|
Sabella E, Buja I, Negro C, Vergine M, Cherubini P, Pavan S, Maruccio G, De Bellis L, Luvisi A. The Significance of Xylem Structure and Its Chemical Components in Certain Olive Tree Genotypes with Tolerance to Xylella fastidiosa Infection. PLANTS (BASEL, SWITZERLAND) 2024; 13:930. [PMID: 38611461 PMCID: PMC11013585 DOI: 10.3390/plants13070930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024]
Abstract
Olive quick decline syndrome (OQDS) is a devastating plant disease caused by the bacterium Xylella fastidiosa (Xf). Exploratory missions in the Salento area led to the identification of putatively Xf-resistant olive trees (putatively resistant plants, PRPs) which were pauci-symptomatic or asymptomatic infected plants belonging to different genetic clusters in orchards severely affected by OQDS. To investigate the defense strategies employed by these PRPs to contrast Xf infection, the PRPs were analyzed for the anatomy and histology of xylem vessels, patterns of Xf distribution in host tissues (by the fluorescent in situ hybridization technique-FISH) and the presence of secondary metabolites in stems. The xylem vessels of the PRPs have an average diameter significantly lower than that of susceptible plants for each annual tree ring studied. The histochemical staining of xylem vessels highlighted an increase in the lignin in the parenchyma cells of the medullary rays of the wood. The 3D images obtained from FISH-LSM (laser scanning microscope) revealed that, in the PRPs, Xf cells mostly appeared as individual cells or as small aggregates; in addition, these bacterial cells looked to be incorporated in the autofluorescence signal of gels and phenolic compounds regardless of hosts' genotypes. In fact, the metabolomic data from asymptomatic PRP stems showed a significant increase in compounds like salicylic acid, known as a signal molecule which mediates host responses upon pathogen infection, and luteolin, a naturally derived flavonoid compound with antibacterial properties and with well-known anti-biofilm effects. Findings indicate that the xylem vessel geometry together with structural and chemical defenses are among the mechanisms operating to control Xf infection and may represent a common resistance trait among different olive genotypes.
Collapse
Affiliation(s)
- Erika Sabella
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Prov.le Monteroni 165, 73100 Lecce, Italy; (E.S.); (I.B.); (C.N.); (L.D.B.); (A.L.)
- National Biodiversity Future Center, 90133 Palermo, Italy
| | - Ilaria Buja
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Prov.le Monteroni 165, 73100 Lecce, Italy; (E.S.); (I.B.); (C.N.); (L.D.B.); (A.L.)
| | - Carmine Negro
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Prov.le Monteroni 165, 73100 Lecce, Italy; (E.S.); (I.B.); (C.N.); (L.D.B.); (A.L.)
| | - Marzia Vergine
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Prov.le Monteroni 165, 73100 Lecce, Italy; (E.S.); (I.B.); (C.N.); (L.D.B.); (A.L.)
| | - Paolo Cherubini
- WSL Swiss Federal Institute for Forest, Snow and Landscape Research, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
- Department of Forest and Conservation Sciences, University of British Columbia, 3041-2424 Main Mall, Vancouver, BC V6T 1Z4, Canada
| | - Stefano Pavan
- Department of Soil, Plant and Food Science, University of Bari “Aldo Moro”, 70126 Bari, Italy;
| | - Giuseppe Maruccio
- Omnics Research Group, Department of Mathematics and Physics, University of Salento, CNR-Institute of Nanotechnology, INFN Sezione di Lecce, Via per Monteroni, 73100 Lecce, Italy;
| | - Luigi De Bellis
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Prov.le Monteroni 165, 73100 Lecce, Italy; (E.S.); (I.B.); (C.N.); (L.D.B.); (A.L.)
- National Biodiversity Future Center, 90133 Palermo, Italy
| | - Andrea Luvisi
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Prov.le Monteroni 165, 73100 Lecce, Italy; (E.S.); (I.B.); (C.N.); (L.D.B.); (A.L.)
| |
Collapse
|
21
|
Zhang W, Jiménez-Jiménez Á, Capellades M, Rencoret J, Kashyap A, Coll NS. Determination of De Novo Suberin-Lignin Ferulate Deposition in Xylem Tissue Upon Vascular Pathogen Attack. Methods Mol Biol 2024; 2722:117-127. [PMID: 37897604 DOI: 10.1007/978-1-0716-3477-6_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2023]
Abstract
Plant vascular pathogens use different ways to reach the xylem vessels and cause devastating diseases in plants. Resistant and tolerant plants have evolved various defense mechanisms against vascular pathogens. Inducible physico-chemical structures, such as the formation of tyloses and wall reinforcements with phenolic polymers, are very effective barriers that confine the pathogen and prevent colonization. Here, we use a combination of classical histochemistry along with bright-field and fluorescence microscopy and two-dimensional nuclear magnetic resonance (2D-NMR) spectroscopy to visualize and characterize wall reinforcements containing phenolic wall polymers, namely, lignin, ferulates, and suberin, which occur in different xylem vasculature in response to pathogen attack.
Collapse
Affiliation(s)
- Weiqi Zhang
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Bellaterra, Spain
| | - Álvaro Jiménez-Jiménez
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Bellaterra, Spain
| | - Montserrat Capellades
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Bellaterra, Spain
- Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Jorge Rencoret
- Institute of Natural Resources and Agrobiology of Seville (IRNAS), CSIC, Seville, Spain
| | - Anurag Kashyap
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Bellaterra, Spain
- Department of Plant Pathology, Assam Agricultural University, Jorhat, Assam, India
| | - Núria S Coll
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Bellaterra, Spain.
- Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain.
| |
Collapse
|
22
|
Yadav P, Sharma K, Tiwari N, Saxena G, Asif MH, Singh S, Kumar M. Comprehensive transcriptome analyses of Fusarium-infected root xylem tissues to decipher genes involved in chickpea wilt resistance. 3 Biotech 2023; 13:390. [PMID: 37942053 PMCID: PMC10630269 DOI: 10.1007/s13205-023-03803-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 10/03/2023] [Indexed: 11/10/2023] Open
Abstract
Fusarium wilt is the most destructive soil-borne disease that poses a major threat to chickpea production. To comprehensively understand the interaction between chickpea and Fusarium oxysporum, the xylem-specific transcriptome analysis of wilt-resistant (WR315) and wilt-susceptible (JG62) genotypes at an early timepoint (4DPI) was investigated. Differential expression analysis showed that 1368 and 348 DEGs responded to pathogen infection in resistant and susceptible genotypes, respectively. Both genotypes showed transcriptional reprogramming in response to Foc2, but the responses in WR315 were more severe than in JG62. Results of the KEGG pathway analysis revealed that most of the DEGS in both genotypes with enrichment in metabolic pathways, secondary metabolite biosynthesis, plant hormone signal transduction, and carbon metabolism. Genes associated with defense-related metabolites synthesis such as thaumatin-like protein 1b, cysteine-rich receptor-like protein kinases, MLP-like proteins, polygalacturonase inhibitor 2-like, ethylene-responsive transcription factors, glycine-rich cell wall structural protein-like, beta-galactosidase-like, subtilisin-like protease, thioredoxin-like protein, chitin elicitor receptor kinase-like, proline transporter-like, non-specific lipid transfer protein and sugar transporter were mostly up-regulated in resistant as compared to susceptible genotypes. The results of this study provide disease resistance genes, which would be helpful in understanding the Foc resistance mechanism in chickpea. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03803-9.
Collapse
Affiliation(s)
- Pooja Yadav
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Kritika Sharma
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Nikita Tiwari
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Garima Saxena
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Mehar H. Asif
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Swati Singh
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Manoj Kumar
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| |
Collapse
|
23
|
Oh Y, Ingram T, Shekasteband R, Adhikari T, Louws FJ, Dean RA. Tissues and mechanisms associated with Verticillium wilt resistance in tomato using bi-grafted near-isogenic lines. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:4685-4706. [PMID: 37184211 PMCID: PMC10433936 DOI: 10.1093/jxb/erad182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 05/12/2023] [Indexed: 05/16/2023]
Abstract
Host resistance is the primary means to control Verticillium dahliae, a soil-borne pathogen causing major losses on a broad range of plants, including tomato. The tissues and mechanisms responsible for resistance remain obscure. In the field, resistant tomato used as rootstocks does not confer resistance. Here, we created bi-grafted plants with near-isogenic lines (NILs) exhibiting (Ve1) or lacking (ve1) resistance to V. dahliae race 1. Ten days after inoculation, scion and rootstock tissues were subjected to differential gene expression and co-expression network analyses. Symptoms only developed in susceptible scions regardless of the rootstock. Infection caused more dramatic alteration of tomato gene expression in susceptible compared with resistant tissues, including pathogen receptor, signaling pathway, pathogenesis-related protein, and cell wall modification genes. Differences were observed between scions and rootstocks, primarily related to physiological processes in these tissues. Gene expression in scions was influenced by the rootstock genotype. A few genes were associated with the Ve1 genotype, which was independent of infection or tissue type. Several were physically clustered, some near the Ve1 locus on chromosome 9. Transcripts mapped to V. dahliae were dominated by secreted candidate effector proteins. These findings advance knowledge of molecular mechanisms underlying the tomato-V. dahliae interaction.
Collapse
Affiliation(s)
- Yeonyee Oh
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA
| | - Thomas Ingram
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA
| | - Reza Shekasteband
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Tika Adhikari
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA
| | - Frank J Louws
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Ralph A Dean
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
24
|
Zhu J, Moreno-Pérez A, Coaker G. Understanding plant pathogen interactions using spatial and single-cell technologies. Commun Biol 2023; 6:814. [PMID: 37542114 PMCID: PMC10403533 DOI: 10.1038/s42003-023-05156-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 07/18/2023] [Indexed: 08/06/2023] Open
Abstract
Plants are in contact with diverse pathogens and microorganisms. Intense investigation over the last 30 years has resulted in the identification of multiple immune receptors in model and crop species as well as signaling overlap in surface-localized and intracellular immune receptors. However, scientists still have a limited understanding of how plants respond to diverse pathogens with spatial and cellular resolution. Recent advancements in single-cell, single-nucleus and spatial technologies can now be applied to plant-pathogen interactions. Here, we outline the current state of these technologies and highlight outstanding biological questions that can be addressed in the future.
Collapse
Affiliation(s)
- Jie Zhu
- Department of Plant Pathology, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Alba Moreno-Pérez
- Department of Plant Pathology, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Gitta Coaker
- Department of Plant Pathology, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA.
| |
Collapse
|
25
|
Verbon EH, Liberman LM, Zhou J, Yin J, Pieterse CMJ, Benfey PN, Stringlis IA, de Jonge R. Cell-type-specific transcriptomics reveals that root hairs and endodermal barriers play important roles in beneficial plant-rhizobacterium interactions. MOLECULAR PLANT 2023; 16:1160-1177. [PMID: 37282370 PMCID: PMC10527033 DOI: 10.1016/j.molp.2023.06.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 03/30/2023] [Accepted: 06/01/2023] [Indexed: 06/08/2023]
Abstract
Growth- and health-promoting bacteria can boost crop productivity in a sustainable way. Pseudomonas simiae WCS417 is such a bacterium that efficiently colonizes roots, modifies the architecture of the root system to increase its size, and induces systemic resistance to make plants more resistant to pests and pathogens. Our previous work suggested that WCS417-induced phenotypes are controlled by root cell-type-specific mechanisms. However, it remains unclear how WCS417 affects these mechanisms. In this study, we transcriptionally profiled five Arabidopsis thaliana root cell types following WCS417 colonization. We found that the cortex and endodermis have the most differentially expressed genes, even though they are not in direct contact with this epiphytic bacterium. Many of these genes are associated with reduced cell wall biogenesis, and mutant analysis suggests that this downregulation facilitates WCS417-driven root architectural changes. Furthermore, we observed elevated expression of suberin biosynthesis genes and increased deposition of suberin in the endodermis of WCS417-colonized roots. Using an endodermal barrier mutant, we showed the importance of endodermal barrier integrity for optimal plant-beneficial bacterium association. Comparison of the transcriptome profiles in the two epidermal cell types that are in direct contact with WCS417-trichoblasts that form root hairs and atrichoblasts that do not-implies a difference in potential for defense gene activation. While both cell types respond to WCS417, trichoblasts displayed both higher basal and WCS417-dependent activation of defense-related genes compared with atrichoblasts. This suggests that root hairs may activate root immunity, a hypothesis that is supported by differential immune responses in root hair mutants. Taken together, these results highlight the strength of cell-type-specific transcriptional profiling to uncover "masked" biological mechanisms underlying beneficial plant-microbe associations.
Collapse
Affiliation(s)
- Eline H Verbon
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, P.O. Box 800.56, 3508 TB Utrecht, the Netherlands
| | - Louisa M Liberman
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA; Department of Biology, Duke University, Durham, NC 27708, USA
| | - Jiayu Zhou
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, P.O. Box 800.56, 3508 TB Utrecht, the Netherlands
| | - Jie Yin
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, P.O. Box 800.56, 3508 TB Utrecht, the Netherlands
| | - Corné M J Pieterse
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, P.O. Box 800.56, 3508 TB Utrecht, the Netherlands
| | - Philip N Benfey
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA; Department of Biology, Duke University, Durham, NC 27708, USA
| | - Ioannis A Stringlis
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, P.O. Box 800.56, 3508 TB Utrecht, the Netherlands; Laboratory of Plant Pathology, Agricultural University of Athens, 75 Iera Odos str., 11855 Athens, Greece.
| | - Ronnie de Jonge
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, P.O. Box 800.56, 3508 TB Utrecht, the Netherlands.
| |
Collapse
|
26
|
Philosoph AM, Dombrovsky A, Luria N, Sela N, Elad Y, Frenkel O. Rapid defense mechanism suppression during viral- oomycete disease complex formation. FRONTIERS IN PLANT SCIENCE 2023; 14:1124911. [PMID: 37360707 PMCID: PMC10288809 DOI: 10.3389/fpls.2023.1124911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 05/02/2023] [Indexed: 06/28/2023]
Abstract
Combined infection of the host plant with pathogens involving different parasitic lifestyles may result in synergistic effects that intensify disease symptoms. Understanding the molecular dynamics during concurrent infection provides essential insight into the host response. The transcriptomic pattern of cucumber plants infected with a necrotrophic pathogen, Pythium spinosum, and a biotrophic pathogen, Cucumber green mottle mosaic virus (CGMMV) was studied at different time points, under regimes of single and co-infection. Analysis of CGMMV infection alone revealed a mild influence on host gene expression at the stem base, while the infection by P. spinosum is associated with drastic changes in gene expression. Comparing P. spinosum as a single infecting pathogen with a later co-infection by CGMMV revealed a rapid host response as early as 24 hours post-CGMMV inoculation with a sharp downregulation of genes related to the host defense mechanism against the necrotrophic pathogen. Suppression of the defense mechanism of co-infected plants was followed by severe stress, including 30% plants mortality and an increase of the P. spinosum hyphae. The first evidence of defense recovery against the necrotrophic pathogen only occurred 13 days post-viral infection. These results support the hypothesis that the viral infection of the Pythium pre-infected plants subverted the host defense system and changed the equilibrium obtained with P. spinosum. It also implies a time window in which the plants are most susceptible to P. spinosum after CGMMV infection.
Collapse
Affiliation(s)
- Amit M. Philosoph
- Department of Plant Pathology and Weed Science, The Volcani Institute, Agricultural Research Organization, Bet Dagan, Israel
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Levi Eshkol School of Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Aviv Dombrovsky
- Department of Plant Pathology and Weed Science, The Volcani Institute, Agricultural Research Organization, Bet Dagan, Israel
| | - Neta Luria
- Department of Plant Pathology and Weed Science, The Volcani Institute, Agricultural Research Organization, Bet Dagan, Israel
| | - Noa Sela
- Department of Plant Pathology and Weed Science, The Volcani Institute, Agricultural Research Organization, Bet Dagan, Israel
| | - Yigal Elad
- Department of Plant Pathology and Weed Science, The Volcani Institute, Agricultural Research Organization, Bet Dagan, Israel
| | - Omer Frenkel
- Department of Plant Pathology and Weed Science, The Volcani Institute, Agricultural Research Organization, Bet Dagan, Israel
| |
Collapse
|
27
|
Jung SH, Riu M, Lee S, Kim JS, Jeon JS, Ryu CM. An anaerobic rhizobacterium primes rice immunity. THE NEW PHYTOLOGIST 2023; 238:1755-1761. [PMID: 36823752 DOI: 10.1111/nph.18834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 02/10/2023] [Indexed: 05/04/2023]
Affiliation(s)
- Sung-Hee Jung
- Biosystems and Bioengineering Program, University of Science and Technology, Daejeon, 34141, South Korea
- Molecular Phytobacteriology Laboratory, Infectious Disease Research Center, KRIBB, Daejeon, 34141, South Korea
| | - Myoungjoo Riu
- Molecular Phytobacteriology Laboratory, Infectious Disease Research Center, KRIBB, Daejeon, 34141, South Korea
- Department of Applied Biology, College of Agriculture & Life Sciences, Chungnam National University, Daejeon, 34134, South Korea
| | - Soohyun Lee
- Molecular Phytobacteriology Laboratory, Infectious Disease Research Center, KRIBB, Daejeon, 34141, South Korea
| | - Jun-Seob Kim
- Molecular Phytobacteriology Laboratory, Infectious Disease Research Center, KRIBB, Daejeon, 34141, South Korea
| | - Je-Seung Jeon
- Molecular Phytobacteriology Laboratory, Infectious Disease Research Center, KRIBB, Daejeon, 34141, South Korea
| | - Choong-Min Ryu
- Biosystems and Bioengineering Program, University of Science and Technology, Daejeon, 34141, South Korea
- Molecular Phytobacteriology Laboratory, Infectious Disease Research Center, KRIBB, Daejeon, 34141, South Korea
| |
Collapse
|
28
|
Kashyap A, Jiménez-Jiménez Á, Figueras M, Serra O, Valls M, Coll NS. The Tomato Feruloyl Transferase FHT Promoter Is an Accurate Identifier of Early Development and Stress-Induced Suberization. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091890. [PMID: 37176949 PMCID: PMC10181283 DOI: 10.3390/plants12091890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023]
Abstract
As a wall polymer, suberin has a multifaceted role in plant development and stress responses. It is deposited between the plasma membrane and the primary cell wall in specialized tissues such as root exodermis, endodermis, phellem, and seed coats. It is formed de novo in response to stresses such as wounding, salt injury, drought, and pathogen attack and is a complex polyester mainly consisting of fatty acids, glycerol, and minor amounts of ferulic acid that are associated to a lignin-like polymer predominantly composed of ferulates. Metabolomic and transcriptomic studies have revealed that cell wall lignification precedes suberin deposition. The ferulic acid esterified to ω-hydroxy fatty acids, synthetized by the feruloyl transferase FHT (or ASFT), presumably plays a role in coupling both polymers, although the precise mechanism is not understood. Here, we use the promoter of tomato suberin feruloyl transferase (FHT/ASFT) fused to GUS (β-glucuronidase) to demonstrate that ferulate deposition agrees with the site of promoter FHT activation by using a combination of histochemical staining and UV microscopy. Hence, FHT promoter activation and alkali UV microscopy can be used to identify the precise localization of early suberizing cells rich in ferulic acid and can additionally be used as an efficient marker of early suberization events during plant development and stress responses. This line can be used in the future as a tool to identify emerging suberization sites via ferulate deposition in tomato plants, which may contribute to germplasm screening in varietal improvement programs.
Collapse
Affiliation(s)
- Anurag Kashyap
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, 08193 Bellaterra, Spain
| | - Álvaro Jiménez-Jiménez
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, 08193 Bellaterra, Spain
| | - Mercè Figueras
- Laboratori del Suro, Biology Department, University of Girona, Campus Montilivi, 17003 Girona, Spain
| | - Olga Serra
- Laboratori del Suro, Biology Department, University of Girona, Campus Montilivi, 17003 Girona, Spain
| | - Marc Valls
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, 08193 Bellaterra, Spain
- Department of Genetics, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Nuria S Coll
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, 08193 Bellaterra, Spain
- Consejo Superior de Investigaciones Científicas (CSIC), 08001 Barcelona, Spain
| |
Collapse
|
29
|
Xiao S, Ming Y, Hu Q, Ye Z, Si H, Liu S, Zhang X, Wang W, Yu Y, Kong J, Klosterman SJ, Lindsey K, Zhang X, Aierxi A, Zhu L. GhWRKY41 forms a positive feedback regulation loop and increases cotton defence response against Verticillium dahliae by regulating phenylpropanoid metabolism. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:961-978. [PMID: 36632704 PMCID: PMC10106861 DOI: 10.1111/pbi.14008] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 12/19/2022] [Accepted: 12/24/2022] [Indexed: 05/04/2023]
Abstract
Despite the established significance of WRKY proteins and phenylpropanoid metabolism in plant immunity, how WRKY proteins modulate aspects of the phenylpropanoid pathway remains undetermined. To understand better the role of WRKY proteins in plant defence, we identified a cotton (Gossypium hirsutum) protein, GhWRKY41, that is, universally and rapidly induced in three disease-resistant cotton cultivars following inoculation with the plant pathogenic fungus, Verticillium dahliae. We show that overexpression of GhWRKY41 in transgenic cotton and Arabidopsis enhances resistance to V. dahliae, while knock-down increases cotton more susceptibility to the fungus. GhWRKY41 physically interacts with itself and directly activates its own transcription. A genome-wide chromatin immunoprecipitation and high-throughput sequencing (ChIP-seq), in combination with RNA sequencing (RNA-seq) analyses, revealed that 43.1% of GhWRKY41-binding genes were up-regulated in cotton upon inoculation with V. dahliae, including several phenylpropanoid metabolism master switches, receptor kinases, and disease resistance-related proteins. We also show that GhWRKY41 homodimer directly activates the expression of GhC4H and Gh4CL, thereby modulating the accumulation of lignin and flavonoids. This finding expands our understanding of WRKY-WRKY protein interactions and provides important insights into the regulation of the phenylpropanoid pathway in plant immune responses by a WRKY protein.
Collapse
Affiliation(s)
- Shenghua Xiao
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
- State Key Lab for Conservation and Utilization of Subtropical Agri‐Biological Resources, College of AgricultureGuangxi UniversityNanningChina
| | - Yuqing Ming
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
- Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanHubeiChina
| | - Qin Hu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
- State Key Lab for Conservation and Utilization of Subtropical Agri‐Biological Resources, College of AgricultureGuangxi UniversityNanningChina
| | - Zhengxiu Ye
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
| | - Huan Si
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
| | - Shiming Liu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
- Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanHubeiChina
| | - Xiaojun Zhang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
- Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanHubeiChina
| | - Weiran Wang
- Institute of Economic CropsXinjiang Academy of Agricultural SciencesXinjiangChina
| | - Yu Yu
- Xinjiang Academy of Agricultural & Reclamation SciencesShiheziChina
| | - Jie Kong
- Institute of Economic CropsXinjiang Academy of Agricultural SciencesXinjiangChina
| | - Steven J. Klosterman
- United States Department of AgricultureAgricultural Research ServiceSalinasCAUSA
| | | | - Xianlong Zhang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
- Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanHubeiChina
| | - Alifu Aierxi
- Institute of Economic CropsXinjiang Academy of Agricultural SciencesXinjiangChina
| | - Longfu Zhu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
- Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanHubeiChina
| |
Collapse
|
30
|
Zhou L, Zhu T, Han S, Li S, Liu Y, Lin T, Qiao T. Changes in the Histology of Walnut ( Juglans regia L.) Infected with Phomopsis capsici and Transcriptome and Metabolome Analysis. Int J Mol Sci 2023; 24:ijms24054879. [PMID: 36902308 PMCID: PMC10003368 DOI: 10.3390/ijms24054879] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
Phomopsis capsici (P. capsici) causes branch blight of walnuts, which leads to significant economic loss. The molecular mechanism behind the response of walnuts remains unknown. Paraffin sectioning and transcriptome and metabolome analyses were performed to explore the changes in tissue structure, gene expression, and metabolic processes in walnut after infection with P. capsici. We found that P. capsici caused serious damage to xylem vessels during the infestation of walnut branches, destroying the structure and function of the vessels and creating obstacles to the transport of nutrients and water to the branches. The transcriptome results showed that differentially expressed genes (DEGs) were mainly annotated in carbon metabolism and ribosomes. Further metabolome analyses verified the specific induction of carbohydrate and amino acid biosynthesis by P. capsici. Finally, association analysis was performed for DEGs and differentially expressed metabolites (DEMs), which focused on the synthesis and metabolic pathways of amino acids, carbon metabolism, and secondary metabolites and cofactors. Three significant metabolites were identified: succinic semialdehyde acid, fumaric acid, and phosphoenolpyruvic acid. In conclusion, this study provides data reference on the pathogenesis of walnut branch blight and direction for breeding walnut to enhance its disease resistance.
Collapse
|
31
|
Shi H, Liu Y, Ding A, Wang W, Sun Y. Induced defense strategies of plants against Ralstonia solanacearum. Front Microbiol 2023; 14:1059799. [PMID: 36778883 PMCID: PMC9910360 DOI: 10.3389/fmicb.2023.1059799] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 01/05/2023] [Indexed: 01/27/2023] Open
Abstract
Plants respond to Ralstonia solanacearum infestation through two layers of immune system (PTI and ETI). This process involves the production of plant-induced resistance. Strategies for inducing resistance in plants include the formation of tyloses, gels, and callose and changes in the content of cell wall components such as cellulose, hemicellulose, pectin, lignin, and suberin in response to pathogen infestation. When R. solanacearum secrete cell wall degrading enzymes, plants also sense the status of cell wall fragments through the cell wall integrity (CWI) system, which activates deep-seated defense responses. In addition, plants also fight against R. solanacearum infestation by regulating the distribution of metabolic networks to increase the production of resistant metabolites and reduce the production of metabolites that are easily exploited by R. solanacearum. We review the strategies used by plants to induce resistance in response to R. solanacearum infestation. In particular, we highlight the importance of plant-induced physical and chemical defenses as well as cell wall defenses in the fight against R. solanacearum.
Collapse
Affiliation(s)
- Haoqi Shi
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong, China
- The Graduate School, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yong Liu
- Tobacco Breeding and Biotechnology Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China
| | - Anming Ding
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong, China
| | - Weifeng Wang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong, China
| | - Yuhe Sun
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong, China
| |
Collapse
|
32
|
Ninkuu V, Yan J, Fu Z, Yang T, Ziemah J, Ullrich MS, Kuhnert N, Zeng H. Lignin and Its Pathway-Associated Phytoalexins Modulate Plant Defense against Fungi. J Fungi (Basel) 2022; 9:52. [PMID: 36675873 PMCID: PMC9865837 DOI: 10.3390/jof9010052] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022] Open
Abstract
Fungi infections cause approximately 60-70% yield loss through diseases such as rice blast, powdery mildew, Fusarium rot, downy mildew, etc. Plants naturally respond to these infections by eliciting an array of protective metabolites to confer physical or chemical protection. Among plant metabolites, lignin, a phenolic compound, thickens the middle lamella and the secondary cell walls of plants to curtail fungi infection. The biosynthesis of monolignols (lignin monomers) is regulated by genes whose transcript abundance significantly improves plant defense against fungi. The catalytic activities of lignin biosynthetic enzymes also contribute to the accumulation of other defense compounds. Recent advances focus on modifying the lignin pathway to enhance plant growth and defense against pathogens. This review presents an overview of monolignol regulatory genes and their contributions to fungi immunity, as reported over the last five years. This review expands the frontiers in lignin pathway engineering to enhance plant defense.
Collapse
Affiliation(s)
- Vincent Ninkuu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Jianpei Yan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Zenchao Fu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Tengfeng Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - James Ziemah
- Department of Life Sciences and Chemistry, Jacobs University, College Ring 1, 28759 Bremen, Germany
| | - Matthias S. Ullrich
- Department of Life Sciences and Chemistry, Jacobs University, College Ring 1, 28759 Bremen, Germany
| | - Nikolai Kuhnert
- Department of Life Sciences and Chemistry, Jacobs University, College Ring 1, 28759 Bremen, Germany
| | - Hongmei Zeng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| |
Collapse
|
33
|
Fijarczyk A, Bernier L, Sakalidis ML, Medina-Mora CM, Porth I. Independent Evolution Has Led to Distinct Genomic Signatures in Dutch Elm Disease-Causing Fungi and Other Vascular Wilts-Causing Fungal Pathogens. J Fungi (Basel) 2022; 9:2. [PMID: 36675823 PMCID: PMC9864908 DOI: 10.3390/jof9010002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/09/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Vascular wilts are important diseases caused by plant pathogenic fungi that result in the rapid death of their plant hosts. This is due to a systemic defense mechanism whereby the plant induces the compartmentalization of the infected vascular system in order to reduce the propagation of the fungus. The ascomycete class Sordariomycetes contains several species that cause vascular wilts in diverse plant hosts, and they can be classified into four taxonomic orders. The genetic mechanisms of pathogenesis have already been investigated in Fusarium and Verticillium species, but they have not yet been compared with other well-known wilt-causing species, especially fungi causing oak wilt or Dutch elm disease (DED). Here we analyzed 20 whole genome assemblies of wilt-causing fungi together with 56 other species using phylogenetic approaches to trace expansions and contractions of orthologous gene families and gene classes related to pathogenicity. We found that the wilt-causing pathogens evolved seven times, experiencing the largest fold changes in different classes of genes almost every time. However, some similarities exist across groups of wilt pathogens, particularly in Microascales and Ophiostomatales, and these include the common gains and losses of genes that make up secondary metabolite clusters (SMC). DED pathogens do not experience large-scale gene expansions, with most of the gene classes, except for some SMC families, reducing in number. We also found that gene family expansions in the most recent common ancestors of wilt pathogen groups are enriched for carbohydrate metabolic processes. Our study shows that wilt-causing species evolve primarily through distinct changes in their repertoires of pathogenicity-related genes and that there is the potential importance of carbohydrate metabolism genes for regulating osmosis in those pathogens that penetrate the plant vascular system.
Collapse
Affiliation(s)
- Anna Fijarczyk
- Département de Biologie, Université Laval, Québec, QC G1V 0A6, Canada
- Institut de Biologie Intégrative et Des Systèmes (IBIS), Université Laval, Québec, QC G1V 0A6, Canada
| | - Louis Bernier
- Institut de Biologie Intégrative et Des Systèmes (IBIS), Université Laval, Québec, QC G1V 0A6, Canada
- Département des Sciences du Bois et de la Forêt, Université Laval, Québec, QC G1V 0A6, Canada
- Centre d'Étude de la Forêt (CEF), Université Laval, Québec, QC G1V 0A6, Canada
| | - Monique L Sakalidis
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
- Department of Forestry, Michigan State University, East Lansing, MI 48824, USA
| | - Carmen M Medina-Mora
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Ilga Porth
- Institut de Biologie Intégrative et Des Systèmes (IBIS), Université Laval, Québec, QC G1V 0A6, Canada
- Département des Sciences du Bois et de la Forêt, Université Laval, Québec, QC G1V 0A6, Canada
- Centre d'Étude de la Forêt (CEF), Université Laval, Québec, QC G1V 0A6, Canada
| |
Collapse
|
34
|
Üstüner S, Schäfer P, Eichmann R. Development specifies, diversifies and empowers root immunity. EMBO Rep 2022; 23:e55631. [PMID: 36330761 PMCID: PMC9724680 DOI: 10.15252/embr.202255631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 08/04/2023] Open
Abstract
Roots are a highly organised plant tissue consisting of different cell types with distinct developmental functions defined by cell identity networks. Roots are the target of some of the most devastating diseases and possess a highly effective immune system. The recognition of microbe- or plant-derived molecules released in response to microbial attack is highly important in the activation of complex immunity gene networks. Development and immunity are intertwined, and immunity activation can result in growth inhibition. In turn, by connecting immunity and cell identity regulators, cell types are able to launch a cell type-specific immunity based on the developmental function of each cell type. By this strategy, fundamental developmental processes of each cell type contribute their most basic functions to drive cost-effective but highly diverse and, thus, efficient immune responses. This review highlights the interdependence of root development and immunity and how the developmental age of root cells contributes to positive and negative outcomes of development-immunity cross-talk.
Collapse
Affiliation(s)
- Sim Üstüner
- Institute of Phytopathology, Research Centre for BioSystems, Land Use and NutritionJustus Liebig UniversityGiessenGermany
| | - Patrick Schäfer
- Institute of Phytopathology, Research Centre for BioSystems, Land Use and NutritionJustus Liebig UniversityGiessenGermany
| | - Ruth Eichmann
- Institute of Phytopathology, Research Centre for BioSystems, Land Use and NutritionJustus Liebig UniversityGiessenGermany
| |
Collapse
|
35
|
Chen A, Liu T, Wang Z, Chen X. Plant root suberin: A layer of defence against biotic and abiotic stresses. FRONTIERS IN PLANT SCIENCE 2022; 13:1056008. [PMID: 36507443 PMCID: PMC9732430 DOI: 10.3389/fpls.2022.1056008] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/11/2022] [Indexed: 05/27/2023]
Abstract
Plant roots have important functions, such as acquiring nutrients and water from the surrounding soil and transporting them upwards to the shoots. Simultaneously, they must be able to exclude potentially harmful substances and prevent the entry of pathogens into the roots. The endodermis surrounds the vascular tissues and forms hydrophobic diffusion barriers including Casparian strips and suberin lamella. Suberin in cell walls can be induced by a range of environmental factors and contribute to against biotic and abiotic threats. Tremendous progress has been made in biosynthesis of suberin and its function, little is known about the effect of its plasticity and distribution on stress tolerance. In field conditions, biotic and abiotic stress can exist at the same time, and little is known about the change of suberization under that condition. This paper update the progress of research related to suberin biosynthesis and its function, and also discuss the change of suberization in plant roots and its role on biotic and abiotic stresses tolerance.
Collapse
Affiliation(s)
- Anle Chen
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, and College of Resources and Environment, Southwest University, Chongqing, China
| | - Tong Liu
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, and College of Resources and Environment, Southwest University, Chongqing, China
| | - Zhou Wang
- College of Plant Protection, Southwest University, Chongqing, China
| | - Xinping Chen
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, and College of Resources and Environment, Southwest University, Chongqing, China
| |
Collapse
|
36
|
Kawa D, Brady SM. Root cell types as an interface for biotic interactions. TRENDS IN PLANT SCIENCE 2022; 27:1173-1186. [PMID: 35792025 DOI: 10.1016/j.tplants.2022.06.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/04/2022] [Accepted: 06/09/2022] [Indexed: 05/27/2023]
Abstract
Root responses to environmental stresses show a high level of cell type and developmental stage specificity. Interactions with beneficial and pathogenic organisms - including microbes and parasites - elicit a set of transcriptional responses unique to each root cell type, often dependent on their differentiation state. Localized changes to the cell wall and to the integrity of root cell types can serve as a physical barrier for a range of pests. Conversely, certain microorganisms weaken existing barriers within root cell types. Interactions with microorganisms vary between roots of different developmental origins and cellular architectures. Here we provide an overview of the molecular, architectural, and structural properties of root cell types crucial to both maintaining beneficial interactions and protecting from pathogens.
Collapse
Affiliation(s)
- Dorota Kawa
- Department of Plant Biology and Genome Center, University of California, Davis, CA 95616, USA.
| | - Siobhan M Brady
- Department of Plant Biology and Genome Center, University of California, Davis, CA 95616, USA.
| |
Collapse
|
37
|
Kushalappa AC, Hegde NG, Yogendra KN. Metabolic pathway genes for editing to enhance multiple disease resistance in plants. JOURNAL OF PLANT RESEARCH 2022; 135:705-722. [PMID: 36036859 DOI: 10.1007/s10265-022-01409-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Diseases are one of the major constraints in commercial crop production. Genetic diversity in varieties is the best option to manage diseases. Molecular marker-assisted breeding has produced hundreds of varieties with good yields, but the resistance level is not satisfactory. With the advent of whole genome sequencing, genome editing is emerging as an excellent option to improve the inadequate traits in these varieties. Plants produce thousands of antimicrobial secondary metabolites, which as polymers and conjugates are deposited to reinforce the secondary cell walls to contain the pathogen to an initial infection area. The resistance metabolites or the structures produced from them by plants are either constitutive (CR) or induced (IR), following pathogen invasion. The production of each resistance metabolite is controlled by a network of biosynthetic R genes, which are regulated by a hierarchy of R genes. A commercial variety also has most of these R genes, as in resistant, but a few may be mutated (SNPs/InDels). A few mutated genes, in one or more metabolic pathways, depending on the host-pathogen interaction, can be edited, and stacked to increase resistance metabolites or structures produced by them, to achieve required levels of multiple pathogen resistance under field conditions.
Collapse
Affiliation(s)
- Ajjamada C Kushalappa
- Plant Science Department, McGill University, Ste.-Anne-de-Bellevue, QC, H9X 3V9, Canada.
| | - Niranjan G Hegde
- Plant Science Department, McGill University, Ste.-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Kalenahalli N Yogendra
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, Telangana, India
| |
Collapse
|
38
|
Apoplastic and vascular defences. Essays Biochem 2022; 66:595-605. [PMID: 36062526 DOI: 10.1042/ebc20220159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/02/2022] [Accepted: 08/19/2022] [Indexed: 11/17/2022]
Abstract
The apoplast comprises the intercellular space between cell membranes, includes the xylem, and extends to the rhizoplane and the outer surfaces of the plant. The apoplast plays roles in different biological processes including plant immunity. This highly specialised space is often the first place where pathogen recognition occurs, and this then triggers the immune response. The immune response in the apoplast involves different mechanisms that restrict pathogen infection. Among these responses, secretion of different molecules like proteases, proteins related to immunity, small RNAs and secondary metabolites play important and often additive or synergistic roles. In addition, production of reactive oxygen species occurs to cause direct deleterious effects on the pathogen as well as reinforce the plant's immune response by triggering modifications to cell wall composition and providing additional defence signalling capabilities. The pool of available sugar in the apoplast also plays a role in immunity. These sugars can be manipulated by both interactors, pathogens gaining access to nutrients whilst the plant's responses restrict the pathogen's access to nutrients. In this review, we describe the latest findings in the field to highlight the importance of the apoplast in plant-pathogen interactions and plant immunity. We also indicate where new discoveries are needed.
Collapse
|
39
|
Wytinck N, Ziegler DJ, Walker PL, Sullivan DS, Biggar KT, Khan D, Sakariyahu SK, Wilkins O, Whyard S, Belmonte MF. Host induced gene silencing of the Sclerotinia sclerotiorum ABHYDROLASE-3 gene reduces disease severity in Brassica napus. PLoS One 2022; 17:e0261102. [PMID: 36018839 PMCID: PMC9417021 DOI: 10.1371/journal.pone.0261102] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 05/29/2022] [Indexed: 11/19/2022] Open
Abstract
Sclerotinia sclerotiorum is a pathogenic fungus that infects hundreds of crop species, causing extensive yield loss every year. Chemical fungicides are used to control this phytopathogen, but with concerns about increasing resistance and impacts on non-target species, there is a need to develop alternative control measures. In the present study, we engineered Brassica napus to constitutively express a hairpin (hp)RNA molecule to silence ABHYRDOLASE-3 in S. sclerotiorum. We demonstrate the potential for Host Induced Gene Silencing (HIGS) to protect B. napus from S. sclerotiorum using leaf, stem and whole plant infection assays. The interaction between the transgenic host plant and invading pathogen was further characterized at the molecular level using dual-RNA sequencing and at the anatomical level through microscopy to understand the processes and possible mechanisms leading to increased tolerance to this damaging necrotroph. We observed significant shifts in the expression of genes relating to plant defense as well as cellular differences in the form of structural barriers around the site of infection in the HIGS-protected plants. Our results provide proof-of-concept that HIGS is an effective means of limiting damage caused by S. sclerotiorum to the plant and demonstrates the utility of this biotechnology in the development of resistance against fungal pathogens.
Collapse
Affiliation(s)
- Nick Wytinck
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Dylan J. Ziegler
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Philip L. Walker
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Daniel S. Sullivan
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Kirsten T. Biggar
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Deirdre Khan
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Solihu K. Sakariyahu
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Olivia Wilkins
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Steve Whyard
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Mark F. Belmonte
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- * E-mail:
| |
Collapse
|
40
|
Yin X, Qian W. Sword in the woods: How plant hosts defend against vascular pathogens. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:1465-1468. [PMID: 35766351 DOI: 10.1111/jipb.13321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
This Commentary discusses two recent papers exploring how plants combat infection by vascular pathogens via modulating lignin production and via MAP kinase signaling cascades.
Collapse
Affiliation(s)
- Xin Yin
- State Key Laboratory of Plant Genomics, Institution of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wei Qian
- State Key Laboratory of Plant Genomics, Institution of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
41
|
Mustafa AS, Ssenku JE, Ssemanda P, Ntambi S, Dinesh-Kumar SP, Tugume AK. Sandwich Enzyme-Linked Immunosorbent Assay for Quantification of Callose. Methods Protoc 2022; 5:54. [PMID: 35893580 PMCID: PMC9326611 DOI: 10.3390/mps5040054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/07/2022] [Accepted: 06/22/2022] [Indexed: 11/16/2022] Open
Abstract
The existing methods of callose quantification include epifluorescence microscopy and fluorescence spectrophotometry of aniline blue-stained callose particles, immuno-fluorescence microscopy and indirect assessment of both callose synthase and β-(1,3)-glucanase enzyme activities. Some of these methods are laborious, time consuming, not callose-specific, biased and require high technical skills. Here, we describe a method of callose quantification based on Sandwich Enzyme-Linked Immunosorbent Assay (S-ELISA). Tissue culture-derived banana plantlets were inoculated with Xanthomonas campestris pv. musacearum (Xcm) bacteria as a biotic stress factor inducing callose production. Banana leaf, pseudostem and corm tissue samples were collected at 14 days post-inoculation (dpi) for callose quantification. Callose levels were significantly different in banana tissues of Xcm-inoculated and control groups except in the pseudostems of both banana genotypes. The method described here could be applied for the quantification of callose in different plant species with satisfactory level of specificity to callose, and reproducibility. Additionally, the use of 96-well plate makes this method suitable for high throughput callose quantification studies with minimal sampling and analysis biases. We provide step-by-step detailed descriptions of the method.
Collapse
Affiliation(s)
- Abubakar S. Mustafa
- Department of Plant Sciences, Microbiology and Biotechnology, College of Natural Sciences, Makerere University, Kampala P.O. Box 7062, Uganda; (A.S.M.); (J.E.S.); (P.S.); (S.N.)
| | - Jamilu E. Ssenku
- Department of Plant Sciences, Microbiology and Biotechnology, College of Natural Sciences, Makerere University, Kampala P.O. Box 7062, Uganda; (A.S.M.); (J.E.S.); (P.S.); (S.N.)
| | - Paul Ssemanda
- Department of Plant Sciences, Microbiology and Biotechnology, College of Natural Sciences, Makerere University, Kampala P.O. Box 7062, Uganda; (A.S.M.); (J.E.S.); (P.S.); (S.N.)
| | - Saidi Ntambi
- Department of Plant Sciences, Microbiology and Biotechnology, College of Natural Sciences, Makerere University, Kampala P.O. Box 7062, Uganda; (A.S.M.); (J.E.S.); (P.S.); (S.N.)
| | - Savithramma P. Dinesh-Kumar
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA 95616, USA;
| | - Arthur K. Tugume
- Department of Plant Sciences, Microbiology and Biotechnology, College of Natural Sciences, Makerere University, Kampala P.O. Box 7062, Uganda; (A.S.M.); (J.E.S.); (P.S.); (S.N.)
| |
Collapse
|
42
|
Kashyap A, Jiménez-Jiménez ÁL, Zhang W, Capellades M, Srinivasan S, Laromaine A, Serra O, Figueras M, Rencoret J, Gutiérrez A, Valls M, Coll NS. Induced ligno-suberin vascular coating and tyramine-derived hydroxycinnamic acid amides restrict Ralstonia solanacearum colonization in resistant tomato. THE NEW PHYTOLOGIST 2022; 234:1411-1429. [PMID: 35152435 DOI: 10.1111/nph.17982] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
Tomato varieties resistant to the bacterial wilt pathogen Ralstonia solanacearum have the ability to restrict bacterial movement in the plant. Inducible vascular cell wall reinforcements seem to play a key role in confining R. solanacearum into the xylem vasculature of resistant tomato. However, the type of compounds involved in such vascular physico-chemical barriers remain understudied, while being a key component of resistance. Here we use a combination of histological and live-imaging techniques, together with spectroscopy and gene expression analysis to understand the nature of R. solanacearum-induced formation of vascular coatings in resistant tomato. We describe that resistant tomato specifically responds to infection by assembling a vascular structural barrier formed by a ligno-suberin coating and tyramine-derived hydroxycinnamic acid amides. Further, we show that overexpressing genes of the ligno-suberin pathway in a commercial susceptible variety of tomato restricts R. solanacearum movement inside the plant and slows disease progression, enhancing resistance to the pathogen. We propose that the induced barrier in resistant plants does not only restrict the movement of the pathogen, but may also prevent cell wall degradation by the pathogen and confer anti-microbial properties, effectively contributing to resistance.
Collapse
Affiliation(s)
- Anurag Kashyap
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, 08193, Bellaterra, Spain
| | | | - Weiqi Zhang
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, 08193, Bellaterra, Spain
| | - Montserrat Capellades
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, 08193, Bellaterra, Spain
- Consejo Superior de Investigaciones Científicas (CSIC), 08001, Barcelona, Spain
| | - Sumithra Srinivasan
- Institute of Material Science of Barcelona (ICMAB), CSIC, Campus UAB, 08193, Bellaterra, Spain
| | - Anna Laromaine
- Institute of Material Science of Barcelona (ICMAB), CSIC, Campus UAB, 08193, Bellaterra, Spain
| | - Olga Serra
- Laboratori del Suro, Biology Department, University of Girona, Campus Montilivi, 17003, Girona, Spain
| | - Mercè Figueras
- Laboratori del Suro, Biology Department, University of Girona, Campus Montilivi, 17003, Girona, Spain
| | - Jorge Rencoret
- Institute of Natural Resources and Agrobiology of Seville (IRNAS), CSIC, 41012, Seville, Spain
| | - Ana Gutiérrez
- Institute of Natural Resources and Agrobiology of Seville (IRNAS), CSIC, 41012, Seville, Spain
| | - Marc Valls
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, 08193, Bellaterra, Spain
- Department of Genetics, University of Barcelona, 08028, Barcelona, Spain
| | - Nuria S Coll
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, 08193, Bellaterra, Spain
- Consejo Superior de Investigaciones Científicas (CSIC), 08001, Barcelona, Spain
| |
Collapse
|
43
|
Dora S, Terrett OM, Sánchez-Rodríguez C. Plant-microbe interactions in the apoplast: Communication at the plant cell wall. THE PLANT CELL 2022; 34:1532-1550. [PMID: 35157079 PMCID: PMC9048882 DOI: 10.1093/plcell/koac040] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/29/2022] [Indexed: 05/20/2023]
Abstract
The apoplast is a continuous plant compartment that connects cells between tissues and organs and is one of the first sites of interaction between plants and microbes. The plant cell wall occupies most of the apoplast and is composed of polysaccharides and associated proteins and ions. This dynamic part of the cell constitutes an essential physical barrier and a source of nutrients for the microbe. At the same time, the plant cell wall serves important functions in the interkingdom detection, recognition, and response to other organisms. Thus, both plant and microbe modify the plant cell wall and its environment in versatile ways to benefit from the interaction. We discuss here crucial processes occurring at the plant cell wall during the contact and communication between microbe and plant. Finally, we argue that these local and dynamic changes need to be considered to fully understand plant-microbe interactions.
Collapse
|
44
|
Shalaby TA, Taha NA, Rakha MT, El-Beltagi HS, Shehata WF, Ramadan KMA, El-Ramady H, Bayoumi YA. Can Grafting Manage Fusarium Wilt Disease of Cucumber and Increase Productivity under Heat Stress? PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11091147. [PMID: 35567148 PMCID: PMC9106052 DOI: 10.3390/plants11091147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/18/2022] [Accepted: 04/21/2022] [Indexed: 05/03/2023]
Abstract
Cucumber production is considered a crucial problem under biotic and abiotic stress, particularly in arid and semi-arid zones. The current study investigated the impact of grafted cucumber plants on five cucurbit rootstocks under infection with Fusarium oxysporum f. sp. cucumerinum alone and in combination with heat stress in two different locations (i.e., Kafr El-Sheikh and Sidi Salem) during the year of 2021. The rootstock of VSS-61 F1 displayed the highest level of resistance with values 20.8 and 16.6% for wilt incidence and 79.2 and 83.4% for the wilt reduction, respectively for both locations. This rootstock showed the lowest disease severity of fusarium wilt (15.3 and 12%), and high grafting efficiency (85 and 88%), respectively in both locations. Grafting also improved plant vigor and cucumber production under heat stress (40-43 °C). The rootstocks VSS-61 F1, Ferro and Super Shintoza significantly increased the total yield of cucumber plants compared to non-grafted cucumber and the rootstock Bottle gourd in both locations. Further studies are needed on grafted plants under multiple stresses in terms of plant biological levels, including physiological, biochemical and genetic attributes.
Collapse
Affiliation(s)
- Tarek A. Shalaby
- Arid Land Agriculture Department, College of Agricultural and Food Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
- Horticulture Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt; (M.T.R.); (Y.A.B.)
- Correspondence: (T.A.S.); (H.S.E.-B.)
| | - Naglaa A. Taha
- Plant Pathology Research Institute, Agriculture Research Center, Giza 12619, Egypt;
| | - Mohamed T. Rakha
- Horticulture Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt; (M.T.R.); (Y.A.B.)
| | - Hossam S. El-Beltagi
- Agricultural Biotechnology Department, College of Agricultural and Food Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia;
- Biochemistry Department, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
- Correspondence: (T.A.S.); (H.S.E.-B.)
| | - Wael F. Shehata
- Agricultural Biotechnology Department, College of Agricultural and Food Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia;
- Plant Production Department, College of Environmental Agricultural Science, El–Arish University, North Sinai 45511, Egypt
| | - Khaled M. A. Ramadan
- Central Laboratories, Department of Chemistry, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
- Biochemistry Department, Faculty of Agriculture, Ain Shams University, Cairo 11566, Egypt
| | - Hassan El-Ramady
- Soil and Water Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt;
- Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary
| | - Yousry A. Bayoumi
- Horticulture Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt; (M.T.R.); (Y.A.B.)
- Physiology & Breeding of Horticultural Crops Laboratory, Horticulture Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| |
Collapse
|
45
|
Gámez-Arjona FM, Vitale S, Voxeur A, Dora S, Müller S, Sancho-Andrés G, Montesinos JC, Di Pietro A, Sánchez-Rodríguez C. Impairment of the cellulose degradation machinery enhances Fusarium oxysporum virulence but limits its reproductive fitness. SCIENCE ADVANCES 2022; 8:eabl9734. [PMID: 35442735 PMCID: PMC9020665 DOI: 10.1126/sciadv.abl9734] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Fungal pathogens grow in the apoplastic space, in constant contact with the plant cell wall (CW) that hinders microbe progression while representing a source of nutrients. Although numerous fungal CW modifying proteins have been identified, their role during host colonization remains underexplored. Here, we show that the root-infecting plant pathogen Fusarium oxysporum (Fo) does not require its complete arsenal of cellulases to infect the host plant. Quite the opposite: Fo mutants impaired in cellulose degradation become hypervirulent by enhancing the secretion of virulence factors. On the other hand, the reduction in cellulase activity had a severe negative effect on saprophytic growth and microconidia production during the final stages of the Fo infection cycle. These findings enhance our understanding of the function of plant CW degradation on the outcome of host-microbe interactions and reveal an unexpected role of cellulose degradation in a pathogen's reproductive success.
Collapse
Affiliation(s)
| | - Stefania Vitale
- Departamento de Genética, Campus de Excelencia Internacional Agroalimentario ceiA3, Universidad de Córdoba, 14014 Córdoba, Spain
| | - Aline Voxeur
- Institut Jean-Pierre Bourgin, INRA, Centre National pour la Recherche Scientifique, AgroParisTech, Université Paris-Saclay, RD10, 78026 Versailles Cedex, France
| | - Susanne Dora
- Department of Biology, ETH Zurich, 8092 Zurich, Switzerland
| | - Sascha Müller
- Department of Biology, ETH Zurich, 8092 Zurich, Switzerland
| | | | | | - Antonio Di Pietro
- Departamento de Genética, Campus de Excelencia Internacional Agroalimentario ceiA3, Universidad de Córdoba, 14014 Córdoba, Spain
| | | |
Collapse
|
46
|
Sanaeifar A, Ye D, Li X, Luo L, Tang Y, He Y. A Spatial-Temporal Analysis of Cellular Biopolymers on Leaf Blight-Infected Tea Plants Using Confocal Raman Microspectroscopy. FRONTIERS IN PLANT SCIENCE 2022; 13:846484. [PMID: 35519809 PMCID: PMC9062664 DOI: 10.3389/fpls.2022.846484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
The objective of the present study was to characterize the temporal and spatial variation of biopolymers in cells infected by the tea leaf blight using confocal Raman microspectroscopy. We investigated the biopolymers on serial sections of the infection part, and four sections corresponding to different stages of infection were obtained for analysis. Raman spectra extracted from four selected regions (circumscribing the vascular bundle) were analyzed in detail to enable a semi-quantitative comparison of biopolymers on a micron-scale. As the infection progressed, lignin and other phenolic compounds decreased in the vascular bundle, while they increased in both the walls of the bundle sheath cells as well as their intracellular components. The amount of cellulose and other polysaccharides increased in all parts as the infection developed. The variations in the content of lignin and cellulose in different tissues of an individual plant may be part of the reason for the plant's disease resistance. Through wavelet-based data mining, two-dimensional chemical images of lignin, cellulose and all biopolymers were quantified by integrating the characteristic spectral bands ranging from 1,589 to 1,607 cm-1, 1,087 to 1,100 cm-1, and 2,980 to 2,995 cm-1, respectively. The chemical images were consistent with the results of the semi-quantitative analysis, which indicated that the distribution of lignin in vascular bundle became irregular in sections with severe infection, and a substantial quantity of lignin was detected in the cell wall and inside the bundle sheath cell. In serious infected sections, cellulose was accumulated in vascular bundles and distributed within bundle sheath cells. In addition, the distribution of all biopolymers showed that there was a tylose substance produced within the vascular bundles to prevent the further development of pathogens. Therefore, confocal Raman microspectroscopy can be used as a powerful approach for investigating the temporal and spatial variation of biopolymers within cells. Through this method, we can gain knowledge about a plant's defense mechanisms against fungal pathogens.
Collapse
Affiliation(s)
- Alireza Sanaeifar
- Fujian Colleges and Universities Engineering Research Center of Modern Agricultural Equipment, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Dapeng Ye
- Fujian Colleges and Universities Engineering Research Center of Modern Agricultural Equipment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaoli Li
- Fujian Colleges and Universities Engineering Research Center of Modern Agricultural Equipment, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Liubin Luo
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Yu Tang
- Academy of Interdisciplinary Studies, Guangdong Polytechnic Normal University, Guangzhou, China
| | - Yong He
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
47
|
Li Y, Jiang S, Jiang J, Gao C, Qi X, Zhang L, Sun S, Dai Y, Fan X. Synchronized Efficacy and Mechanism of Alkaline Fertilizer and Biocontrol Fungi for Fusariumoxysporum f. sp. cubense Tropical Race 4. J Fungi (Basel) 2022; 8:jof8030261. [PMID: 35330263 PMCID: PMC8953788 DOI: 10.3390/jof8030261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 12/19/2022] Open
Abstract
The purpose of this study was to determine the effect and mechanism of alkaline fertilizer, bio-control fungi, and their synergistic application on control of Fusarium Tr4 incidence. Synchronized use of the alkaline fertilizer and biocontrol fungi eliminates rhizome browning and reduces the incidence rate of banana Fusarium wilt. The incidence of yellow leaves (ratio of yellow leaf to total leaf) and disease index in +Foc Tr4 CF treatment were the same (65%), while incidence of yellow leaves and disease index in +Foc Tr4 AFBCF were 31% and 33%, respectively. Under the stress of Foc Tr4 infection, the synergistic utilization of the alkaline fertilizer and biocontrol fungi would raise the activities of peroxidase, catalase and superoxide dismutase in banana roots. The root activity of banana was also increased. As a result, the banana height and stem diameter increments, shoot and root dry weight, accumulation of N, P and K in banana plants had been increased. The efficacy of the synergistic application of alkaline fertilizer and biocontrol fungi was not only reducing Foc Tr4 pathogen colonization and distribution in banana plants, but also preventing tylosis formation in vascular vessel effectively. Therefore, the normal transport of water and nutrients between underground and aboveground is ensured.
Collapse
Affiliation(s)
- Yuanqiong Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (S.J.); (J.J.); (C.G.); (X.Q.); (L.Z.); (S.S.); (Y.D.)
- R&D Center of Environment Friendly Fertilizer Science and Technology, South China Agricultural University, Guangzhou 510642, China
| | - Shuting Jiang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (S.J.); (J.J.); (C.G.); (X.Q.); (L.Z.); (S.S.); (Y.D.)
- R&D Center of Environment Friendly Fertilizer Science and Technology, South China Agricultural University, Guangzhou 510642, China
| | - Jiaquan Jiang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (S.J.); (J.J.); (C.G.); (X.Q.); (L.Z.); (S.S.); (Y.D.)
- R&D Center of Environment Friendly Fertilizer Science and Technology, South China Agricultural University, Guangzhou 510642, China
| | - Chengxiang Gao
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (S.J.); (J.J.); (C.G.); (X.Q.); (L.Z.); (S.S.); (Y.D.)
- R&D Center of Environment Friendly Fertilizer Science and Technology, South China Agricultural University, Guangzhou 510642, China
| | - Xiuxiu Qi
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (S.J.); (J.J.); (C.G.); (X.Q.); (L.Z.); (S.S.); (Y.D.)
- R&D Center of Environment Friendly Fertilizer Science and Technology, South China Agricultural University, Guangzhou 510642, China
| | - Lidan Zhang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (S.J.); (J.J.); (C.G.); (X.Q.); (L.Z.); (S.S.); (Y.D.)
- R&D Center of Environment Friendly Fertilizer Science and Technology, South China Agricultural University, Guangzhou 510642, China
| | - Shaolong Sun
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (S.J.); (J.J.); (C.G.); (X.Q.); (L.Z.); (S.S.); (Y.D.)
- R&D Center of Environment Friendly Fertilizer Science and Technology, South China Agricultural University, Guangzhou 510642, China
| | - Yinhai Dai
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (S.J.); (J.J.); (C.G.); (X.Q.); (L.Z.); (S.S.); (Y.D.)
- R&D Center of Environment Friendly Fertilizer Science and Technology, South China Agricultural University, Guangzhou 510642, China
| | - Xiaolin Fan
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (S.J.); (J.J.); (C.G.); (X.Q.); (L.Z.); (S.S.); (Y.D.)
- R&D Center of Environment Friendly Fertilizer Science and Technology, South China Agricultural University, Guangzhou 510642, China
- Correspondence:
| |
Collapse
|
48
|
Cornelis S, Hazak O. Understanding the root xylem plasticity for designing resilient crops. PLANT, CELL & ENVIRONMENT 2022; 45:664-676. [PMID: 34971462 PMCID: PMC9303747 DOI: 10.1111/pce.14245] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 06/14/2023]
Abstract
Xylem is the main route for transporting water, minerals and a myriad of signalling molecules within the plant. With its onset during early embryogenesis, the development of the xylem relies on hormone gradients, the activity of unique transcription factors, the distribution of mobile microRNAs, and receptor-ligand pathways. These regulatory mechanisms are often interconnected and together contribute to the plasticity of this water-conducting tissue. Environmental stresses, such as drought and salinity, have a great impact on xylem patterning. A better understanding of how the structural properties of the xylem are regulated in normal and stress conditions will be instrumental in developing crops of the future. In addition, vascular wilt pathogens that attack the xylem are becoming increasingly problematic. Further knowledge of xylem development in response to these pathogens will bring new solutions against these diseases. In this review, we summarize recent findings on the molecular mechanisms of xylem formation that largely come from Arabidopsis research with additional insights from tomato and monocot species. We emphasize the impact of abiotic factors and pathogens on xylem plasticity and the urgent need to uncover the underlying mechanisms. Finally, we discuss the multidisciplinary approach to model xylem capacities in crops.
Collapse
Affiliation(s)
- Salves Cornelis
- Department of BiologyUniversity of FribourgFribourgSwitzerland
| | - Ora Hazak
- Department of BiologyUniversity of FribourgFribourgSwitzerland
| |
Collapse
|
49
|
Nomberg G, Marinov O, Arya GC, Manasherova E, Cohen H. The Key Enzymes in the Suberin Biosynthetic Pathway in Plants: An Update. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11030392. [PMID: 35161373 PMCID: PMC8839845 DOI: 10.3390/plants11030392] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 05/14/2023]
Abstract
Suberin is a natural biopolymer found in a variety of specialized tissues, including seed coat integuments, root endodermis, tree bark, potato tuber skin and the russeted and reticulated skin of fruits. The suberin polymer consists of polyaliphatic and polyphenolic domains. The former is made of very long chain fatty acids, primary alcohols and a glycerol backbone, while the latter consists of p-hydroxycinnamic acid derivatives, which originate from the core phenylpropanoid pathway. In the current review, we survey the current knowledge on genes/enzymes associated with the suberin biosynthetic pathway in plants, reflecting the outcomes of considerable research efforts in the last two decades. We discuss the function of these genes/enzymes with respect to suberin aromatic and aliphatic monomer biosynthesis, suberin monomer transport, and suberin pathway regulation. We also delineate the consequences of the altered expression/accumulation of these genes/enzymes in transgenic plants.
Collapse
Affiliation(s)
- Gal Nomberg
- Volcani Center, Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization (ARO), Rishon Lezion 7505101, Israel; (G.N.); (O.M.); (G.C.A.); (E.M.)
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Ofir Marinov
- Volcani Center, Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization (ARO), Rishon Lezion 7505101, Israel; (G.N.); (O.M.); (G.C.A.); (E.M.)
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Gulab Chand Arya
- Volcani Center, Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization (ARO), Rishon Lezion 7505101, Israel; (G.N.); (O.M.); (G.C.A.); (E.M.)
| | - Ekaterina Manasherova
- Volcani Center, Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization (ARO), Rishon Lezion 7505101, Israel; (G.N.); (O.M.); (G.C.A.); (E.M.)
| | - Hagai Cohen
- Volcani Center, Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization (ARO), Rishon Lezion 7505101, Israel; (G.N.); (O.M.); (G.C.A.); (E.M.)
- Correspondence:
| |
Collapse
|
50
|
Romero-Rincón A, Martínez ST, Higuera BL, Coy-Barrera E, Ardila HD. Flavonoid biosynthesis in Dianthus caryophyllus L. is early regulated during interaction with Fusarium oxysporum f. sp. dianthi. PHYTOCHEMISTRY 2021; 192:112933. [PMID: 34482105 DOI: 10.1016/j.phytochem.2021.112933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/19/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
Rooted cuttings from two carnation (Dianthus caryophyllus L.) cultivars showing contrasting responses to the vascular wilt caused by Fusarium oxysporum f. sp. dianthi (Fod) were inoculated with this phytopathogen, and some of the biochemical responses associated with flavonoid biosynthesis were investigated in the roots. The resistant cultivar ('Golem') showed a significant increase in the levels of phenolic and flavonoid compounds at 48-96 h post-inoculation (hpi) (α = 0.05). LC-MS-based analysis indicated that the flavonoids mainly included flavanol-type glycosides, especially quercetin and kaempferol aglycones. Quantification of the mRNA levels of genes encoding CHS (Chalcone Synthase), CHI (Chalcone Isomerase), FLS (Flavonol Synthase), and the transcription factor MYB11 by using reverse transcription quantitative polymerase chain reaction (RT-qPCR) indicated that the resistant cultivar exhibited higher expression levels of these genes and, therefore, showed more flavonoid accumulation at 96 hpi. The differences in the temporal regulation of the assessed variables during infection support the idea that the early expression of enzymes of the flavonoid biosynthesis pathway in carnation roots is linked to a resistance response to the hemibiotrophic pathogen Fod race 2. The present experimental approach is the first report describing the molecular mechanisms underlying flavonoid biosynthesis in carnation roots during their interaction with Fod.
Collapse
Affiliation(s)
- Ana Romero-Rincón
- Laboratory Research in Vegetal Metabolic Activities, Department of Chemistry, Faculty of Science, Universidad Nacional de Colombia, Ciudad Universitaria, Cra 30 No. 45-03, Bogotá, 111321, Colombia; Bioorganic Chemistry Laboratory, Department of Chemistry, Universidad Militar Nueva Granada, Cajicá, 250247, Colombia
| | - Sixta Tulia Martínez
- Laboratory Research in Vegetal Metabolic Activities, Department of Chemistry, Faculty of Science, Universidad Nacional de Colombia, Ciudad Universitaria, Cra 30 No. 45-03, Bogotá, 111321, Colombia
| | - Blanca Ligia Higuera
- Laboratory Research in Vegetal Metabolic Activities, Department of Chemistry, Faculty of Science, Universidad Nacional de Colombia, Ciudad Universitaria, Cra 30 No. 45-03, Bogotá, 111321, Colombia
| | - Ericsson Coy-Barrera
- Bioorganic Chemistry Laboratory, Department of Chemistry, Universidad Militar Nueva Granada, Cajicá, 250247, Colombia
| | - Harold Duban Ardila
- Laboratory Research in Vegetal Metabolic Activities, Department of Chemistry, Faculty of Science, Universidad Nacional de Colombia, Ciudad Universitaria, Cra 30 No. 45-03, Bogotá, 111321, Colombia.
| |
Collapse
|