1
|
Bellinazzo F, Manders I, Heidemann B, Bolanos MA, Stouten E, Busscher J, Abarca D, van der Wal F, Dornelas MC, Angenent GC, Proveniers M, Nijveen H, Immink RGH. Differential growth and flowering capacity of tulip bulbs and the potential involvement of PHOSPHATIDYLETHANOLAMINE-BINDING PROTEINS (PEBPs). Biol Direct 2025; 20:29. [PMID: 40065355 PMCID: PMC11895272 DOI: 10.1186/s13062-025-00625-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Tulipa gesneriana reproduces vegetatively by the development of bulb clusters from axillary meristems in the scales of a mother bulb. While part of the daughter bulbs in a cluster develop into large, flowering bulbs, others stay small and vegetative under the same environmental conditions. This study aims to investigate how these different developmental fates are orchestrated. RESULTS RNA-seq analysis revealed that the overall transcriptomic landscape of the two types of daughter bulbs does not differ substantially, but follows a similar trajectory over time. Nonetheless, the expression levels of genes related to proliferation already differ at early development stages. Surprisingly, at a later stage, transcriptomic changes related to flower induction are detectable in flowering as well as non-flowering bulbs, with some quantitative differences. However, genes linked with floral organ development are differentially expressed, as well as negative regulators of flowering and more basal metabolic processes. In search for the molecular determinants of daughter bulb size and developmental fate, we investigated members of the PHOSPHATIDYLETHANOLAMINE-BINDING PROTEIN (PEBP) gene family as candidates. Tulip FLOWERING LOCUS T1 (TgFT1), TgFT2, and TgFT3 are expressed in leaves and leaf-like organs of the mother plant, and their encoded proteins interact with the TCP transcription factor TEOSINTE BRANCHED1 (TgTB1). Therefore, we suggest that these three genes act as 'bulbigens', meaning regulators of axillary meristem outgrowth and hence, daughter bulb size. Furthermore, we found that TgFT2 and TgFT4 could constitute the main florigens in tulips, because of their expression pattern and the binding of their encoding proteins to the bZIP transcription factor FD (TgFD). Moreover, Arabidopsis lines ectopically expressing TgFT2 or TgFT4 flower significantly earlier than the wild type. CONCLUSIONS Differences in the developmental fate of tulip daughter bulbs are established early during development and are linked with differences in cell division and metabolism. The activity of members of the PEBP family, known for their role in flowering and storage organ formation in geophytes, appeared to be associated with the transcriptional switches observed during daughter bulb development. This points towards a functional role of these proteins in governing developmental trajectories underlying the mode of reproduction.
Collapse
Affiliation(s)
- Francesca Bellinazzo
- Laboratory of Molecular Biology, Cluster Plant Developmental Biology, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
- Bioscience, Wageningen Plant Research, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
- Laboratory of Cell and Developmental Biology, Cluster Plant Developmental Biology, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
| | - Irene Manders
- Laboratory of Molecular Biology, Cluster Plant Developmental Biology, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
- Bioscience, Wageningen Plant Research, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
| | - Bas Heidemann
- Laboratory of Molecular Biology, Cluster Plant Developmental Biology, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
- Bioscience, Wageningen Plant Research, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
| | - Manuel Aguirre Bolanos
- Translational Plant Biology, Department of Biology, Science4Life, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Evelien Stouten
- Plant Stress Resilience, Department of Biology, Science4Life, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Jacqueline Busscher
- Bioscience, Wageningen Plant Research, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
| | - Dolores Abarca
- Translational Plant Biology, Department of Biology, Science4Life, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
- Department of Life Sciences, University of Alcalá, Alcalá de Henares, 28805, Madrid, Spain
| | - Froukje van der Wal
- Bioscience, Wageningen Plant Research, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
| | - Marcelo Carnier Dornelas
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, CEP 13083-862, Brazil
| | - Gerco C Angenent
- Laboratory of Molecular Biology, Cluster Plant Developmental Biology, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
- Bioscience, Wageningen Plant Research, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
| | - Marcel Proveniers
- Translational Plant Biology, Department of Biology, Science4Life, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Harm Nijveen
- Bioinformatics Group, Wageningen University and Research, PO Box 633, 6700 AP, Wageningen, The Netherlands
| | - Richard G H Immink
- Laboratory of Molecular Biology, Cluster Plant Developmental Biology, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands.
- Bioscience, Wageningen Plant Research, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands.
- Laboratory of Cell and Developmental Biology, Cluster Plant Developmental Biology, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands.
| |
Collapse
|
2
|
Cholin SS, Kulkarni CC, Grzebelus D, Jakaraddi R, Hundekar A, Chandan BM, Archana TS, Krishnaja NR, Prabhuling G, Ondrasek G, Simon P. Deciphering Carotenoid and Flowering Pathway Gene Variations in Eastern and Western Carrots ( Daucus carota L.). Genes (Basel) 2024; 15:1462. [PMID: 39596662 PMCID: PMC11593857 DOI: 10.3390/genes15111462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/02/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND/OBJECTIVES Carrot is a major root vegetable in the Apiaceae owing to its abundant carotenoids, antioxidants, vitamins, and minerals. The modern dark orange western carrot was derived from sequential domestication events from the white-rooted wild form to the pale orange-, purple-, or yellow-rooted eastern carrot. Genetic and molecular studies between eastern and western carrots are meager despite their evolutionary relatedness. METHODS Twelve RNA seq libraries obtained from distinct eastern and western cultivars at vegetative and reproductive developmental stages were utilized to identify differentially expressed genes (DEGs) to decode the key molecular genetic changes in carotenoid and flowering pathways. RESULTS In the carotenoid pathway, an upregulation of the PSY, CRTISO, and LCYE genes was observed in the western cultivar, while the eastern cultivar exhibited a higher abundance of downstream enzymes, particularly CCD and NCED1. These later enzymes are crucial in linking apocarotenoids and xanthin-mediated ABA signaling. In the flowering pathway, we noted a greater expression of DEGs associated with the photoperiod and vernalization pathways in the western cultivar. In contrast, the eastern cultivar displayed a dominance of genes from the autonomous pathway (FLD, LD, FLK, and PEBP) that function to repress FLC. The experimental validation of 12 key genes through quantitative real-time PCR further confirms their functional role in carrots. CONCLUSIONS The identified key regulatory genes in these major pathways are valuable for designing breeding strategies for manipulating carotenoid content and flowering time while developing climate-specific carrots. The knowledge of carotenoid and flowering pathways is advantageous in producing nutritionally improved roots and seeds in carrots across diverse climates.
Collapse
Affiliation(s)
- Sarvamangala S. Cholin
- Plant Molecular Biology Lab (DBT-BIO-CARe), Department of Biotechnology & Crop Improvement, College of Horticulture, University of Horticultural Sciences, Bagalkot 587103, Karnataka, India; (C.C.K.); (R.J.); (A.H.); (B.M.C.); (T.S.A.); (N.R.K.); (G.P.)
| | - Chaitra C. Kulkarni
- Plant Molecular Biology Lab (DBT-BIO-CARe), Department of Biotechnology & Crop Improvement, College of Horticulture, University of Horticultural Sciences, Bagalkot 587103, Karnataka, India; (C.C.K.); (R.J.); (A.H.); (B.M.C.); (T.S.A.); (N.R.K.); (G.P.)
- Department of Biotechnology & Crop Improvement, Kittur Rani Channamma College of Horticulture, Gokak 591218, Karnataka, India
| | - Dariusz Grzebelus
- Department of Plant Biology & Biotechnology, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Krakow, Poland;
| | - Rashmi Jakaraddi
- Plant Molecular Biology Lab (DBT-BIO-CARe), Department of Biotechnology & Crop Improvement, College of Horticulture, University of Horticultural Sciences, Bagalkot 587103, Karnataka, India; (C.C.K.); (R.J.); (A.H.); (B.M.C.); (T.S.A.); (N.R.K.); (G.P.)
| | - Aishwarya Hundekar
- Plant Molecular Biology Lab (DBT-BIO-CARe), Department of Biotechnology & Crop Improvement, College of Horticulture, University of Horticultural Sciences, Bagalkot 587103, Karnataka, India; (C.C.K.); (R.J.); (A.H.); (B.M.C.); (T.S.A.); (N.R.K.); (G.P.)
| | - B. M. Chandan
- Plant Molecular Biology Lab (DBT-BIO-CARe), Department of Biotechnology & Crop Improvement, College of Horticulture, University of Horticultural Sciences, Bagalkot 587103, Karnataka, India; (C.C.K.); (R.J.); (A.H.); (B.M.C.); (T.S.A.); (N.R.K.); (G.P.)
| | - T. S. Archana
- Plant Molecular Biology Lab (DBT-BIO-CARe), Department of Biotechnology & Crop Improvement, College of Horticulture, University of Horticultural Sciences, Bagalkot 587103, Karnataka, India; (C.C.K.); (R.J.); (A.H.); (B.M.C.); (T.S.A.); (N.R.K.); (G.P.)
| | - Nair R. Krishnaja
- Plant Molecular Biology Lab (DBT-BIO-CARe), Department of Biotechnology & Crop Improvement, College of Horticulture, University of Horticultural Sciences, Bagalkot 587103, Karnataka, India; (C.C.K.); (R.J.); (A.H.); (B.M.C.); (T.S.A.); (N.R.K.); (G.P.)
| | - G. Prabhuling
- Plant Molecular Biology Lab (DBT-BIO-CARe), Department of Biotechnology & Crop Improvement, College of Horticulture, University of Horticultural Sciences, Bagalkot 587103, Karnataka, India; (C.C.K.); (R.J.); (A.H.); (B.M.C.); (T.S.A.); (N.R.K.); (G.P.)
| | - Gabrijel Ondrasek
- Department of Soil Amelioration, Faculty of Agriculture, University of Zagreb, HR-10000 Zagreb, Croatia;
| | - Philipp Simon
- USDA-ARS Vegetable Crops Research Service, Madison, WI 53706, USA
| |
Collapse
|
3
|
Alter H, Sade Y, Sood A, Carmeli-Weissberg M, Shaya F, Kamenetsky-Goldstein R, Bernstein N, Spitzer-Rimon B. Inflorescence development in female cannabis plants is mediated by photoperiod and gibberellin. HORTICULTURE RESEARCH 2024; 11:uhae245. [PMID: 39539415 PMCID: PMC11560369 DOI: 10.1093/hr/uhae245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/22/2024] [Indexed: 11/16/2024]
Abstract
In cannabis seedlings, the initiation of solitary flowers is photoperiod-independent. However, when cannabis reaches the adult stage, short-day photoperiod (SD) triggers branching of the shoot apex and a reduction in internode length, leading to development of a condensed inflorescence. We demonstrate that SD affects cannabis plants in two distinct phases: the first includes rapid elongation of the internodes and main stem, and occurring from Day 5 to Day 10 of plant cultivation under SD; in the second phase, elongation of newly developed internodes ceases, and a condensed inflorescence is formed. Exposure of plants to alternating photoperiods revealed that inflorescence onset requires at least three consecutive days of SD, and SD is consistently required throughout inflorescence maturation to support its typical condensed architecture. This photoperiod-dependent morphogenesis was associated with a decrease in gibberellin (GA4) and auxin levels in the shoot apex. Reverting the plants to a long-day photoperiod (LD) increased GA4 and auxin levels, leading to inflorescence disassembly, internode elongation, and subsequent resumption of LD growth patterns. Similar developmental patterns were observed under SD following the application of exogenous GA (and not auxin), which also impeded inflorescence development. Nevertheless, additional studies will help to further evaluate auxin's role in these developmental changes. We propose a crucial role for GA in sexual reproduction and inflorescence development in female cannabis by mediating photoperiod signaling in the inflorescence tissues.
Collapse
Affiliation(s)
- Hanan Alter
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Institute, Rishon LeZion, Israel
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Yael Sade
- Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization, The Volcani Institute, Rishon LeZion, Israel
| | - Archit Sood
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Institute, Rishon LeZion, Israel
| | - Mira Carmeli-Weissberg
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Institute, Rishon LeZion, Israel
| | - Felix Shaya
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Institute, Rishon LeZion, Israel
| | - Rina Kamenetsky-Goldstein
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Institute, Rishon LeZion, Israel
| | - Nirit Bernstein
- Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization, The Volcani Institute, Rishon LeZion, Israel
| | - Ben Spitzer-Rimon
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Institute, Rishon LeZion, Israel
| |
Collapse
|
4
|
Bellinazzo F, Nadal Bigas J, Hogers RAH, Kodde J, van der Wal F, Kokkinopoulou P, Duijts KTM, Angenent GC, van Dijk ADJ, van Velzen R, Immink RGH. Evolutionary origin and functional investigation of the widely conserved plant PEBP gene STEPMOTHER OF FT AND TFL1 (SMFT). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:1410-1420. [PMID: 39364782 DOI: 10.1111/tpj.17057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 09/19/2024] [Indexed: 10/05/2024]
Abstract
Genes of the family PHOSPHATIDYLETHANOLAMINE-BINDING PROTEINS (PEBP) have been intensely studied in plants for their role in cell (re)programming and meristem differentiation. Recently, sporadic reports of the presence of a new type of PEBP in plants became available, highly similar to the YY-PEBPs of prokaryotes. A comprehensive investigation of their spread, origin, and function revealed conservation across the plant kingdom. The YY-PEBP clade in plants seems to have resulted from a single Horizontal Gene Transfer (HGT) episode from a prokaryotic organism to an ancestral streptophyte. YY-PEBPs are also present in other eukaryotes, such as certain fungi, diatoms, and rotifers, and these cases derive from independent HGT events. Reciprocally, the occurrence of the eukaryotic CETS/RKIP type PEBPs (CR-PEBPs) was noticed in bacteria of the genus Nocardia, showing that HGT has occurred as well from eukaryotes to prokaryotes. Based on these observations, we propose that the current model of the PEBP family in plants needs to be updated with the clade STEPMOTHER OF FT AND TFL1 (SMFT). SMFT genes not only share high sequence conservation but also show specific expression in homologous plant structures that serve as propagules. Functional analysis of Arabidopsis smft mutant lines pointed to a function for this gene in regulating seed germination, both concerning primary dormancy release and in response to adverse high-temperature conditions. Overall, our study reveals an increasing complexity in the evolutionary history of the PEBP gene family, unlocking new potential in understanding the evolution and functional spectrum of these important key regulatory genes.
Collapse
Affiliation(s)
- Francesca Bellinazzo
- Laboratory of Molecular Biology, Wageningen University and Research, Wageningen, The Netherlands
- Bioscience, Wageningen Plant Research, Wageningen University and Research, Wageningen, The Netherlands
| | - Judit Nadal Bigas
- Laboratory of Molecular Biology, Wageningen University and Research, Wageningen, The Netherlands
- Bioscience, Wageningen Plant Research, Wageningen University and Research, Wageningen, The Netherlands
| | - Rensco A H Hogers
- Bioinformatics Group, Wageningen University, Wageningen, the Netherlands
| | - Jan Kodde
- Bioscience, Wageningen Plant Research, Wageningen University and Research, Wageningen, The Netherlands
| | - Froukje van der Wal
- Laboratory of Molecular Biology, Wageningen University and Research, Wageningen, The Netherlands
- Bioscience, Wageningen Plant Research, Wageningen University and Research, Wageningen, The Netherlands
| | - Pinelopi Kokkinopoulou
- Laboratory of Plant Physiology, Wageningen University and Research, Wageningen, the Netherlands
| | - Kilian T M Duijts
- Laboratory of Plant Physiology, Wageningen University and Research, Wageningen, the Netherlands
| | - Gerco C Angenent
- Laboratory of Molecular Biology, Wageningen University and Research, Wageningen, The Netherlands
- Bioscience, Wageningen Plant Research, Wageningen University and Research, Wageningen, The Netherlands
| | - Aalt D J van Dijk
- Bioinformatics Group, Wageningen University, Wageningen, the Netherlands
| | - Robin van Velzen
- Biosystematics Group, Wageningen University, Wageningen, the Netherlands
| | - Richard G H Immink
- Laboratory of Molecular Biology, Wageningen University and Research, Wageningen, The Netherlands
- Bioscience, Wageningen Plant Research, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
5
|
Plunkert ML, Martínez-Gómez J, Madrigal Y, Hernández AI, Tribble CM. Tuber, or not tuber: Molecular and morphological basis of underground storage organ development. CURRENT OPINION IN PLANT BIOLOGY 2024; 80:102544. [PMID: 38759482 DOI: 10.1016/j.pbi.2024.102544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/28/2024] [Accepted: 04/15/2024] [Indexed: 05/19/2024]
Abstract
Underground storage organs occur in phylogenetically diverse plant taxa and arise from multiple tissue types including roots and stems. Thickening growth allows underground storage organs to accommodate carbohydrates and other nutrients and requires proliferation at various lateral meristems followed by cell expansion. The WOX-CLE module regulates thickening growth via the vascular cambium in several eudicot systems, but the molecular mechanisms of proliferation at other lateral meristems are not well understood. In potato, onion, and other systems, members of the phosphatidylethanolamine-binding protein (PEBP) gene family induce underground storage organ development in response to photoperiod cues. While molecular mechanisms of tuber development in potato are well understood, we lack detailed mechanistic knowledge for the extensive morphological and taxonomic diversity of underground storage organs in plants.
Collapse
Affiliation(s)
- Madison L Plunkert
- Department of Plant Biology, Michigan State University, East Lansing, USA; Plant Resilience Institute, Michigan State University, East Lansing, USA.
| | - Jesús Martínez-Gómez
- Department of Plant and Microbial Biology, University of California, Berkeley, USA
| | - Yesenia Madrigal
- Facultad de Ciencias Exactas y Naturales, Instituto de Biología, Universidad de Antioquia, Medellín, Colombia
| | | | - Carrie M Tribble
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, USA
| |
Collapse
|
6
|
Tao N, Cheng B, Ma Y, Liu P, Chai H, Zhao Y, Chen W. Characterization of PEBP-like Genes and Function of Capebp1 and Capebp5 in Fruiting Body Regeneration in Cyclocybe aegerita. J Fungi (Basel) 2024; 10:537. [PMID: 39194863 DOI: 10.3390/jof10080537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 08/29/2024] Open
Abstract
Phosphatidylethanolamine-binding proteins (PEBPs) play a crucial role in the growth and development of various organisms. Due to the low sequence similarity compared to plants, humans, and animals, the study of pebp genes in fungi has not received significant attention. The redifferentiation of fruiting bodies is exceedingly rare in fungal development. Hitherto, only a few studies have identified the Capebp2 gene as being associated with this phenomenon in Cyclocybe aegerita. Thus, exploring the role of pebp genes in fruiting body development is imperative. In the present study, four Capebp genes (Capebp1, Capebp3, Capebp4, and Capebp5) were cloned from the AC0007 strain of C. aegerita based on genome sequencing and gene prediction. The findings indicate that the pebp family, in C. aegerita, comprises a total of five genes. Moreover, the sequence similarity was low across the five CAPEBP protein sequences in C. aegerita, and only a few conserved sequences, such as HRY and RHF, were identical. Expression analyses revealed that, similarly to Capebp2, the four Capebp genes exhibit significantly higher expression levels in the fruiting bodies than in the mycelium. Furthermore, overexpressed and RNA interference Capebp1 or Capebp5 transformants were analyzed. The results demonstrate that overexpression of Capebp1 or Capebp5 could induce the regeneration of the lamella or fruiting body, whereas the knockdown of Capebp1 or Capebp5 could lead to the accelerated aging of fruiting bodies. These findings highlight a significant role of Capebp genes in the generation of C. aegerita fruiting bodies and provide a foundation for further exploration into their involvement in basidiomycete growth and development.
Collapse
Affiliation(s)
- Nan Tao
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming 650223, China
- Yunnan Provincial Key Lab of Agricultural Biotechnology, Kunming 650223, China
- Key Lab of Southwestern Crop Gene Resources and Germplasm Innovation, Ministry of Agriculture, Kunming 650223, China
| | - Bopu Cheng
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming 650223, China
| | - Yuanhao Ma
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming 650223, China
- Yunnan Provincial Key Lab of Agricultural Biotechnology, Kunming 650223, China
- Key Lab of Southwestern Crop Gene Resources and Germplasm Innovation, Ministry of Agriculture, Kunming 650223, China
| | - Ping Liu
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming 650223, China
- Yunnan Provincial Key Lab of Agricultural Biotechnology, Kunming 650223, China
- Key Lab of Southwestern Crop Gene Resources and Germplasm Innovation, Ministry of Agriculture, Kunming 650223, China
| | - Hongmei Chai
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming 650223, China
- Yunnan Provincial Key Lab of Agricultural Biotechnology, Kunming 650223, China
- Key Lab of Southwestern Crop Gene Resources and Germplasm Innovation, Ministry of Agriculture, Kunming 650223, China
| | - Yongchang Zhao
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming 650223, China
- Yunnan Provincial Key Lab of Agricultural Biotechnology, Kunming 650223, China
- Key Lab of Southwestern Crop Gene Resources and Germplasm Innovation, Ministry of Agriculture, Kunming 650223, China
| | - Weimin Chen
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming 650223, China
- Yunnan Provincial Key Lab of Agricultural Biotechnology, Kunming 650223, China
- Key Lab of Southwestern Crop Gene Resources and Germplasm Innovation, Ministry of Agriculture, Kunming 650223, China
| |
Collapse
|
7
|
Colleoni PE, van Es SW, Winkelmolen T, Immink RGH, van Esse GW. Flowering time genes branching out. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4195-4209. [PMID: 38470076 PMCID: PMC11263490 DOI: 10.1093/jxb/erae112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/11/2024] [Indexed: 03/13/2024]
Abstract
Plants are sessile by nature, and as such they have evolved to sense changes in seasonality and their surrounding environment, and adapt to these changes. One prime example of this is the regulation of flowering time in angiosperms, which is precisely timed by the coordinated action of two proteins: FLOWERING LOCUS T (FT) and TERMINAL FLOWER 1 (TFL1). Both of these regulators are members of the PHOSPHATIDYLETHANOLAMINE BINDING PROTEIN (PEBP) family of proteins. These regulatory proteins do not interact with DNA themselves, but instead interact with transcriptional regulators, such as FLOWERING LOCUS D (FD). FT and TFL1 were initially identified as key regulators of flowering time, acting through binding with FD; however, PEBP family members are also involved in shaping plant architecture and development. In addition, PEBPs can interact with TCP transcriptional regulators, such as TEOSINTE BRANCHED 1 (TB1), a well-known regulator of plant architecture, and key domestication-related genes in many crops. Here, we review the role of PEBPs in flowering time, plant architecture, and development. As these are also key yield-related traits, we highlight examples from the model plant Arabidopsis as well as important food and feed crops such as, rice, barley, wheat, tomato, and potato.
Collapse
Affiliation(s)
- Pierangela E Colleoni
- Laboratory of Molecular Biology, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
| | - Sam W van Es
- Laboratory of Molecular Biology, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
- Bioscience, Wageningen Plant Research, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
| | - Ton Winkelmolen
- Laboratory of Molecular Biology, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
| | - Richard G H Immink
- Laboratory of Molecular Biology, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
- Bioscience, Wageningen Plant Research, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
| | - G Wilma van Esse
- Laboratory of Molecular Biology, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
| |
Collapse
|
8
|
Sun X, Wang E, Yu L, Liu S, Liu T, Qin J, Jiang P, He S, Cai X, Jing S, Song B. TCP transcription factor StAST1 represses potato tuberization by regulating tuberigen complex activity. PLANT PHYSIOLOGY 2024; 195:1347-1364. [PMID: 38488068 DOI: 10.1093/plphys/kiae138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/01/2024] [Indexed: 06/02/2024]
Abstract
Potato (Solanum tuberosum L.) is cultivated worldwide for its underground tubers, which provide an important part of human nutrition and serve as a model system for belowground storage organ formation. Similar to flowering, stolon-expressed FLOWERING LOCUS T-like (FT-like) protein SELF-PRUNING 6A (StSP6A) plays an instrumental role in tuberization by binding to the bZIP transcription factors StABI5-like 1 (StABL1) and StFD-like 1 (StFDL1), causing transcriptional reprogramming at the stolon subapical apices. However, the molecular mechanism regulating the widely conserved FT-bZIP interactions remains largely unexplored. Here, we identified a TCP transcription factor StAST1 (StABL1 and StSP6A-associated TCP protein 1) binding to both StSP6A and StABL1. StAST1 is specifically expressed in the vascular tissue of leaves and developing stolons. Silencing of StAST1 leads to accelerated tuberization and a shortened life cycle. Molecular dissection reveals that the interaction of StAST1 with StSP6A and StABL1 attenuates the formation of the alternative tuberigen activation complex (aTAC). We also observed StAST1 directly activates the expression of potato GA 20-oxidase gene (StGA20ox1) to regulate GA responses. These results demonstrate StAST1 functions as a tuberization repressor by regulating plant hormone levels; our findings also suggest a mechanism by which the widely conserved FT-FD genetic module is fine-tuned.
Collapse
Affiliation(s)
- Xiaomeng Sun
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Enshuang Wang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Liu Yu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Shengxuan Liu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Tiantian Liu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jun Qin
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Peng Jiang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Shuangshuang He
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xingkui Cai
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Shenglin Jing
- Department of Biological Science, College of Life Sciences, Sichuan Normal University, Chengdu, Sichuan 610101, China
| | - Botao Song
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| |
Collapse
|
9
|
Pallotti C, Renau-Morata B, Cardone L, Nebauer SG, Albiñana Palacios M, Rivas-Sendra A, Seguí-Simarro JM, Molina RV. Understanding the Saffron Corm Development-Insights into Histological and Metabolic Aspects. PLANTS (BASEL, SWITZERLAND) 2024; 13:1125. [PMID: 38674534 PMCID: PMC11055066 DOI: 10.3390/plants13081125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/12/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024]
Abstract
The reproduction of Crocus sativus L., a sterile triploid plant, is carried out exclusively through corms, whose size determines the saffron yield. The development of daughter corms (DC) is supported by photoassimilates supplied by the leaves as well as by the mother corms (MC). While biomass partitioning during DC development is well studied, growth dynamics in terms of cell number and size, the involved meristems, as well as carbohydrate partition and allocation, are not yet fully understood. We conducted a comprehensive study into saffron corm growth dynamics at the macroscopic and microscopic levels. Variations in carbohydrate content and enzymatic activities related to sucrose metabolism in sources and sinks were measured. Two key meristems were identified. One is involved in vascular connections between DC and MC. The other is a thickening meristem responsible for DC enlargement. This research explains how the previously described phases of corm growth correlate with variations in cell division, enlargement dynamics, and carbohydrate partitioning among organs. Results also elucidated that the end of DC growth relates to a significant drop in MC root biomass, limiting the water supply for the DC growth, and establishing the onset of leaf wilting. The lack of starch accumulation in aged leaf cells is noteworthy, as is the accumulation of lipids. We hypothesize a signaling role of sugars in DC growth initiation, stop, and leaf aging. Finally, we established a predominant role of sucrose synthase as a sucrolytic enzyme in the maintenance of the high flux of carbon for starch synthesis in DC. Together, the obtained results pave the way for the definition of strategies leading to better control of saffron corm development.
Collapse
Affiliation(s)
- Claudia Pallotti
- Departamento de Producción Vegetal, Universitat Politècnica de València, Camino de Vera s.n., 46022 Valencia, Spain; (C.P.); (B.R.-M.); (S.G.N.)
- Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV), Universitat Politècnica de València, Camino de Vera s.n., 46022 Valencia, Spain; (M.A.P.); (A.R.-S.); (J.M.S.-S.)
| | - Begoña Renau-Morata
- Departamento de Producción Vegetal, Universitat Politècnica de València, Camino de Vera s.n., 46022 Valencia, Spain; (C.P.); (B.R.-M.); (S.G.N.)
- Departamento de Biología Vegetal, Universitat de València, C/Doctor Moliner 50, Burjasot, 46100 Valencia, Spain
| | - Loriana Cardone
- Department of European and Mediterranean Cultures, Environment, and Cultural Heritage, University of Basilicata, Via Lanera, 20, 75100 Matera, Italy;
| | - Sergio G. Nebauer
- Departamento de Producción Vegetal, Universitat Politècnica de València, Camino de Vera s.n., 46022 Valencia, Spain; (C.P.); (B.R.-M.); (S.G.N.)
| | - Mireia Albiñana Palacios
- Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV), Universitat Politècnica de València, Camino de Vera s.n., 46022 Valencia, Spain; (M.A.P.); (A.R.-S.); (J.M.S.-S.)
| | - Alba Rivas-Sendra
- Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV), Universitat Politècnica de València, Camino de Vera s.n., 46022 Valencia, Spain; (M.A.P.); (A.R.-S.); (J.M.S.-S.)
| | - José M. Seguí-Simarro
- Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV), Universitat Politècnica de València, Camino de Vera s.n., 46022 Valencia, Spain; (M.A.P.); (A.R.-S.); (J.M.S.-S.)
| | - Rosa V. Molina
- Departamento de Producción Vegetal, Universitat Politècnica de València, Camino de Vera s.n., 46022 Valencia, Spain; (C.P.); (B.R.-M.); (S.G.N.)
| |
Collapse
|
10
|
Koch L, Lehretz GG, Sonnewald U, Sonnewald S. Yield reduction caused by elevated temperatures and high nitrogen fertilization is mitigated by SP6A overexpression in potato (Solanum tuberosum L.). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1702-1715. [PMID: 38334712 DOI: 10.1111/tpj.16679] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024]
Abstract
Potatoes (Solanum tuberosum L.) are a fundamental staple for millions of people worldwide. They provide essential amino acids, vitamins, and starch - a vital component of the human diet, providing energy and serving as a source of fiber. Unfortunately, global warming is posing a severe threat to this crop, leading to significant yield losses, and thereby endangering global food security. Industrial agriculture traditionally relies on excessive nitrogen (N) fertilization to boost yields. However, it remains uncertain whether this is effective in combating heat-related yield losses of potato. Therefore, our study aimed to investigate the combinatory effects of heat stress and N fertilization on potato tuber formation. We demonstrate that N levels and heat significantly impact tuber development. The combination of high N and heat delays tuberization, while N deficiency initiates early tuberization, likely through starvation-induced signals, independent of SELF-PRUNING 6A (SP6A), a critical regulator of tuberization. We also found that high N levels in combination with heat reduce tuber yield rather than improve it. However, our study revealed that SP6A overexpression can promote tuberization under these inhibiting conditions. By utilizing the excess of N for accumulating tuber biomass, SP6A overexpressing plants exhibit a shift in biomass distribution towards the tubers. This results in an increased yield compared to wild-type plants. Our results highlight the role of SP6A overexpression as a viable strategy for ensuring stable potato yields in the face of global warming. As such, our findings provide insights into the complex factors impacting potato crop productivity.
Collapse
Affiliation(s)
- Lisa Koch
- Department of Biology, Chair of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nuremberg, Germany
| | - Günter G Lehretz
- Department of Biology, Chair of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nuremberg, Germany
| | - Uwe Sonnewald
- Department of Biology, Chair of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nuremberg, Germany
| | - Sophia Sonnewald
- Department of Biology, Chair of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nuremberg, Germany
| |
Collapse
|
11
|
Dutta M, Sharma P, Raturi V, Bhargava B, Zinta G. SarCTAB: an efficient and cost-effective DNA isolation protocol from geophytes. 3 Biotech 2024; 14:36. [PMID: 38221992 PMCID: PMC10784239 DOI: 10.1007/s13205-023-03874-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 12/04/2023] [Indexed: 01/16/2024] Open
Abstract
Geophytes are herbaceous plants that grow anew from underground buds and are excellent models to study storage organ formation. However, molecular studies involving geophytes are constrained due to the presence of a wide spectrum of polysaccharides and polyphenols that contaminate the genomic DNA. At present, several protocols exist for the extraction of genomic DNA from different plant species; however, isolating high-quality DNA from geophytes is challenging. Such challenges are further complexed by longer incubation time and multiple precipitation steps involved in existing DNA isolation methods. To overcome such problems, we aimed to establish a DNA extraction method (SarCTAB) which is an economical, quick, and sustainable way of DNA isolation from geophytes. We improved the traditional CTAB method by optimizing key ingredients such as sarcosine, β-mercaptoethanol, and high molar concentration of sodium chloride (NaCl), which resulted in high concentration and good-quality DNA with lesser polysaccharides, proteins, and polyphenols. This method was evaluated to extract DNA from storage organs of six different geophytes. The SarCTAB method provides an average yield of 1755 ng/µl of high-quality DNA from 100 mg of underground storage tissues with an average standard purity of 1.86 (260/280) and 1.42 (260/230). The isolated genomic DNA performed well with Inter-simple sequence repeat (ISSR) amplification, restriction digestion with EcoRI, and PCR amplification of plant barcode genes viz. matK and rbcL. Also, the cost involved in DNA isolation was low when compared to that with commercially available kits. Overall, SarCTAB method works effectively to isolate high-quality genomic DNA in a cost-effective manner from the underground storage tissues of geophytes, and can be applied for next-generation sequencing, DNA barcoding, and whole genome bisulfite sequencing.
Collapse
Affiliation(s)
- Madhushree Dutta
- Integrative Plant AdaptOmics Lab (iPAL), Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, Himachal Pradesh 176061 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002 India
| | - Paras Sharma
- Integrative Plant AdaptOmics Lab (iPAL), Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, Himachal Pradesh 176061 India
| | - Vidhi Raturi
- Integrative Plant AdaptOmics Lab (iPAL), Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, Himachal Pradesh 176061 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002 India
| | - Bhavya Bhargava
- Integrative Plant AdaptOmics Lab (iPAL), Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, Himachal Pradesh 176061 India
- Agrotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, Himachal Pradesh 176061 India
| | - Gaurav Zinta
- Integrative Plant AdaptOmics Lab (iPAL), Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, Himachal Pradesh 176061 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002 India
| |
Collapse
|
12
|
Deng L, Li C, Gao Q, Yang W, Jiang J, Xing J, Xiang H, Zhao J, Yang Y, Leng P. Loss function of NtGA3ox1 delays flowering through impairing gibberellins metabolite synthesis in Nicotiana tabacum. FRONTIERS IN PLANT SCIENCE 2023; 14:1340039. [PMID: 38162297 PMCID: PMC10754988 DOI: 10.3389/fpls.2023.1340039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 12/05/2023] [Indexed: 01/03/2024]
Abstract
Flowering time, plays a crucial role in tobacco ecological adaptation besides its substantial influence on tobacco production and leaf quality. Meanwhile, it is sensitive to biotic or abiotic challenges. The plant hormones Gibberellins (GAs), controlling a number of metabolic processes, govern plants growth and development. In this study, we created a late flowering mutant HG14 through knocking out NtGA3ox1 by CRISPR/Cas9. It took around 13.0 and 12.1 days longer to budding and flowering compared to wild type Honghuadajinyuan. Nearly all of the evaluated agronomic characters deteriorated in HG14, showing slower growth and noticeably shorter and narrower leaves. We found that NtGA3ox was more prevalent in flowers through quantitative reverse transcription PCR analysis. Transcriptome profiling detected 4449, 2147, and 4567 differently expressed genes at the budding, flowering, and mature stages, respectively. The KEGG pathway enrichment analysis identified the plant-pathogen interaction, plant hormone signal transduction pathway, and MAPK signaling pathway are the major clusters controlled by NtGA3ox1 throughout the budding and flowering stages. Together with the abovementioned signaling pathway, biosynthesis of monobactam, metabolism of carbon, pentose, starch, and sucrose were enriched at the mature stage. Interestingly, 108 up- and 73 down- regulated DEGs, impairing sugar metabolism, diterpenoid biosynthesis, linoleic and alpha-linolenic acid metabolism pathway, were continuously detected accompanied with the development of HG14. This was further evidenced by the decreasing content of GA metabolites such as GA4 and GA7, routine chemicals, alkaloids, amino acids, and organic acids Therefore, we discovered a novel tobacco flowering time gene NtGA3ox1 and resolved its regulatory network, which will be beneficial to the improvement of tobacco varieties.
Collapse
Affiliation(s)
- Lele Deng
- Yunnan Key Laboratory of Tobacco Chemistry, R&D Center of China Tobacco Yunnan Industrial Co. Ltd., Kunming, Yunnan, China
| | - Chaofan Li
- Crop Functional Genome Research Center, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qian Gao
- Yunnan Key Laboratory of Tobacco Chemistry, R&D Center of China Tobacco Yunnan Industrial Co. Ltd., Kunming, Yunnan, China
| | - Wenwu Yang
- Yunnan Key Laboratory of Tobacco Chemistry, R&D Center of China Tobacco Yunnan Industrial Co. Ltd., Kunming, Yunnan, China
| | - Jiarui Jiang
- Yunnan Key Laboratory of Tobacco Chemistry, R&D Center of China Tobacco Yunnan Industrial Co. Ltd., Kunming, Yunnan, China
| | - Jiaxin Xing
- Yunnan Key Laboratory of Tobacco Chemistry, R&D Center of China Tobacco Yunnan Industrial Co. Ltd., Kunming, Yunnan, China
| | - Haiying Xiang
- Yunnan Key Laboratory of Tobacco Chemistry, R&D Center of China Tobacco Yunnan Industrial Co. Ltd., Kunming, Yunnan, China
| | - Jun Zhao
- Crop Functional Genome Research Center, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yekun Yang
- Yunnan Key Laboratory of Tobacco Chemistry, R&D Center of China Tobacco Yunnan Industrial Co. Ltd., Kunming, Yunnan, China
| | - Pengfei Leng
- Crop Functional Genome Research Center, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
13
|
Shemesh-Mayer E, Faigenboim A, Sherman A, Gao S, Zeng Z, Liu T, Kamenetsky-Goldstein R. Deprivation of Sexual Reproduction during Garlic Domestication and Crop Evolution. Int J Mol Sci 2023; 24:16777. [PMID: 38069099 PMCID: PMC10706073 DOI: 10.3390/ijms242316777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
Garlic, originating in the mountains of Central Asia, has undergone domestication and subsequent widespread introduction to diverse regions. Human selection for adaptation to various climates has resulted in the development of numerous garlic varieties, each characterized by specific morphological and physiological traits. However, this process has led to a loss of fertility and seed production in garlic crops. In this study, we conducted morpho-physiological and transcriptome analyses, along with whole-genome resequencing of 41 garlic accessions from different regions, in order to assess the variations in reproductive traits among garlic populations. Our findings indicate that the evolution of garlic crops was associated with mutations in genes related to vernalization and the circadian clock. The decline in sexual reproduction is not solely attributed to a few mutations in specific genes, but is correlated with extensive alterations in the genetic regulation of the annual cycle, stress adaptations, and environmental requirements. The regulation of flowering ability, stress response, and metabolism occurs at both the genetic and transcriptional levels. We conclude that the migration and evolution of garlic crops involve substantial and diverse changes across the entire genome landscape. The construction of a garlic pan-genome, encompassing genetic diversity from various garlic populations, will provide further insights for research into and the improvement of garlic crops.
Collapse
Affiliation(s)
- Einat Shemesh-Mayer
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Institute, Rishon LeZion 7505101, Israel; (E.S.-M.); (A.F.); (A.S.)
| | - Adi Faigenboim
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Institute, Rishon LeZion 7505101, Israel; (E.S.-M.); (A.F.); (A.S.)
| | - Amir Sherman
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Institute, Rishon LeZion 7505101, Israel; (E.S.-M.); (A.F.); (A.S.)
| | - Song Gao
- College of Horticulture and Landscape Architecture, Yangzhou University, Hanjiang District, Yangzhou 225012, China; (S.G.); (Z.Z.); (T.L.)
| | - Zheng Zeng
- College of Horticulture and Landscape Architecture, Yangzhou University, Hanjiang District, Yangzhou 225012, China; (S.G.); (Z.Z.); (T.L.)
| | - Touming Liu
- College of Horticulture and Landscape Architecture, Yangzhou University, Hanjiang District, Yangzhou 225012, China; (S.G.); (Z.Z.); (T.L.)
| | - Rina Kamenetsky-Goldstein
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Institute, Rishon LeZion 7505101, Israel; (E.S.-M.); (A.F.); (A.S.)
| |
Collapse
|
14
|
Jing S, Jiang P, Sun X, Yu L, Wang E, Qin J, Zhang F, Prat S, Song B. Long-distance control of potato storage organ formation by SELF PRUNING 3D and FLOWERING LOCUS T-like 1. PLANT COMMUNICATIONS 2023; 4:100547. [PMID: 36635965 DOI: 10.1016/j.xplc.2023.100547] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/23/2022] [Accepted: 01/06/2023] [Indexed: 05/11/2023]
Abstract
Plants program their meristem-associated developmental switches for timely adaptation to a changing environment. Potato (Solanum tuberosum L.) tubers differentiate from specialized belowground branches or stolons through radial expansion of their terminal ends. During this process, the stolon apex and closest axillary buds enter a dormancy state that leads to tuber eyes, which are reactivated the following spring and generate a clonally identical plant. The potato FLOWERING LOCUS T homolog SELF-PRUNING 6A (StSP6A) was previously identified as the major tuber-inducing signal that integrates day-length cues to control the storage switch. However, whether some other long-range signals also act as tuber organogenesis stimuli remains unknown. Here, we show that the florigen SELF PRUNING 3D (StSP3D) and FLOWERING LOCUS T-like 1 (StFTL1) genes are activated by short days, analogously to StSP6A. Overexpression of StSP3D or StFTL1 promotes tuber formation under non-inductive long days, and the tuber-inducing activity of these proteins is graft transmissible. Using the non-tuber-bearing wild species Solanum etuberosum, a natural SP6A null mutant, we show that leaf-expressed SP6A is dispensable for StSP3D long-range activity. StSP3D and StFTL1 mediate secondary activation of StSP6A in stolon tips, leading to amplification of this tuberigen signal. StSP3D and StFTL1 were observed to bind the same protein partners as StSP6A, suggesting that they can also form transcriptionally active complexes. Together, our findings show that additional mobile tuber-inducing signals are regulated by the photoperiodic pathway.
Collapse
Affiliation(s)
- Shenglin Jing
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, Hubei 430070, China; College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Peng Jiang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, Hubei 430070, China; College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xiaomeng Sun
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, Hubei 430070, China; College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Liu Yu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, Hubei 430070, China; College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Enshuang Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, Hubei 430070, China; College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jun Qin
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, Hubei 430070, China; College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Fei Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China; College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Salomé Prat
- Centro de Investigación en Agrigenomica (CRAG), CSIC-IRTA-UAB-UB, Cerdanyola, 08193 Barcelona, Spain
| | - Botao Song
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, Hubei 430070, China; College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| |
Collapse
|
15
|
Zhang W, Wang H, Zhang T, Fang X, Liu M, Xiao H. Geographic-genomic and geographic-phenotypic differentiation of the Aquilegia viridiflora complex. HORTICULTURE RESEARCH 2023; 10:uhad041. [PMID: 37159802 PMCID: PMC10163360 DOI: 10.1093/hr/uhad041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 03/05/2023] [Indexed: 05/11/2023]
Abstract
How species diverge into different lineages is a central issue in evolutionary biology. Despite the increasing evidence indicating that such divergences do not need geographic isolation, the correlation between lineage divergence and the adaptive ecological divergence of phenotype corresponding to distribution is still unknown. In addition, gene flow has been widely detected during and through such diverging processes. We used one widely distributed Aquilegia viridiflora complex as a model system to examine genomic differentiation and corresponding phenotypic variations along geographic gradients. Our phenotypic analyses of 20 populations from northwest to northeast China identified two phenotypic groups along the geographic cline. All examined traits are distinct from each other, although a few intermediate individuals occur in their contacting regions. We further sequenced the genomes of representative individuals of each population. However, four distinct genetic lineages were detected based on nuclear genomes. In particular, we recovered numerous genetic hybrids in the contact regions of four lineages. Gene flow is widespread and continuous between four lineages but much higher between contacting lineages than geographically isolated lineages. Gene flow and natural selection might result in inconsistency between heredity and phenotype. Moreover, many genes with fast lineage-specific mutations were identified to be involved in local adaptation. Our results suggest that both geographic isolation and local selection exerted by the environment and pollinators may together create geographic distributions of phenotypic variations as well as the underlying genomic divergences in numerous lineages.
Collapse
Affiliation(s)
- Wei Zhang
- Key Laboratory of Molecular Epigenetics of Ministry of Education, College of Life Sciences, Northeast Normal University, Changchun 130024, China
| | | | - Tengjiao Zhang
- Key Laboratory of Molecular Epigenetics of Ministry of Education, College of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Xiaoxue Fang
- Key Laboratory of Molecular Epigenetics of Ministry of Education, College of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Meiying Liu
- Key Laboratory of Molecular Epigenetics of Ministry of Education, College of Life Sciences, Northeast Normal University, Changchun 130024, China
| | | |
Collapse
|
16
|
Ta KN, Shimizu-Sato S, Agata A, Yoshida Y, Taoka KI, Tsuji H, Akagi T, Tanizawa Y, Sano R, Nosaka-Takahashi M, Suzuki T, Demura T, Toyoda A, Nakamura Y, Sato Y. A leaf-emanated signal orchestrates grain size and number in response to maternal resources. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023. [PMID: 36994645 DOI: 10.1111/tpj.16219] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 03/25/2023] [Indexed: 05/13/2023]
Abstract
In plants, variations in seed size and number are outcomes of different reproductive strategies. Both traits are often environmentally influenced, suggesting that a mechanism exists to coordinate these phenotypes in response to available maternal resources. Yet, how maternal resources are sensed and influence seed size and number is largely unknown. Here, we report a mechanism that senses maternal resources and coordinates grain size and number in the wild rice Oryza rufipogon, a wild progenitor of Asian cultivated rice. We showed that FT-like 9 (FTL9) regulates both grain size and number and that maternal photosynthetic assimilates induce FTL9 expression in leaves to act as a long-range signal that increases grain number and reduces size. Our findings highlight a strategy that benefits wild plants to survive in a fluctuating environment. In this strategy, when maternal resources are sufficient, wild plants increase their offspring number while preventing an increase in offspring size by the action of FTL9, which helps expand their habitats. In addition, we found that a loss-of-function allele (ftl9) is prevalent among wild and cultivated populations, offering a new scenario in the history of rice domestication.
Collapse
Affiliation(s)
- Kim Nhung Ta
- National Institute of Genetics, 411-8540, Shizuoka, 1111 Yata, Mishima, Japan
- Vietnam Japan University, Vietnam National University, Hanoi, Vietnam
| | - Sae Shimizu-Sato
- National Institute of Genetics, 411-8540, Shizuoka, 1111 Yata, Mishima, Japan
| | - Ayumi Agata
- National Institute of Genetics, 411-8540, Shizuoka, 1111 Yata, Mishima, Japan
| | - Yuri Yoshida
- National Institute of Genetics, 411-8540, Shizuoka, 1111 Yata, Mishima, Japan
| | - Ken-Ichiro Taoka
- Kihara Institute for Biological Research, Yokohama City University, 244-0813, Yokohama, 641-12 Maioka, Totsuka, Japan
| | - Hiroyuki Tsuji
- Kihara Institute for Biological Research, Yokohama City University, 244-0813, Yokohama, 641-12 Maioka, Totsuka, Japan
| | - Takashi Akagi
- Graduate School of Environmental and Life Science, Okayama University, 700-8530, Okayama, Japan
| | - Yasuhiro Tanizawa
- National Institute of Genetics, 411-8540, Shizuoka, 1111 Yata, Mishima, Japan
- Department of Genetics, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 411-8540, Shizuoka, 1111 Yata, Mishima, Japan
| | - Ryosuke Sano
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 630-0192, Ikoma, Japan
| | - Misuzu Nosaka-Takahashi
- National Institute of Genetics, 411-8540, Shizuoka, 1111 Yata, Mishima, Japan
- Department of Genetics, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 411-8540, Shizuoka, 1111 Yata, Mishima, Japan
| | - Toshiya Suzuki
- National Institute of Genetics, 411-8540, Shizuoka, 1111 Yata, Mishima, Japan
- Department of Genetics, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 411-8540, Shizuoka, 1111 Yata, Mishima, Japan
| | - Taku Demura
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 630-0192, Ikoma, Japan
| | - Atsushi Toyoda
- National Institute of Genetics, 411-8540, Shizuoka, 1111 Yata, Mishima, Japan
| | - Yasukazu Nakamura
- National Institute of Genetics, 411-8540, Shizuoka, 1111 Yata, Mishima, Japan
- Department of Genetics, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 411-8540, Shizuoka, 1111 Yata, Mishima, Japan
| | - Yutaka Sato
- National Institute of Genetics, 411-8540, Shizuoka, 1111 Yata, Mishima, Japan
- Department of Genetics, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 411-8540, Shizuoka, 1111 Yata, Mishima, Japan
| |
Collapse
|
17
|
Thakur N, Nigam M, Awasthi G, Shukla A, Shah AA, Negi N, Khan SA, Casini R, Elansary HO. Synergistic soil-less medium for enhanced yield of crops: a step towards incorporating genomic tools for attaining net zero hunger. Funct Integr Genomics 2023; 23:86. [PMID: 36930418 DOI: 10.1007/s10142-023-01018-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/18/2023]
Abstract
Globally, industrial farming endangers crucial ecological mechanisms upon which food production relies, while 815 million people are undernourished and a significant number are malnourished. Zero Hunger aims to concurrently solve global ecological sustainability and food security concerns. Recent breakthroughs in molecular tools and approaches have allowed scientists to detect and comprehend the nature and structure of agro-biodiversity at the molecular and genetic levels, providing us an advantage over traditional methods of crop breeding. These bioinformatics techniques let us optimize our target plants for our soil-less medium and vice versa. Most of the soil-borne and seed-borne diseases are the outcomes of non-treated seed and growth media, which are important factors in low productivity. The farmers do not consider these issues, thereby facing problems growing healthy crops and suffering economic losses. This study is going to help the farmers increase their eco-friendly, chemical residue-free, quality yield of crops and their economic returns. The present invention discloses a synergistic soil-less medium that consists of only four ingredients mixed in optimal ratios by weight: vermicompost (70-80%), vermiculite (10-15%), coco peat (10-15%), and Rhizobium (0-1%). The medium exhibits better physical and chemical characteristics than existing conventional media. The vermiculite to coco peat ratio is reduced, while the vermicompost ratio is increased, with the goals of lowering toxicity, increasing plant and water holding capacity, avoiding drying of the media, and conserving water. The medium provides balanced nutrition and proper ventilation for seed germination and the growth of seedlings. Rhizobium is also used to treat the plastic bags and seeds. The results clearly show that the current synergistic soil-less environment is best for complete plant growth. Securing genetic advantages via sexual recombination, induced random mutations, and transgenic techniques have been essential for the development of improved agricultural varieties. The recent availability of targeted genome-editing technology provides a new path for integrating beneficial genetic modifications into the most significant agricultural species on the planet. Clustered regularly interspaced short palindromic repeats and associated protein 9 (CRISPR/Cas9) has evolved into a potent genome-editing tool for imparting genetic modifications to crop species. In addition, the integration of analytical methods like population genomics, phylogenomics, and metagenomics addresses conservation problems, while whole genome sequencing has opened up a new dimension for explaining the genome architecture and its interactions with other species. The in silico genomic and proteomic investigation was also conducted to forecast future investigations for the growth of French beans on a synergistic soil-less medium with the purpose of studying how a blend of vermicompost, vermiculite, cocopeat, and Rhizobium secrete metal ions, and other chemical compounds into the soil-less medium and affect the development of our target plant as well as several other plants. This interaction was studied using functional and conserved region analysis, phylogenetic analysis, and docking tools.
Collapse
Affiliation(s)
- Nitika Thakur
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, HP, India.
| | - Mohit Nigam
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, HP, India
| | - Garima Awasthi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, 226028, U.P, India
| | - Aryan Shukla
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, 226028, U.P, India
| | - Anis Ali Shah
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Punjab, Pakistan
| | - Nidhi Negi
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, HP, India
| | - Sher Aslam Khan
- Department of Plant Breeding and Genetics, University of Haripur, Haripur, KP, Pakistan
| | - Ryan Casini
- School of Public Health, University of California Berkeley, 2121 Berkeley Way, Berkeley, CA, 94704, USA
| | - Hosam O Elansary
- Department of Plant Production, College of Food & Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
18
|
Cai Z, Xian P, Cheng Y, Zhong Y, Yang Y, Zhou Q, Lian T, Ma Q, Nian H, Ge L. MOTHER-OF-FT-AND-TFL1 regulates the seed oil and protein content in soybean. THE NEW PHYTOLOGIST 2023. [PMID: 36740575 DOI: 10.1111/nph.18792] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Soybean is a major crop that produces valuable seed oil and protein for global consumption. Seed oil and protein are regulated by complex quantitative trait loci (QTLs) and have undergone intensive selections during the domestication of soybean. It is essential to identify the major genetic components and understand their mechanism behind seed oil and protein in soybean. We report that MOTHER-OF-FT-AND-TFL1 (GmMFT) is the gene of a classical QTL that has been reported to regulate seed oil and protein content in many studies. Mutation of MFT decreased seeds oil content and weight in both Arabidopsis and soybean, whereas increased expression of GmMFT enhanced seeds oil content and weight. Haplotype analysis showed that GmMFT has undergone selection, which resulted in the extended haplotype homozygosity in the cultivated soybean and the enriching of the oil-favorable allele in modern soybean cultivars. This work unraveled the GmMFT-mediated mechanism regulating seed oil and protein content and seed weight, and revealed a previously unknown function of MFT that provides new insights into targeted soybean improvement and breeding.
Collapse
Affiliation(s)
- Zhandong Cai
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, 510642, China
- Department of Grassland Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Peiqi Xian
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, 510642, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Yanbo Cheng
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, 510642, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Yiwang Zhong
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, 510642, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Yuan Yang
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, 510642, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Qianghua Zhou
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, 510642, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Tengxiang Lian
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, 510642, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Qibin Ma
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, 510642, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Hai Nian
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, 510642, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, Guangdong, China
| | - Liangfa Ge
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, 510642, China
- Department of Grassland Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, Guangdong, China
| |
Collapse
|
19
|
Susila H, Purwestri YA. PEBP Signaling Network in Tubers and Tuberous Root Crops. PLANTS (BASEL, SWITZERLAND) 2023; 12:264. [PMID: 36678976 PMCID: PMC9865765 DOI: 10.3390/plants12020264] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/28/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Tubers and tuberous root crops are essential carbohydrate sources and staple foods for humans, second only to cereals. The developmental phase transition, including floral initiation and underground storage organ formation, is controlled by complex signaling processes involving the integration of environmental and endogenous cues. FLOWERING LOCUS T (FT) and TERMINAL FLOWER 1/CENTRORADIALIS (TFL1/CEN), members of the phosphatidylethanolamine-binding protein (PEBP) gene family, play a central role in this developmental phase transition process. FT and FT-like proteins have a function to promote developmental phase transition, while TFL1/CEN act oppositely. The balance between FT and TFL1/CEN is critical to ensure a successful plant life cycle. Here, we present a summarized review of the role and signaling network of PEBP in floral initiation and underground storage organ formation, specifically in tubers and tuberous root crops. Lastly, we point out several questions that need to be answered in order to have a more complete understanding of the PEBP signaling network, which is crucial for the agronomical improvement of tubers and tuberous crops.
Collapse
Affiliation(s)
- Hendry Susila
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
- Research Center for Biotechnology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Yekti Asih Purwestri
- Research Center for Biotechnology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
- Department of Tropical Biology, Faculty of Biology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| |
Collapse
|
20
|
Yuan X, Quan S, Liu J, Guo C, Zhang Z, Kang C, Niu J. Evolution of the PEBP gene family in Juglandaceae and their regulation of flowering pathway under the synergistic effect of JrCO and JrNF-Y proteins. Int J Biol Macromol 2022; 223:202-212. [PMID: 36347378 DOI: 10.1016/j.ijbiomac.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/23/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
Abstract
Phosphatidyl ethanolamine-binding protein (PEBP) has a conserved PEBP domain and plays an important role in regulating the flowering time and growth of angiosperms. To understand the evolution of PEBP family genes in walnut family and the mechanism of regulating flowering in photoperiod pathway, 53 genes with PEBP domain were identified from 5 Juglandaceae plants. The PEBP gene family of Juglandaceae can be divided into four subgroups, FT-like, TFL-like, MFT-like and PEBP-like subgroups. These genes all show very high homology for motifs and gene structure in Juglandaceae. In addition, the results of gene replication and collinearity analysis showed that the evolution of PEBP genes was mainly purified and selected, and segmental repetition was the main driving force for the evolution of PEBP gene family in walnut family. We found that PEBP gene family played an important role in female flower bud differentiation, and most JrPEBP genes were highly expressed in leaf bud and female flower bud by qRT-PCR. In Arabidopsis, AtCO can not only directly bind to CORE2, but also interact with NF-Y complex to positively regulate the expression of AtFT gene. In this study, we proved that JrCO (the lineal homologue of AtCO) could not directly regulate the expression of JrFT gene, but could enhance the binding of JrNF-YB4/6 protein to the promoter of JrFT gene by forming a heteropolymer with NF-YB4/NF-YB6. We also confirmed that JrNF-YC1/3/7, JrNF-YB4/6 and JrCO can form a trimer structure similar to AtNF-YB-YC-CO of Arabidopsis, and then bind to the promoter of JrFT gene to promote the transcription of JrFT gene. In a word, through identification and analysis of PEBP gene family in Juglandaceae and study on the mechanism of photoperiod pathway regulating flowering in walnut, we have found that nuclear transcription factor NF-YB/YC plays a more important role in the trimer structure of NF-YB-YC-CO in walnut species. Our study has further perfected the flowering regulatory network of walnut species.
Collapse
Affiliation(s)
- Xing Yuan
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, Xinjiang, China; Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Shihezi 832003, Xinjiang, China
| | - Shaowen Quan
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, Xinjiang, China; Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Shihezi 832003, Xinjiang, China
| | - Jinming Liu
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, Xinjiang, China; Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Shihezi 832003, Xinjiang, China
| | - Caihua Guo
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, Xinjiang, China; Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Shihezi 832003, Xinjiang, China
| | - Zhongrong Zhang
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, Xinjiang, China; Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Shihezi 832003, Xinjiang, China
| | - Chao Kang
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, Xinjiang, China; Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Shihezi 832003, Xinjiang, China
| | - Jianxin Niu
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, Xinjiang, China; Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Shihezi 832003, Xinjiang, China.
| |
Collapse
|
21
|
Spitzer-Rimon B, Shafran-Tomer H, Gottlieb GH, Doron-Faigenboim A, Zemach H, Kamenetsky-Goldstein R, Flaishman M. Non-photoperiodic transition of female cannabis seedlings from juvenile to adult reproductive stage. PLANT REPRODUCTION 2022; 35:265-277. [PMID: 36063227 DOI: 10.1007/s00497-022-00449-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
Vegetative-to-reproductive phase transition in female cannabis seedlings occurs autonomously with the de novo development of single flowers. To ensure successful sexual reproduction, many plant species originating from seedlings undergo juvenile-to-adult transition. This phase transition precedes and enables the vegetative-to-reproductive shift in plants, upon perception of internal and/or external signals such as temperature, photoperiod, metabolite levels, and phytohormones. This study demonstrates that the juvenile seedlings of cannabis gradually shift to the adult vegetative stage, as confirmed by the formation of lobed leaves, and upregulation of the phase-transition genes. In the tested cultivar, the switch to the reproductive stage occurs with the development of a pair of single flowers in the 7th node. Histological analysis indicated that transition to the reproductive stage is accomplished by the de novo establishment of new flower meristems which are not present in a vegetative stage, or as dormant meristems at nodes 4 and 6. Moreover, there were dramatic changes in the transcriptomic profile of flowering-related genes among nodes 4, 6, and 7. Downregulation of flowering repressors and an intense increase in the transcription of phase transition-related genes occur in parallel with an increase in the transcription of flowering integrators and meristem identity genes. These results support and provide molecular evidence for previous findings that cannabis possesses an autonomous flowering mechanism and the transition to reproductive phase is controlled in this plant mainly by internal signals.
Collapse
Affiliation(s)
- Ben Spitzer-Rimon
- Institute of Plant Sciences, Agricultural Research Organization-Volcani, HaMaccabbim Road 68, 7505101, Rishon LeZion, Israel.
| | - Hadas Shafran-Tomer
- Institute of Plant Sciences, Agricultural Research Organization-Volcani, HaMaccabbim Road 68, 7505101, Rishon LeZion, Israel
| | - Gilad H Gottlieb
- Institute of Plant Sciences, Agricultural Research Organization-Volcani, HaMaccabbim Road 68, 7505101, Rishon LeZion, Israel
| | - Adi Doron-Faigenboim
- Institute of Plant Sciences, Agricultural Research Organization-Volcani, HaMaccabbim Road 68, 7505101, Rishon LeZion, Israel
| | - Hanita Zemach
- Institute of Plant Sciences, Agricultural Research Organization-Volcani, HaMaccabbim Road 68, 7505101, Rishon LeZion, Israel
| | - Rina Kamenetsky-Goldstein
- Institute of Plant Sciences, Agricultural Research Organization-Volcani, HaMaccabbim Road 68, 7505101, Rishon LeZion, Israel
| | - Moshe Flaishman
- Institute of Plant Sciences, Agricultural Research Organization-Volcani, HaMaccabbim Road 68, 7505101, Rishon LeZion, Israel
| |
Collapse
|
22
|
Shemesh-Mayer E, Faigenboim A, Ben Michael TE, Kamenetsky-Goldstein R. Integrated Genomic and Transcriptomic Elucidation of Flowering in Garlic. Int J Mol Sci 2022; 23:ijms232213876. [PMID: 36430354 PMCID: PMC9698152 DOI: 10.3390/ijms232213876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/31/2022] [Accepted: 11/04/2022] [Indexed: 11/12/2022] Open
Abstract
Commercial cultivars of garlic are sterile, and therefore efficient breeding of this crop is impossible. Recent restoration of garlic fertility has opened new options for seed production and hybridization. Transcriptome catalogs were employed as a basis for garlic genetic studies, and in 2020 the huge genome of garlic was fully sequenced. We provide conjoint genomic and transcriptome analysis of the regulatory network in flowering garlic genotypes. The genome analysis revealed phosphatidylethanolamine-binding proteins (PEBP) and LEAFY (LFY) genes that were not found at the transcriptome level. Functions of TFL-like genes were reduced and replaced by FT-like homologs, whereas homologs of MFT-like genes were not found. The discovery of three sequences of LFY-like genes in the garlic genome and confirmation of their alternative splicing suggest their role in garlic florogenesis. It is not yet clear whether AsLFY1 acts alone as the "pioneer transcription factor" or AsLFY2 also provides these functions. The presence of several orthologs of flowering genes that differ in their expression and co-expression network advocates ongoing evolution in the garlic genome and diversification of gene functions. We propose that the process of fertility deprivation in garlic cultivars is based on the loss of transcriptional functions of the specific genes.
Collapse
|
23
|
Valencia-Lozano E, Herrera-Isidrón L, Flores-López JA, Recoder-Meléndez OS, Barraza A, Cabrera-Ponce JL. Solanum tuberosum Microtuber Development under Darkness Unveiled through RNAseq Transcriptomic Analysis. Int J Mol Sci 2022; 23:ijms232213835. [PMID: 36430314 PMCID: PMC9696990 DOI: 10.3390/ijms232213835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/31/2022] [Accepted: 11/03/2022] [Indexed: 11/12/2022] Open
Abstract
Potato microtuber (MT) development through in vitro techniques are ideal propagules for producing high quality potato plants. MT formation is influenced by several factors, i.e., photoperiod, sucrose, hormones, and osmotic stress. We have previously developed a protocol of MT induction in medium with sucrose (8% w/v), gelrite (6g/L), and 2iP as cytokinin under darkness. To understand the molecular mechanisms involved, we performed a transcriptome-wide analysis. Here we show that 1715 up- and 1624 down-regulated genes were involved in this biological process. Through the protein-protein interaction (PPI) network analyses performed in the STRING database (v11.5), we found 299 genes tightly associated in 14 clusters. Two major clusters of up-regulated proteins fundamental for life growth and development were found: 29 ribosomal proteins (RPs) interacting with 6 PEBP family members and 117 cell cycle (CC) proteins. The PPI network of up-regulated transcription factors (TFs) revealed that at least six TFs-MYB43, TSF, bZIP27, bZIP43, HAT4 and WOX9-may be involved during MTs development. The PPI network of down-regulated genes revealed a cluster of 83 proteins involved in light and photosynthesis, 110 in response to hormone, 74 in hormone mediate signaling pathway and 22 related to aging.
Collapse
Affiliation(s)
- Eliana Valencia-Lozano
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Irapuato 36824, Guanajuato, Mexico
| | - Lisset Herrera-Isidrón
- Unidad Profesional Interdisciplinaria de Ingeniería Campus Guanajuato (UPIIG), Instituto Politécnico Nacional, Av. Mineral de Valenciana 200, Puerto Interior, Silao de la Victoria 36275, Guanajuato, Mexico
| | - Jorge Abraham Flores-López
- Unidad Profesional Interdisciplinaria de Ingeniería Campus Guanajuato (UPIIG), Instituto Politécnico Nacional, Av. Mineral de Valenciana 200, Puerto Interior, Silao de la Victoria 36275, Guanajuato, Mexico
| | - Osiel Salvador Recoder-Meléndez
- Unidad Profesional Interdisciplinaria de Ingeniería Campus Guanajuato (UPIIG), Instituto Politécnico Nacional, Av. Mineral de Valenciana 200, Puerto Interior, Silao de la Victoria 36275, Guanajuato, Mexico
| | - Aarón Barraza
- CONACYT-Centro de Investigaciones Biológicas del Noreste, SC. IPN 195, Playa Palo de Santa Rita Sur, La Paz 23096, Baja California Sur, Mexico
| | - José Luis Cabrera-Ponce
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Irapuato 36824, Guanajuato, Mexico
- Correspondence: ; Tel.: +52-462-6239600 (ext. 9421)
| |
Collapse
|
24
|
Quintanilha-Peixoto G, Marone MP, Raya FT, José J, Oliveira A, Fonseca PLC, Tomé LMR, Bortolini DE, Kato RB, Araújo DS, De-Paula RB, Cuesta-Astroz Y, Duarte EAA, Badotti F, de Carvalho Azevedo VA, Brenig B, Soares ACF, Carazzolle MF, Pereira GAG, Aguiar ERGR, Góes-Neto A. Phylogenomics and gene selection in Aspergillus welwitschiae: Possible implications in the pathogenicity in Agave sisalana. Genomics 2022; 114:110517. [PMID: 36306958 DOI: 10.1016/j.ygeno.2022.110517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/10/2022] [Accepted: 10/25/2022] [Indexed: 11/04/2022]
Abstract
Aspergillus welwitschiae causes bole rot disease in sisal (Agave sisalana and related species) which affects the production of natural fibers in Brazil, the main worldwide producer of sisal fibers. This fungus is a saprotroph with a broad host range. Previous research established A. welwitschiae as the only causative agent of bole rot in the field, but little is known about the evolution of this species and its strains. In this work, we performed a comparative genomics analysis of 40 Aspergillus strains. We show the conflicting molecular identity of this species, with one sisal-infecting strain sharing its last common ancestor with Aspergillus niger, having diverged only 833 thousand years ago. Furthermore, our analysis of positive selection reveals sites under selection in genes coding for siderophore transporters, Sodium‑calcium exchangers, and Phosphatidylethanolamine-binding proteins (PEBPs). Herein, we discuss the possible impacts of these gene functions on the pathogenicity in sisal.
Collapse
Affiliation(s)
| | - Marina Püpke Marone
- Department of Genetics, Evolution, Microbiology, and Immunology, University of Campinas, Campinas, São Paulo, Brazil
| | - Fábio Trigo Raya
- Department of Genetics, Evolution, Microbiology, and Immunology, University of Campinas, Campinas, São Paulo, Brazil
| | - Juliana José
- Department of Genetics, Evolution, Microbiology, and Immunology, University of Campinas, Campinas, São Paulo, Brazil
| | - Adriele Oliveira
- Department of Genetics, Evolution, Microbiology, and Immunology, University of Campinas, Campinas, São Paulo, Brazil
| | | | | | - Dener Eduardo Bortolini
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Rodrigo Bentes Kato
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Daniel S Araújo
- Program in Bioinformatics, Loyola University Chicago, Chicago, United States
| | - Ruth B De-Paula
- Department of Neurology, Baylor College of Medicine, Houston, United States
| | - Yesid Cuesta-Astroz
- Instituto Colombiano de Medicina Tropical, Universidad CES, Medellín, Colombia
| | - Elizabeth A A Duarte
- Centro Universitário Maria Milza, Cruz das Almas, Brazil; Center of Agricultural, Environmental and Biological Sciences, Universidade Federal do Recôncavo da Bahia, Cruz das Almas, Brazil
| | - Fernanda Badotti
- Department of Chemistry, Federal Center of Technological Education of Minas Gerais, Belo Horizonte, Brazil
| | | | - Bertram Brenig
- Institute of Veterinary Medicine, University of Göttingen, Göttingen, Germany
| | - Ana Cristina Fermino Soares
- Center of Agricultural, Environmental and Biological Sciences, Universidade Federal do Recôncavo da Bahia, Cruz das Almas, Brazil
| | - Marcelo Falsarella Carazzolle
- Department of Genetics, Evolution, Microbiology, and Immunology, University of Campinas, Campinas, São Paulo, Brazil
| | | | - Eric Roberto Guimarães Rocha Aguiar
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Center of Biotechnology and Genetics, Department of Biological Science, Universidade Estadual de Santa Cruz, Ilhéus, Brazil
| | - Aristóteles Góes-Neto
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
25
|
Mason GA. A bZIP transcription factor accelerates the transition to reproductive tuber growth and aging in Solanum tuberosum. PLANT PHYSIOLOGY 2022; 189:1194-1195. [PMID: 35485196 PMCID: PMC9237667 DOI: 10.1093/plphys/kiac182] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
|
26
|
Jing S, Sun X, Yu L, Wang E, Cheng Z, Liu H, Jiang P, Qin J, Begum S, Song B. Transcription factor StABI5-like 1 binding to the FLOWERING LOCUS T homologs promotes early maturity in potato. PLANT PHYSIOLOGY 2022; 189:1677-1693. [PMID: 35258599 PMCID: PMC9237700 DOI: 10.1093/plphys/kiac098] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/26/2022] [Indexed: 05/06/2023]
Abstract
Potato (Solanum tuberosum L.) maturity involves several important traits, including the onset of tuberization, flowering, leaf senescence, and the length of the plant life cycle. The timing of flowering and tuberization in potato is mediated by seasonal fluctuations in photoperiod and is thought to be separately controlled by the FLOWERING LOCUS T-like (FT-like) genes SELF-PRUNING 3D (StSP3D) and SELF-PRUNING 6A (StSP6A). However, the biological relationship between these morphological transitions that occur almost synchronously remains unknown. Here, we show that StABI5-like 1 (StABL1), a transcription factor central to abscisic acid (ABA) signaling, is a binding partner of StSP3D and StSP6A, forming an alternative florigen activation complex and alternative tuberigen activation complex in a 14-3-3-dependent manner. Overexpression of StABL1 results in the early initiation of flowering and tuberization as well as a short life cycle. Using genome-wide chromatin immunoprecipitation sequencing and RNA-sequencing, we demonstrate that AGAMOUS-like and GA 2-oxidase 1 genes are regulated by StABL1. Phytohormone profiling indicates an altered gibberellic acid (GA) metabolism and that StABL1-overexpressing plants are insensitive to the inhibitory effect of GA with respect to tuberization. Collectively, our results suggest that StABL1 functions with FT-like genes to promote flowering and tuberization and consequently life cycle length in potato, providing insight into the pleiotropic functioning of the FT gene.
Collapse
Affiliation(s)
- Shenglin Jing
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Wuhan, Hubei 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, Hubei 430070, China
- Potato Engineering and Technology Research Center of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Xiaomeng Sun
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Wuhan, Hubei 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, Hubei 430070, China
- Potato Engineering and Technology Research Center of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Liu Yu
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Wuhan, Hubei 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, Hubei 430070, China
- Potato Engineering and Technology Research Center of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Enshuang Wang
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Wuhan, Hubei 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, Hubei 430070, China
- Potato Engineering and Technology Research Center of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Zhengnan Cheng
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Wuhan, Hubei 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, Hubei 430070, China
- Potato Engineering and Technology Research Center of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Huimin Liu
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Wuhan, Hubei 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, Hubei 430070, China
- Potato Engineering and Technology Research Center of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
| | - Peng Jiang
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Wuhan, Hubei 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, Hubei 430070, China
- Potato Engineering and Technology Research Center of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Jun Qin
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Wuhan, Hubei 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, Hubei 430070, China
- Potato Engineering and Technology Research Center of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Shahnewaz Begum
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Wuhan, Hubei 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, Hubei 430070, China
- Potato Engineering and Technology Research Center of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | | |
Collapse
|
27
|
Fudge JB. Flowering time: Soybean adapts to the tropics. Curr Biol 2022; 32:R360-R362. [PMID: 35472422 DOI: 10.1016/j.cub.2022.03.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Soybean plants - the source of tofu, as well as soybean milk and oil - flower quickly under short-day photoperiods typical of low latitudes. A new study characterises how natural variation in soybean SOC1 floral-promoting genes confers adaptation to different photoperiods.
Collapse
Affiliation(s)
- Jared B Fudge
- Jared B. Fudge is Associate Scientific Editor at Current Biology.
| |
Collapse
|
28
|
Osnato M, Cota I, Nebhnani P, Cereijo U, Pelaz S. Photoperiod Control of Plant Growth: Flowering Time Genes Beyond Flowering. FRONTIERS IN PLANT SCIENCE 2022; 12:805635. [PMID: 35222453 PMCID: PMC8864088 DOI: 10.3389/fpls.2021.805635] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 12/23/2021] [Indexed: 05/02/2023]
Abstract
Fluctuations in environmental conditions greatly influence life on earth. Plants, as sessile organisms, have developed molecular mechanisms to adapt their development to changes in daylength, or photoperiod. One of the first plant features that comes to mind as affected by the duration of the day is flowering time; we all bring up a clear image of spring blossom. However, for many plants flowering happens at other times of the year, and many other developmental aspects are also affected by changes in daylength, which range from hypocotyl elongation in Arabidopsis thaliana to tuberization in potato or autumn growth cessation in trees. Strikingly, many of the processes affected by photoperiod employ similar gene networks to respond to changes in the length of light/dark cycles. In this review, we have focused on developmental processes affected by photoperiod that share similar genes and gene regulatory networks.
Collapse
Affiliation(s)
- Michela Osnato
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Barcelona, Spain
- Institute of Environmental Science and Technology of the Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ignacio Cota
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Barcelona, Spain
| | - Poonam Nebhnani
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Barcelona, Spain
| | - Unai Cereijo
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Barcelona, Spain
| | - Soraya Pelaz
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| |
Collapse
|
29
|
Tsoy O, Mushegian A. Florigen and its homologs of FT/CETS/PEBP/RKIP/YbhB family may be the enzymes of small molecule metabolism: review of the evidence. BMC PLANT BIOLOGY 2022; 22:56. [PMID: 35086479 PMCID: PMC8793217 DOI: 10.1186/s12870-022-03432-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Flowering signals are sensed in plant leaves and transmitted to the shoot apical meristems, where the formation of flowers is initiated. Searches for a diffusible hormone-like signaling entity ("florigen") went on for many decades, until a product of plant gene FT was identified as the key component of florigen in the 1990s, based on the analysis of mutants, genetic complementation evidence, and protein and RNA localization studies. Sequence homologs of FT protein are found throughout prokaryotes and eukaryotes; some eukaryotic family members appear to bind phospholipids or interact with the components of the signal transduction cascades. Most FT homologs are known to share a constellation of five charged residues, three of which, i.e., two histidines and an aspartic acid, are located at the rim of a well-defined cavity on the protein surface. RESULTS We studied molecular features of the FT homologs in prokaryotes and analyzed their genome context, to find tentative evidence connecting the bacterial FT homologs with small molecule metabolism, often involving substrates that contain sugar or ribonucleoside moieties. We argue that the unifying feature of this protein family, i.e., a set of charged residues conserved at the sequence and structural levels, is more likely to be an enzymatic active center than a catalytically inert ligand-binding site. CONCLUSIONS We propose that most of FT-related proteins are enzymes operating on small diffusible molecules. Those metabolites may constitute an overlooked essential ingredient of the florigen signal.
Collapse
Affiliation(s)
- Olga Tsoy
- Chair of Experimental Bioinformatics, TUM School of Life Sciences Weihenstephan, Technical University of Munich (TUM), 3, Maximus-von-Imhof-Forum, 85354, Freising, Germany
- Current address: Chair of Computational Systems Biology, University of Hamburg, Notkestrasse, 9, 22607, Hamburg, Germany
| | - Arcady Mushegian
- Molecular and Cellular Biology Division, National Science Foundation, 2415 Eisenhower Avenue, Alexandria, Virginia, 22314, USA.
- Clare Hall College, University of Cambridge, Cambridge, CB3 9AL, UK.
| |
Collapse
|
30
|
Lehretz GG, Sonnewald S, Sonnewald U. Assimilate highway to sink organs - Physiological consequences of SP6A overexpression in transgenic potato (Solanum tuberosum L.). JOURNAL OF PLANT PHYSIOLOGY 2021; 266:153530. [PMID: 34610522 DOI: 10.1016/j.jplph.2021.153530] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/19/2021] [Indexed: 06/13/2023]
Abstract
Leaf/stem-specific overexpression of SP6A, the FLOWERING LOCUS T homolog in potato (Solanum tuberosum), was previously shown to induce tuberization leading to higher tuber numbers and yield under ambient and abiotic stress conditions. In this study, we investigated the mechanism underlying SP6A action. Overexpression of SP6A reduced shoot growth, mainly by inhibition of stem elongation and secondary growth, and by repression of apical bud outgrowth. In contrast, root growth and lateral shoot emergence from basal nodes was promoted. Tracer experiments using the fluorescent sucrose analogue esculin revealed that stems of SP6A overexpressing plants transport assimilates more efficiently to belowground sinks, e.g. roots and tubers, compared to wild-type plants. This was accompanied by a lower level of sucrose leakage from the transport phloem into neighboring parenchyma cells and the inhibition of flower formation. We demonstrate the ability of SP6A to control assimilate allocation to belowground sinks and postulate that selection of beneficial SP6A alleles will enable potato breeding to alter plant architecture and to increase tuber yield under conditions of expected climate change.
Collapse
Affiliation(s)
- Günter G Lehretz
- Department of Biology, Division of Biochemistry, Friedrich-Alexander-University Erlangen-Nuremberg, Staudtstrasse 5, 91058, Erlangen, Germany
| | - Sophia Sonnewald
- Department of Biology, Division of Biochemistry, Friedrich-Alexander-University Erlangen-Nuremberg, Staudtstrasse 5, 91058, Erlangen, Germany
| | - Uwe Sonnewald
- Department of Biology, Division of Biochemistry, Friedrich-Alexander-University Erlangen-Nuremberg, Staudtstrasse 5, 91058, Erlangen, Germany.
| |
Collapse
|