1
|
Ferguson JN, Caproni L, Walter J, Shaw K, Arce-Cubas L, Baines A, Thein MS, Mager S, Taylor G, Cackett L, Mathan J, Vath RL, Martin L, Genty B, Pè ME, Lawson T, Dell’Acqua M, Kromdijk J. A deficient CP24 allele defines variation for dynamic nonphotochemical quenching and photosystem II efficiency in maize. THE PLANT CELL 2025; 37:koaf063. [PMID: 40132112 PMCID: PMC12018801 DOI: 10.1093/plcell/koaf063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Accepted: 02/12/2025] [Indexed: 03/27/2025]
Abstract
Maize (Zea mays L.) is a global crop species in which CO2 assimilation occurs via the C4 pathway. C4 photosynthesis is typically more efficient than C3 photosynthesis under warm and dry conditions; however, despite this inherent advantage, considerable variation remains in photosynthetic efficiency for C4 species that could be leveraged to benefit crop performance. Here, we investigate the genetic architecture of nonphotochemical quenching (NPQ) and photosystem II (PSII) efficiency using a combination of high-throughput phenotyping and quantitative trait loci (QTL) mapping in a field-grown Multi-parent Advanced Generation Inter-Cross (MAGIC) mapping population. QTL mapping was followed by the identification of putative candidate genes using a combination of genomics, transcriptomics, protein biochemistry, and targeted physiological phenotyping. We identified four genes with a putative causal role in the observed QTL effects. The highest confidence causal gene was found for a large effect QTL for photosynthetic efficiency on chromosome 10, which was underpinned by allelic variation in the expression of the minor PSII antenna protein light harvesting complex photosystem II subunit (LHCB6 or CP24), mainly driven by poor expression associated with the haplotype of the F7 founder line. The historical role of this line in breeding for early flowering time may suggest that the presence of this deficient allele could be enriched in temperate maize germplasm. These findings advance our understanding of the genetic basis of NPQ and PSII efficiency in C4 plants and highlight the potential for breeding strategies aimed at optimizing photosynthetic efficiency in maize.
Collapse
Affiliation(s)
- John N Ferguson
- Department of Plant Sciences, University of Cambridge, Cambridge, Cambridgeshire CB2 3EA, UK
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex CO4 3SQ, UK
| | - Leonardo Caproni
- Institute of Plant Sciences, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
| | - Julia Walter
- Department of Plant Sciences, University of Cambridge, Cambridge, Cambridgeshire CB2 3EA, UK
| | - Katie Shaw
- Department of Plant Sciences, University of Cambridge, Cambridge, Cambridgeshire CB2 3EA, UK
| | - Lucia Arce-Cubas
- Department of Plant Sciences, University of Cambridge, Cambridge, Cambridgeshire CB2 3EA, UK
| | - Alice Baines
- Department of Plant Sciences, University of Cambridge, Cambridge, Cambridgeshire CB2 3EA, UK
| | - Min Soe Thein
- Institute of Plant Sciences, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
| | - Svenja Mager
- Institute of Plant Sciences, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
| | - Georgia Taylor
- Department of Plant Sciences, University of Cambridge, Cambridge, Cambridgeshire CB2 3EA, UK
| | - Lee Cackett
- Department of Plant Sciences, University of Cambridge, Cambridge, Cambridgeshire CB2 3EA, UK
| | - Jyotirmaya Mathan
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex CO4 3SQ, UK
| | - Richard L Vath
- Department of Plant Sciences, University of Cambridge, Cambridge, Cambridgeshire CB2 3EA, UK
| | - Leo Martin
- Commissariat à l'Energie Atomique, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7265, Institut de Biosciences et Biotechnologies Aix-Marseille, Université Aix-Marseille, Saint-Paul-lez-Durance 13108, France
| | - Bernard Genty
- Commissariat à l'Energie Atomique, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7265, Institut de Biosciences et Biotechnologies Aix-Marseille, Université Aix-Marseille, Saint-Paul-lez-Durance 13108, France
| | - Mario Enrico Pè
- Institute of Plant Sciences, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
| | - Tracy Lawson
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex CO4 3SQ, UK
| | - Matteo Dell’Acqua
- Institute of Plant Sciences, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
| | - Johannes Kromdijk
- Department of Plant Sciences, University of Cambridge, Cambridge, Cambridgeshire CB2 3EA, UK
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
2
|
Lan S, Gong M, Yang S. Osmoregulation is a crucial factor for methyl jasmonate to enhance chilling tolerance of Jatropha curcas L. TREE PHYSIOLOGY 2025; 45:tpaf037. [PMID: 40143413 DOI: 10.1093/treephys/tpaf037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 02/19/2025] [Accepted: 03/21/2025] [Indexed: 03/28/2025]
Abstract
Methyl jasmonate (MeJA) is a vital regulator of plant growth and plays a crucial role in chilling tolerance. However, the mechanism through which MeJA enhances chilling tolerance in plants remains unclear. Therefore, this study conducted hydroponic experiments to evaluate the effects of exogenous MeJA (0-125 μmol L-1) on osmoregulation and chilling tolerance of Jatropha curcas L. seedlings under chilling (5 °C) stress. The seedlings under chilling stress were treated with MeJA and morphological changes, physiological traits, osmoprotectants (proline, betaine and trehalose) contents, activities of key enzymes involved in osmoprotectants metabolism and expression of related genes were investigated. The results showed that treatment with 75 μmol L-1 MeJA alleviated leaf wilting and growth inhibition; significantly decreased water potential, electrolyte leakage and malondialdehyde content; and enhanced tissue vitality, water content, total chlorophyll content, net photosynthetic rate, stomatal conductance, intercellular CO2 concentration and transpiration rate in J. curcas seedlings, thereby improving chilling tolerance. Under chilling stress, 4 days of MeJA treatment remarkably increased the contents of proline, betaine and trehalose in the leaves of J. curcas seedlings by activating their biosynthesis pathways and inhibiting the degradation pathway of proline. The substantial accumulation of osmoprotectants reduced the cellular water potential, maintained the cellular water balance and stabilized the cell membrane. Furthermore, 1-4 days of MeJA treatment led to increased levels of jasmonic acid and ethylene and upregulation of JcMYC2 expression in J. curcas seedlings under chilling stress. This suggested that the JA/MeJA-MYC2 signaling pathway, along with ethylene signaling, may contribute to MeJA-induced chilling tolerance in J. curcas. Our findings suggested that exogenous MeJA treatment increases the capacity for osmoregulation and chilling tolerance in J. curcas seedlings under chilling stress and that osmoregulation is a crucial component of MeJA-induced chilling tolerance.
Collapse
Affiliation(s)
- Shanshan Lan
- School of Life Sciences, Yunnan Normal University, No. 768, Juxian Street, Chenggong District, Kunming, Yunnan Province, 650500, China
- Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, No. 768, Juxian Street, Chenggong District, Kunming, Yunnan Province, 650500, China
- Quality Standards and Testing Technology Research Institute, Yunnan Academy of Agricultural Sciences, No. 2238, Beijing road, Panlong District, Kunming, Yunnan Province, 650205, China
| | - Ming Gong
- School of Life Sciences, Yunnan Normal University, No. 768, Juxian Street, Chenggong District, Kunming, Yunnan Province, 650500, China
- Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, No. 768, Juxian Street, Chenggong District, Kunming, Yunnan Province, 650500, China
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, No. 768, Juxian Street, Chenggong District, Kunming, Yunnan Province, 650500, China
- Key Laboratory of Biomass Energy and Environmental Biotechnology of Yunnan Province, Yunnan Normal University, No. 768, Juxian Street, Chenggong District, Kunming, Yunnan Province, 650500, China
| | - Shuanglong Yang
- School of Life Sciences, Yunnan Normal University, No. 768, Juxian Street, Chenggong District, Kunming, Yunnan Province, 650500, China
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, No. 768, Juxian Street, Chenggong District, Kunming, Yunnan Province, 650500, China
- Key Laboratory of Biomass Energy and Environmental Biotechnology of Yunnan Province, Yunnan Normal University, No. 768, Juxian Street, Chenggong District, Kunming, Yunnan Province, 650500, China
| |
Collapse
|
3
|
Sowiński P, Wieliczko-Manowska K, Grzybowski M, Jończyk M, Sowiński J, Sobkowiak A, Kowalec P, Rogacki J. Diverse coping modes of maize in cool environment at early growth. BMC PLANT BIOLOGY 2025; 25:191. [PMID: 39948440 PMCID: PMC11823182 DOI: 10.1186/s12870-025-06198-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 02/03/2025] [Indexed: 02/17/2025]
Abstract
BACKGROUND Maize cultivation has considerably expanded beyond its place of origin in Central America. The successful adaptation of maize to temperate climates can be achieved by selecting genotypes that demonstrate tolerance to low temperatures, especially in cold springs. In maize, cold tolerance at the early growth stages enables early sowing, a long growing season, and eventually high yields, even in temperate climates. Maize adaptation during early growth has not been thoroughly investigated; therefore, we tested the working hypothesis that several distinct and independent adaptation strategies may be involved in maize habituation to cool temperate climates during seedling establishment. RESULTS We studied the effect of mild cold stress (day/night 16/12 °C) on early growth stage followed by regrowth at optimal daily temperatures (24/21 °C). Automated plant phenotyping was performed on 30 inbred lines selected from a diverse genetic pool during preliminary studies. As a result, we generated time series based on selected morphological parameters, spectral parameters, and spectral vegetation indices. These curves were clustered and four classes of maize with clearly contrasting growth modes and changes in their physiological status were distinguished at low temperatures and during regrowth. Two classes comprised either cold-sensitive (slow growth and poor physiological status in cold) or cold-tolerant (moderately fast growth and good physiological status in cold) lines. However, two other classes showed that growth rate and physiological status at low temperature is not necessarily related, for instance one class included lines with small seedlings but good physiological status and the other grouped seedlings with rapid growth despite poor physiological status. These classes clearly exhibited different modes of cold adaptation. Moreover, a class containing cold-sensitive inbred lines may represent a distinct and novel type of cold-adaptation strategy related to the arrest of coleoptile emerge related with ability to recover rapidly under favourable conditions. CONCLUSIONS Our results support the hypothesis that maize may have several adaptation strategies to cold environments at early growth stages based on independent mechanisms. These findings suggest that maize adaptability to adverse environments is likely more complex than previously understood.
Collapse
Affiliation(s)
- Paweł Sowiński
- Department of Plant Molecular Ecophysiology, Institute of Plant Experimental Biology and Biotechnology, Faculty of Biology, University of Warsaw, Miecznikowa 1, Warsaw, 02-096, Poland.
| | - Katarzyna Wieliczko-Manowska
- Department of Plant Molecular Ecophysiology, Institute of Plant Experimental Biology and Biotechnology, Faculty of Biology, University of Warsaw, Miecznikowa 1, Warsaw, 02-096, Poland
| | - Marcin Grzybowski
- Department of Plant Molecular Ecophysiology, Institute of Plant Experimental Biology and Biotechnology, Faculty of Biology, University of Warsaw, Miecznikowa 1, Warsaw, 02-096, Poland
| | - Maciej Jończyk
- Department of Plant Molecular Ecophysiology, Institute of Plant Experimental Biology and Biotechnology, Faculty of Biology, University of Warsaw, Miecznikowa 1, Warsaw, 02-096, Poland
| | - Jakub Sowiński
- University of Economics and Human Sciences in Warsaw, Okopowa 59, Warsaw, 01-043, Poland
| | - Alicja Sobkowiak
- Department of Plant Molecular Ecophysiology, Institute of Plant Experimental Biology and Biotechnology, Faculty of Biology, University of Warsaw, Miecznikowa 1, Warsaw, 02-096, Poland
| | - Piotr Kowalec
- Department of Plant Molecular Ecophysiology, Institute of Plant Experimental Biology and Biotechnology, Faculty of Biology, University of Warsaw, Miecznikowa 1, Warsaw, 02-096, Poland
| | - Janusz Rogacki
- Plant Breeding Smolice Co. Ltd., Smolice 146, Kobylin, 63-740, Poland
| |
Collapse
|
4
|
Urzinger S, Avramova V, Frey M, Urbany C, Scheuermann D, Presterl T, Reuscher S, Ernst K, Mayer M, Marcon C, Hochholdinger F, Brajkovic S, Ordas B, Westhoff P, Ouzunova M, Schön CC. Embracing native diversity to enhance the maximum quantum efficiency of photosystem II in maize. PLANT PHYSIOLOGY 2024; 197:kiae670. [PMID: 39711175 PMCID: PMC11702984 DOI: 10.1093/plphys/kiae670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/24/2024] [Accepted: 11/20/2024] [Indexed: 12/24/2024]
Abstract
The sustainability of maize cultivation would benefit tremendously from early sowing, but is hampered by low temperatures during early development in temperate climates. We show that allelic variation within the gene encoding subunit M of the NADH-dehydrogenase-like (NDH) complex (ndhm1) in a European maize landrace affects several quantitative traits that are relevant during early development in cold climates through NDH-mediated cyclic electron transport around photosystem I, a process crucial for photosynthesis and photoprotection. Beginning with a genome-wide association study for maximum potential quantum yield of photosystem II in dark-adapted leaves (Fv/Fm), we capitalized on the large phenotypic effects of a hAT transposon insertion in ndhm1 on multiple quantitative traits (early plant height [EPH], Fv/Fm, chlorophyll content, and cold tolerance) caused by the reduced protein levels of NDHM and associated NDH components. Analysis of the ndhm1 native allelic series revealed a rare allele of ndhm1 that is associated with small albeit significant improvements of Fv/Fm, photosystem II efficiency in light-adapted leaves (ΦPSII), and EPH compared with common alleles. Our work showcases the extraction of favorable alleles from locally adapted landraces, offering an efficient strategy for broadening the genetic variation of elite germplasm by breeding or genome editing.
Collapse
Affiliation(s)
- Sebastian Urzinger
- Plant Breeding, TUM School of Life Sciences, Technical University of Munich, Freising 85354, Germany
| | - Viktoriya Avramova
- Plant Breeding, TUM School of Life Sciences, Technical University of Munich, Freising 85354, Germany
| | - Monika Frey
- Plant Breeding, TUM School of Life Sciences, Technical University of Munich, Freising 85354, Germany
| | - Claude Urbany
- Maize Breeding, KWS SAAT SE & Co. KGaA, Einbeck 37574, Germany
| | | | - Thomas Presterl
- Maize Breeding, KWS SAAT SE & Co. KGaA, Einbeck 37574, Germany
| | - Stefan Reuscher
- Maize Breeding, KWS SAAT SE & Co. KGaA, Einbeck 37574, Germany
| | - Karin Ernst
- Institute of Molecular and Developmental Biology of Plants, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Manfred Mayer
- Plant Breeding, TUM School of Life Sciences, Technical University of Munich, Freising 85354, Germany
| | - Caroline Marcon
- INRES, Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, Bonn 53113, Germany
| | - Frank Hochholdinger
- INRES, Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, Bonn 53113, Germany
| | - Sarah Brajkovic
- Proteomics and Bioanalytics, TUM School of Life Sciences, Technical University of Munich, Freising 85354, Germany
| | - Bernardo Ordas
- Misión Biológica de Galicia, Spanish National Research Council (CSIC), Pontevedra 36080, Spain
| | - Peter Westhoff
- Institute of Molecular and Developmental Biology of Plants, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Milena Ouzunova
- Maize Breeding, KWS SAAT SE & Co. KGaA, Einbeck 37574, Germany
| | - Chris-Carolin Schön
- Plant Breeding, TUM School of Life Sciences, Technical University of Munich, Freising 85354, Germany
| |
Collapse
|
5
|
He Y, Zhang Y, Li J, Ren Z, Zhang W, Zuo X, Zhao W, Xing M, You J, Chen X. Transcriptome dynamics in Artemisia annua provides new insights into cold adaptation and de-adaptation. FRONTIERS IN PLANT SCIENCE 2024; 15:1412416. [PMID: 39268001 PMCID: PMC11390472 DOI: 10.3389/fpls.2024.1412416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/25/2024] [Indexed: 09/15/2024]
Abstract
Plants adapt to cold stress through a tightly regulated process involving metabolic reprogramming and tissue remodeling to enhance tolerance within a short timeframe. However, the precise differences and interconnections among various organs during cold adaptation remain poorly understood. This study employed dynamic transcriptomic and metabolite quantitative analyses to investigate cold adaptation and subsequent de-adaptation in Artemisia annua, a species known for its robust resistance to abiotic stress. Our findings revealed distinct expression patterns in most differentially expressed genes (DEGs) encoding transcription factors and components of the calcium signal transduction pathway within the two organs under cold stress. Notably, the long-distance transport of carbon sources from source organs (leaves) to sink organs (roots) experienced disruption followed by resumption, while nitrogen transport from roots to leaves, primarily in the form of amino acids, exhibited acceleration. These contrasting transport patterns likely contribute to the observed differences in cold response between the two organs. The transcriptomic analysis further indicated that leaves exhibited increased respiration, accumulated anti-stress compounds, and initiated the ICE-CBF-COR signaling pathway earlier than roots. Differential expression of genes associated with cell wall biosynthesis suggests that leaves may undergo cell wall thickening while roots may experience thinning. Moreover, a marked difference was observed in phenylalanine metabolism between the two organs, with leaves favoring lignin production and roots favoring flavonoid synthesis. Additionally, our findings suggest that the circadian rhythm is crucial in integrating temperature fluctuations with the plant's internal rhythms during cold stress and subsequent recovery. Collectively, these results shed light on the coordinated response of different plant organs during cold adaptation, highlighting the importance of inter-organ communication for successful stress tolerance.
Collapse
Affiliation(s)
- Yunxiao He
- National and Local United Engineering Laboratory for Chinese Herbal Medicine Breeding and Cultivation, School of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Yujiao Zhang
- National and Local United Engineering Laboratory for Chinese Herbal Medicine Breeding and Cultivation, School of Life Sciences, Jilin University, Changchun, Jilin, China
- Yanbian Korean Autonomous Prefecture Academy of Agricultural Sciences, Yanbian, Jilin, China
| | - Jiangnan Li
- National and Local United Engineering Laboratory for Chinese Herbal Medicine Breeding and Cultivation, School of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Zhiyi Ren
- National and Local United Engineering Laboratory for Chinese Herbal Medicine Breeding and Cultivation, School of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Wenjing Zhang
- National and Local United Engineering Laboratory for Chinese Herbal Medicine Breeding and Cultivation, School of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Xianghua Zuo
- National and Local United Engineering Laboratory for Chinese Herbal Medicine Breeding and Cultivation, School of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Wei Zhao
- National and Local United Engineering Laboratory for Chinese Herbal Medicine Breeding and Cultivation, School of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Ming Xing
- National and Local United Engineering Laboratory for Chinese Herbal Medicine Breeding and Cultivation, School of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Jian You
- National and Local United Engineering Laboratory for Chinese Herbal Medicine Breeding and Cultivation, School of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Xia Chen
- National and Local United Engineering Laboratory for Chinese Herbal Medicine Breeding and Cultivation, School of Life Sciences, Jilin University, Changchun, Jilin, China
| |
Collapse
|
6
|
Yang Y, Li A, Liu Y, Shu J, Wang J, Guo Y, Li Q, Wang J, Zhou A, Wu C, Wu J. ZmASR1 negatively regulates drought stress tolerance in maize. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 211:108684. [PMID: 38710113 DOI: 10.1016/j.plaphy.2024.108684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/11/2024] [Accepted: 04/30/2024] [Indexed: 05/08/2024]
Abstract
Abscisic acid-, stress-, and ripening-induced (ASR) proteins in plants play a significant role in plant response to diverse abiotic stresses. However, the functions of ASR genes in maize remain unclear. In the present study, we identified a novel drought-induced ASR gene in maize (ZmASR1) and functionally characterized its role in mediating drought tolerance. The transcription of ZmASR1 was upregulated under drought stress and abscisic acid (ABA) treatment, and the ZmASR1 protein was observed to exhibit nuclear and cytoplasmic localization. Moreover, ZmASR1 knockout lines generated with the CRISPR-Cas9 system showed lower ROS accumulation, higher ABA content, and a higher degree of stomatal closure than wild-type plants, leading to higher drought tolerance. Transcriptome sequencing data indicated that the significantly differentially expressed genes in the drought treatment group were mainly enriched in ABA signal transduction, antioxidant defense, and photosynthetic pathway. Taken together, the findings suggest that ZmASR1 negatively regulates drought tolerance and represents a candidate gene for genetic manipulation of drought resistance in maize.
Collapse
Affiliation(s)
- Yun Yang
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Aiqi Li
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Yuqing Liu
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Jianguo Shu
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Jiarong Wang
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Yuxin Guo
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Quanzhi Li
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Jiahui Wang
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Ao Zhou
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Chengyun Wu
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Jiandong Wu
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, Anhui, 230036, China.
| |
Collapse
|
7
|
Lainé CMS, AbdElgawad H, Beemster GTS. Cellular dynamics in the maize leaf growth zone during recovery from chilling depends on the leaf developmental stage. PLANT CELL REPORTS 2024; 43:38. [PMID: 38200224 DOI: 10.1007/s00299-023-03116-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/16/2023] [Indexed: 01/12/2024]
Abstract
KEY MESSAGE A novel non-steady-state kinematic analysis shows differences in cell division and expansion determining a better recovery from a 3-day cold spell in emerged compared to non-emerged maize leaves. Zea mays is highly sensitive to chilling which frequently occurs during its seedling stage. Although the direct effect of chilling is well studied, the mechanisms determining the subsequent recovery are still unknown. Our goal is to determine the cellular basis of the leaf growth response to chilling and during recovery of leaves exposed before or after their emergence. We first studied the effect of a 3-day cold spell on leaf growth at the plant level. Then, we performed a kinematic analysis to analyse the dynamics of cell division and elongation during recovery of the 4th leaf after exposure to cold before or after emergence. Our results demonstrated cold more strongly reduced the final length of non-emerged than emerged leaves (- 13 vs. - 18%). This was not related to growth differences during cold, but a faster and more complete recovery of the growth of emerged leaves. This difference was due to a higher cell division rate on the 1st and a higher cell elongation rate on the 2nd day of recovery, respectively. The dynamics of cell division and expansion during recovery determines developmental stage-specific differences in cold tolerance of maize leaves.
Collapse
Affiliation(s)
- Cindy M S Lainé
- Laboratory for Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, Antwerp University, Groenenborgerlaan 171, 2020, Antwerp, Belgium.
| | - Hamada AbdElgawad
- Laboratory for Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, Antwerp University, Groenenborgerlaan 171, 2020, Antwerp, Belgium
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Gerrit T S Beemster
- Laboratory for Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, Antwerp University, Groenenborgerlaan 171, 2020, Antwerp, Belgium.
| |
Collapse
|
8
|
Soualiou S, Duan F, Li X, Zhou W. Nitrogen supply alleviates cold stress by increasing photosynthesis and nitrogen assimilation in maize seedlings. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:3142-3162. [PMID: 36847687 DOI: 10.1093/jxb/erad073] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 02/23/2023] [Indexed: 05/21/2023]
Abstract
Cold stress inhibits the early growth of maize, leading to reduced productivity. Nitrogen (N) is an essential nutrient that stimulates maize growth and productivity, but the relationship between N availability and cold tolerance is poorly characterized. Therefore, we studied the acclimation of maize under combined cold stress and N treatments. Exposure to cold stress caused a decline in growth and N assimilation, but increased abscisic acid (ABA) and carbohydrate accumulation. The application of different N concentrations from the priming stage to the recovery period resulted in the following observations: (i) high N supply alleviated cold stress-dependent growth inhibition, as shown by increased biomass, chlorophyll and Rubisco content and PSII efficiency; (ii) cold stress-induced ABA accumulation was repressed under high N, presumably due to enhanced stomatal conductance; (iii) the mitigating effects of high N on cold stress could be due to the increased activities of N assimilation enzymes and improved redox homeostasis. After cold stress, the ability of maize seedlings to recover increased under high N treatment, indicating the potential role of high N in the cold stress tolerance of maize seedlings.
Collapse
Affiliation(s)
- Soualihou Soualiou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences Beijing 100081, China
| | - Fengying Duan
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences Beijing 100081, China
| | - Xia Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences Beijing 100081, China
| | - Wenbin Zhou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences Beijing 100081, China
| |
Collapse
|
9
|
Shikha K, Madhumal Thayil V, Shahi JP, Zaidi PH, Seetharam K, Nair SK, Singh R, Tosh G, Singamsetti A, Singh S, Sinha B. Genomic-regions associated with cold stress tolerance in Asia-adapted tropical maize germplasm. Sci Rep 2023; 13:6297. [PMID: 37072497 PMCID: PMC10113201 DOI: 10.1038/s41598-023-33250-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 04/10/2023] [Indexed: 05/03/2023] Open
Abstract
Maize is gaining impetus in non-traditional and non-conventional seasons such as off-season, primarily due to higher demand and economic returns. Maize varieties directed for growing in the winter season of South Asia must have cold resilience as an important trait due to the low prevailing temperatures and frequent cold snaps observed during this season in most parts of the lowland tropics of Asia. The current study involved screening of a panel of advanced tropically adapted maize lines to cold stress during vegetative and flowering stage under field conditions. A suite of significant genomic loci (28) associated with grain yield along and agronomic traits such as flowering (15) and plant height (6) under cold stress environments. The haplotype regression revealed 6 significant haplotype blocks for grain yield under cold stress across the test environments. Haplotype blocks particularly on chromosomes 5 (bin5.07), 6 (bin6.02), and 9 (9.03) co-located to regions/bins that have been identified to contain candidate genes involved in membrane transport system that would provide essential tolerance to the plant. The regions on chromosome 1 (bin1.04), 2 (bin 2.07), 3 (bin 3.05-3.06), 5 (bin5.03), 8 (bin8.05-8.06) also harboured significant SNPs for the other agronomic traits. In addition, the study also looked at the plausibility of identifying tropically adapted maize lines from the working germplasm with cold resilience across growth stages and identified four lines that could be used as breeding starts in the tropical maize breeding pipelines.
Collapse
Affiliation(s)
- Kumari Shikha
- Department of Genetics and Plant Breeding, Banaras Hindu University (BHU), Varanasi, India
| | - Vinayan Madhumal Thayil
- International Maize and Wheat Improvement Centre (CIMMYT), ICRISAT Campus, Patancheru, Telangana, India.
| | - J P Shahi
- Department of Genetics and Plant Breeding, Banaras Hindu University (BHU), Varanasi, India
| | - P H Zaidi
- International Maize and Wheat Improvement Centre (CIMMYT), ICRISAT Campus, Patancheru, Telangana, India
| | - Kaliyamoorthy Seetharam
- International Maize and Wheat Improvement Centre (CIMMYT), ICRISAT Campus, Patancheru, Telangana, India
| | - Sudha K Nair
- International Maize and Wheat Improvement Centre (CIMMYT), ICRISAT Campus, Patancheru, Telangana, India
| | - Raju Singh
- Borlaug Institute for South Asia (BISA), Ludhiana, Punjab, India
| | - Garg Tosh
- Punjab Agricultural University (PAU), Ludhiana, India
| | - Ashok Singamsetti
- Department of Genetics and Plant Breeding, Banaras Hindu University (BHU), Varanasi, India
| | - Saurabh Singh
- Department of Genetics and Plant Breeding, Banaras Hindu University (BHU), Varanasi, India
| | - B Sinha
- Department of Genetics and Plant Breeding, Banaras Hindu University (BHU), Varanasi, India
| |
Collapse
|
10
|
Guo J, Wang Z, Wei Q, Li G, Yang H, Lu D. Response of waxy maize ( Zea mays L. var. ceratina Kulesh) leaf photosynthesis to low temperature during the grain-filling stage. FUNCTIONAL PLANT BIOLOGY : FPB 2023; 50:335-346. [PMID: 36894514 DOI: 10.1071/fp22252] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Low temperature (LT) during the grain-filling stage is an important factor that affects the source-sink relationship and leads to yield loss in maize (Zea mays L). In this study, field and pot trials were conducted to investigate the effects of LT during the grain-filling stage on leaf photosynthesis, antioxidant system, hormones, and grain yield of waxy maize cultivars Suyunuo 5 (S5) and Yunuo 7 (Y7). The results showed that LT treatment inhibited the chlorophyll biosynthesis and reduced the photosynthetic pigment levels during grain-filling stage. Ribulose-1,5-bisphosphate carboxylase and phosphoenolpyruvate carboxylase activities, photosynthetic rate, transpiration rate, and stomatal conductance decreased under LT treatment during the grain-filling stage. Furthermore, LT treatment increased the contents of malondialdehyde and reactive oxygen species, and decreased the activities of catalase, superoxide dismutase, peroxidase, and ascorbate peroxidase in the ear leaves, which accelerated the oxidative damage of leaf. The LT treatment also raised abscisic acid content and reduced indole acetic acid content in the ear leaves during grain-filling stage. The results of field and pot trials were verified by each other, but the field effect was greater than that of pot. Overall, LT treatment reduced the waxy maize dry matter accumulation after silking by affecting the physiological and biochemical processes of leaves, and ultimately decreased grain yield.
Collapse
Affiliation(s)
- Jian Guo
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology/Agricultural College, Yangzhou University, Yangzhou 225009, P. R. China; and Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, P. R. China
| | - Zitao Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology/Agricultural College, Yangzhou University, Yangzhou 225009, P. R. China
| | - Qi Wei
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology/Agricultural College, Yangzhou University, Yangzhou 225009, P. R. China
| | - Guanghao Li
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology/Agricultural College, Yangzhou University, Yangzhou 225009, P. R. China; and Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, P. R. China
| | - Huan Yang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology/Agricultural College, Yangzhou University, Yangzhou 225009, P. R. China; and Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, P. R. China
| | - Dalei Lu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology/Agricultural College, Yangzhou University, Yangzhou 225009, P. R. China; and Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, P. R. China; and Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, P. R. China
| |
Collapse
|
11
|
Integrative Proteome and Phosphoproteome Profiling of Early Cold Response in Maize Seedlings. Int J Mol Sci 2022; 23:ijms23126493. [PMID: 35742945 PMCID: PMC9224472 DOI: 10.3390/ijms23126493] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 02/03/2023] Open
Abstract
Cold limits the growth and yield of maize in temperate regions, but the molecular mechanism of cold adaptation remains largely unexplored in maize. To identify early molecular events during cold shock, maize seedlings were treated under 4 °C for 30 min and 2 h, and analyzed at both the proteome and phosphoproteome levels. Over 8500 proteins and 19,300 phosphopeptides were quantified. About 660 and 620 proteins were cold responsive at protein abundance or site-specific phosphorylation levels, but only 65 proteins were shared between them. Functional enrichment analysis of cold-responsive proteins and phosphoproteins revealed that early cold response in maize is associated with photosynthesis light reaction, spliceosome, endocytosis, and defense response, consistent with similar studies in Arabidopsis. Thirty-two photosynthesis proteins were down-regulated at protein levels, and 48 spliceosome proteins were altered at site-specific phosphorylation levels. Thirty-one kinases and 33 transcriptional factors were cold responsive at protein, phosphopeptide, or site-specific phosphorylation levels. Our results showed that maize seedlings respond to cold shock rapidly, at both the proteome and phosphoproteome levels. This study provides a comprehensive landscape at the cold-responsive proteome and phosphoproteome in maize seedlings that can be a significant resource to understand how C4 plants respond to a sudden temperature drop.
Collapse
|
12
|
Kromdijk J, McCormick AJ. Genetic variation in photosynthesis: many variants make light work. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3053-3056. [PMID: 35606158 PMCID: PMC9126730 DOI: 10.1093/jxb/erac129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Affiliation(s)
- Johannes Kromdijk
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
- Carl R Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 W Gregory drive, Urbana, IL 61801, USA
| | - Alistair J McCormick
- SynthSys & Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| |
Collapse
|