1
|
Tan SL, Vera-Vives AM, Alboresi A, Morosinotto T. Light intensity activation of alternative electron transport mechanisms in the moss Physcomitrium patens. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 224:109904. [PMID: 40288259 DOI: 10.1016/j.plaphy.2025.109904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 03/17/2025] [Accepted: 04/07/2025] [Indexed: 04/29/2025]
Abstract
Photosynthetic organisms exploit sunlight to drive an electron transport chain and obtain the chemical energy supporting their metabolism. In highly dynamic environmental conditions, excitation energy and electron transport need to be continuously modulated to prevent over-reduction and the consequent damage. An essential role in the regulation of electron transport is played by alternative electron transport mechanisms such as cyclic electron transport (CET) facilitated by PGRL1/PGR5 and NDH complex and pseudo-cyclic electron transport (PCET) mediated by the flavodiiron proteins (FLV) and the Mehler reaction. In this work mutant lines of the moss Physcomitrium patens depleted in PCET (flva KO) or CET (pgrl1/ndhm KO) were compared to wild-type plants for their ability to regulate photosynthetic electron transport in response to light fluctuations of different intensities. FLV activity enables a very fast increase in electron transport capacity but its impact is transient and becomes undetectable after 3 min from a light change. The FLV electron transport capacity is saturated at 100 μmol photons m-2 s-1 and does not increase even if exposed to stronger illumination. On the other hand, CET activation after an increase in illumination has a smaller contribution on electron transport capacity, but it provides a steady contribution for several minutes after a change in illumination intensity. Overall, these results demonstrate that light adapted plants CO2 fixation capacity needs approx. 3 min to adjust to different illumination intensities. In this interval CET and PCET enable adjusting temporary unbalances in electron transport, fully responding to 2-4 time increases in illumination. In case of larger increases, these mechanisms still contribute to protection from light damage by reducing the accumulation of electrons at PSI acceptor side. While the two mechanisms play an overlapping function, their activity shows distinctive kinetics and electron transport capacity thus they are complementary in ensuring optimal photoprotection.
Collapse
Affiliation(s)
- Shun-Ling Tan
- Department of Biology, University of Padova, Padova, Italy
| | | | | | | |
Collapse
|
2
|
Stamford JD, Hofmann TA, Lawson T. Sinusoidal LED light recipes can improve rocket edible biomass and reduce electricity costs in indoor growth environments. FRONTIERS IN PLANT SCIENCE 2024; 15:1447368. [PMID: 39464278 PMCID: PMC11503027 DOI: 10.3389/fpls.2024.1447368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/09/2024] [Indexed: 10/29/2024]
Abstract
Accumulation of edible biomass by crop plants relies on maintenance of a high photosynthetic rates across the photoperiod, with assimilation rate (A) generally responding to increasing light intensity in a hyperbolic fashion. In natural environments light fluctuates greatly over the course of the day, however in Controlled Environmental Agricultural (CEA) systems, light intensity can be supplemented or precisely controlled using LEDs to create near optimum conditions. In such indoor growth environments light is often delivered as a square wave and recommendations to horticulturalists are given in the form of Daily Light Integrals (DLI). However, this does not take into account the slow photosynthetic induction at the start of the photoperiod and the decline of A towards the end of the photoperiod, which has been demonstrated by several previous studies. Square wave light regimes therefore potentially cause suboptimal photosynthetic utilization of the applied lighting and waste electricity. Here we have adapted light recipes to gradually increase and decrease in intensity to take account of these findings. We demonstrate that, utilising a sinusoidal light regime capped at 250 μmol m-2 s-1, it is possible to increase edible biomass of rocket (by ca. 20%) compared to square wave delivered at 250 at the same DLI. Additionally, this can be achieved using less electricity (0.6%), therefore reducing energy costs and improving profitability. We suggest that capping maximum light intensity at 250 µmol m-2 s-1 improves the operating efficiency of PSII photochemistry (Fq'/Fm') also known as the photosynthetic efficiency by maintaining A later in the photoperiod. We show that a higher electron transfer rate (ETR) is maintained in these treatments over the photoperiod compared to higher light intensity caps, resulting in a greater Daily Photochemical Integral (DPI). We attribute this to less NPQ due to a greater sink capacity for the end products of electron transport, ATP and NADPH, as A is kept high for longer.
Collapse
Affiliation(s)
| | | | - Tracy Lawson
- School of Life Sciences, University of Essex, Colchester, United Kingdom
| |
Collapse
|
3
|
Fuente D, Orlando M, Bailleul B, Jullien L, Lazár D, Nedbal L. A mathematical model to simulate the dynamics of photosynthetic light reactions under harmonically oscillating light. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 217:109138. [PMID: 39481198 DOI: 10.1016/j.plaphy.2024.109138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/12/2024] [Accepted: 09/19/2024] [Indexed: 11/02/2024]
Abstract
Alternating electric current and alternating electromagnetic fields revolutionized physics and engineering and led to many technologies that shape modern life. Despite these undisputable achievements that have been reached using stimulation by harmonic oscillations over centuries, applications in biology remain rare. Photosynthesis research is uniquely suited to unleash this potential because light can be modulated as a harmonic function, here sinus. Understanding the response of photosynthetic organisms to sinusoidal light is hindered by the complexity of dynamics that such light elicits, and by the mathematical apparatus required for understanding the signals in the frequency domain which, although well-established and simple, is outside typical curricula in biology. Here, we approach these challenges by presenting a mathematical model that was designed specifically to simulate the response of photosynthetic light reactions to light which oscillates with periods that often occur in nature. The independent variables of the model are the plastoquinone pool, the photosystem I donors, lumen pH, ATP, and the chlorophyll fluorescence (ChlF) quencher that is responsible for the qE non-photochemical quenching. Dynamics of ChlF emission, rate of oxygen evolution, and non-photochemical quenching are approximated by dependent model variables. The model is used to explain the essentials of the frequency-domain approaches up to the level of presenting Bode plots of frequency-dependence of ChlF. The model simulations were found satisfactory when compared with the Bode plots of ChlF response of the green alga Chlamydomonas reinhardtii to light that was oscillating with a small amplitude and frequencies between 7.8 mHz and 64 Hz.
Collapse
Affiliation(s)
- David Fuente
- Department of Biophysics, Faculty of Science, Palacký University, Šlechtitelů 241/27, 77900, Olomouc, Czech Republic
| | - Marcelo Orlando
- Laboratory of Chloroplast Biology and Light Sensing in Microalgae, UMR7141, Institut de Biologie Physico-Chimique, Centre National de la Recherche Scientifique (CNRS), Sorbonne Université, Paris, France
| | - Benjamin Bailleul
- Laboratory of Chloroplast Biology and Light Sensing in Microalgae, UMR7141, Institut de Biologie Physico-Chimique, Centre National de la Recherche Scientifique (CNRS), Sorbonne Université, Paris, France
| | - Ludovic Jullien
- PASTEUR, Department of Chemistry, École Normale Supérieure, Université PSL, Sorbonne Université, CNRS, 24, rue Lhomond, 75005, Paris, France
| | - Dušan Lazár
- Department of Biophysics, Faculty of Science, Palacký University, Šlechtitelů 241/27, 77900, Olomouc, Czech Republic
| | - Ladislav Nedbal
- Department of Biophysics, Faculty of Science, Palacký University, Šlechtitelů 241/27, 77900, Olomouc, Czech Republic.
| |
Collapse
|
4
|
Lyu H, Lazár D. Assessing key parameters in simultaneous simulation of rapid kinetics of chlorophyll a fluorescence and trans-thylakoid electric potential difference. PHYSIOLOGIA PLANTARUM 2024; 176:e14517. [PMID: 39284786 DOI: 10.1111/ppl.14517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 09/26/2024]
Abstract
Our study attempts to address the following questions: among numerous photosynthetic modules, which parameters notably influence the rapid chlorophyll fluorescence (ChlF) rise, the so-called O-J-I-P transient, in conjunction with the P515 signal, as these two records are easily obtained and widely used in photosynthesis research, and how are these parameters ranked in terms of their importance? These questions might be difficult to answer solely through experimental assays. Therefore, we employed an established photosynthesis model. Firstly, we utilized the model to simulate the measured rapid ChlF rise and P515 kinetics simultaneously. Secondly, we employed the sensitivity analysis (SA) tool by randomly altering model parameters to observe their effects on model output variables. Thirdly, we systematically identified significant parameters for both or one of the kinetics across various scenarios. A novel aspect of our study is the application of the Morris method, a global SA tool, to simultaneously assess the significance of model parameters in shaping both or one of the kinetics. The Morris SA technique enables the quantification of how much a specific parameter affects O-J-I-P transient during particular time intervals (e.g., J, I, and P steps). This allowed us to theoretically analyze which step is more significantly influenced by the parameter. In summary, our study contributes to the field by providing a comprehensive analysis of photosynthesis kinetics and emphasizing the importance of parameter selection in modelling this process. These findings can inform future research efforts aimed at improving photosynthesis models and advancing our understanding of photosynthetic processes.
Collapse
Affiliation(s)
- Hui Lyu
- School of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun, China
| | - Dušan Lazár
- Department of Biophysics, Faculty of Science, Palacký University, Olomouc, Czech Republic
| |
Collapse
|
5
|
Stirbet A, Guo Y, Lazár D, Govindjee G. From leaf to multiscale models of photosynthesis: applications and challenges for crop improvement. PHOTOSYNTHESIS RESEARCH 2024; 161:21-49. [PMID: 38619700 DOI: 10.1007/s11120-024-01083-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 04/16/2024]
Abstract
To keep up with the growth of human population and to circumvent deleterious effects of global climate change, it is essential to enhance crop yield to achieve higher production. Here we review mathematical models of oxygenic photosynthesis that are extensively used, and discuss in depth a subset that accounts for diverse approaches providing solutions to our objective. These include models (1) to study different ways to enhance photosynthesis, such as fine-tuning antenna size, photoprotection and electron transport; (2) to bioengineer carbon metabolism; and (3) to evaluate the interactions between the process of photosynthesis and the seasonal crop dynamics, or those that have included statistical whole-genome prediction methods to quantify the impact of photosynthesis traits on the improvement of crop yield. We conclude by emphasizing that the results obtained in these studies clearly demonstrate that mathematical modelling is a key tool to examine different approaches to improve photosynthesis for better productivity, while effective multiscale crop models, especially those that also include remote sensing data, are indispensable to verify different strategies to obtain maximized crop yields.
Collapse
Affiliation(s)
| | - Ya Guo
- Key Laboratory of Advanced Process Control for Light Industry, Ministry of Education Jiangnan University, Wuxi, 214122, China
| | - Dušan Lazár
- Department of Biophysics, Faculty of Science, Palacký Univesity, Šlechtitelů 27, 78371, Olomouc, Czech Republic
| | - Govindjee Govindjee
- Department of Biochemistry, Department of Plant Biology, and the Center of Biophysics & Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
6
|
Lyu H, Zuo YS. Dynamic modulation of transthylakoid electric potential by chloroplast ATP synthases. Biochimie 2024; 221:27-37. [PMID: 38224902 DOI: 10.1016/j.biochi.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/07/2023] [Accepted: 01/12/2024] [Indexed: 01/17/2024]
Abstract
The light-induced transthylakoid membrane potential (ΔΨm) can function as a driving force to help catalyzing the formation of ATP molecules, proving a tight connection between ΔΨm and the ATP synthase. Naturally, a question can be raised on the effects of altered functioning of ATP synthases on regulating ΔΨm, which is attractive in the area of photosynthetic research. Lots of findings, when making efforts of solving this difficulty, can offer an in-depth understanding into the mechanism behind. However, the functional network on modulating ΔΨm is highly interdependent. It is difficult to comprehend the consequences of altered activity of ATP synthases on adjusting ΔΨm because parameters that have influences on ΔΨm would themselves be affected by ΔΨm. In this work, a computer model was applied to check the kinetic changes in polarization/depolarization across the thylakoid membrane (TM) regulated by the modified action of ATP synthases. The computing data revealed that under the extreme condition by numerically "switching off" the action of the ATP synthase, the complete inactivation of ATP synthase would markedly impede proton translocation at the cytb6f complex. Concurrently, the KEA3 (CLCe) porter, actively pumping protons into the stroma, further contributes to achieving a sustained low level of ΔΨm. Besides, the quantitative consequences on every particular component of ΔΨm adjusted by the modified functioning of ATP synthases were also explored. By employing the model, we bring evidence from the theoretical perspective that the ATP synthase is a key factor in forming a transmembrane proton loop thereby maintaining a propriate steady-state ΔΨm to meet variable environmental conditions.
Collapse
Affiliation(s)
- Hui Lyu
- School of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun, China.
| | - Yong-Song Zuo
- School of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun, China
| |
Collapse
|
7
|
Niu Y, Matsubara S, Nedbal L, Lazár D. Dynamics and interplay of photosynthetic regulatory processes depend on the amplitudes of oscillating light. PLANT, CELL & ENVIRONMENT 2024; 47:2240-2257. [PMID: 38482712 DOI: 10.1111/pce.14879] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 02/28/2024] [Indexed: 04/30/2024]
Abstract
Plants have evolved multiple regulatory mechanisms to cope with natural light fluctuations. The interplay between these mechanisms leads presumably to the resilience of plants in diverse light patterns. We investigated the energy-dependent nonphotochemical quenching (qE) and cyclic electron transports (CET) in light that oscillated with a 60-s period with three different amplitudes. The photosystem I (PSI) and photosystem II (PSII) function-related quantum yields and redox changes of plastocyanin and ferredoxin were measured in Arabidopsis thaliana wild types and mutants with partial defects in qE or CET. The decrease in quantum yield of qE due to the lack of either PsbS- or violaxanthin de-epoxidase was compensated by an increase in the quantum yield of the constitutive nonphotochemical quenching. The mutant lacking NAD(P)H dehydrogenase (NDH)-like-dependent CET had a transient significant PSI acceptor side limitation during the light rising phase under high amplitude of light oscillations. The mutant lacking PGR5/PGRL1-CET restricted electron flows and failed to induce effective photosynthesis control, regardless of oscillation amplitudes. This suggests that PGR5/PGRL1-CET is important for the regulation of PSI function in various amplitudes of light oscillation, while NDH-like-CET acts' as a safety valve under fluctuating light with high amplitude. The results also bespeak interplays among multiple photosynthetic regulatory mechanisms.
Collapse
Affiliation(s)
- Yuxi Niu
- Institute of Bio- and Geosciences/Plant Sciences, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, Jülich, Germany
| | - Shizue Matsubara
- Institute of Bio- and Geosciences/Plant Sciences, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, Jülich, Germany
| | - Ladislav Nedbal
- Institute of Bio- and Geosciences/Plant Sciences, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, Jülich, Germany
- Department of Biophysics, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Dušan Lazár
- Department of Biophysics, Faculty of Science, Palacký University, Olomouc, Czech Republic
| |
Collapse
|
8
|
Garab G. Revisiting the nonregulatory, constitutive nonphotochemical quenching of the absorbed light energy in oxygenic photosynthetic organisms. PHOTOSYNTHETICA 2024; 62:204-208. [PMID: 39651418 PMCID: PMC11613829 DOI: 10.32615/ps.2024.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/23/2024] [Indexed: 12/11/2024]
Abstract
The present paper aims to open discussion on the information content, physical mechanism(s), and measuring protocols to determine the partitioning of the absorbed light energy in oxygenic photosynthetic organisms. Revisiting these questions is incited by recent findings discovering that PSII, in addition to its open and closed state, assumes a light-adapted charge-separated state and that chlorophyll a fluorescence induction (ChlF), besides the photochemical activity of PSII, reflects the structural dynamics of its reaction center complex. Thus, the photochemical quantum yield of PSII cannot be determined from the conventional ChlF-based protocol. Consequently, the codependent quantity - the quantum yield of the so-called nonregulatory constitutive nonphotochemical quenching (npq) - loses its physical meaning. Processes beyond photochemistry and regulatory npq should be identified and characterized by multifaceted studies, including ChlF. Such investigations may shed light on the putative roles of dissipation and other energy-consuming events in the stress physiology of photosynthetic machinery.
Collapse
Affiliation(s)
- G Garab
- Institute of Plant Biology, HUN-REN Biological Research Centre, Temesvári körút 62, 6726 Szeged, Hungary
- Department of Physics, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00 Ostrava, Czech Republic
| |
Collapse
|
9
|
Garab G, Magyar M, Sipka G, Lambrev PH. New foundations for the physical mechanism of variable chlorophyll a fluorescence. Quantum efficiency versus the light-adapted state of photosystem II. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5458-5471. [PMID: 37410874 DOI: 10.1093/jxb/erad252] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
Photosystem II (PSII) uses solar energy to oxidize water and delivers electrons to fix CO2. Although the structure at atomic resolution and the basic photophysical and photochemical functions of PSII are well understood, many important questions remain. The activity of PSII in vitro and in vivo is routinely monitored by recording the induction kinetics of chlorophyll a fluorescence (ChlF). According to the 'mainstream' model, the rise from the minimum level (Fo) to the maximum (Fm) of ChlF of dark-adapted PSII reflects the closure of all functionally active reaction centers, and the Fv/Fm ratio is equated with the maximum photochemical quantum yield of PSII (where Fv=Fm-Fo). However, this model has never been free of controversies. Recent experimental data from a number of studies have confirmed that the first single-turnover saturating flash (STSF), which generates the closed state (PSIIC), produces F1
Collapse
Affiliation(s)
- Győző Garab
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
- Department of Physics, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Melinda Magyar
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
| | - Gábor Sipka
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
| | - Petar H Lambrev
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
| |
Collapse
|
10
|
Niu Y, Lazár D, Holzwarth AR, Kramer DM, Matsubara S, Fiorani F, Poorter H, Schrey SD, Nedbal L. Plants cope with fluctuating light by frequency-dependent nonphotochemical quenching and cyclic electron transport. THE NEW PHYTOLOGIST 2023. [PMID: 37429324 DOI: 10.1111/nph.19083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 05/16/2023] [Indexed: 07/12/2023]
Abstract
In natural environments, plants are exposed to rapidly changing light. Maintaining photosynthetic efficiency while avoiding photodamage requires equally rapid regulation of photoprotective mechanisms. We asked what the operation frequency range of regulation is in which plants can efficiently respond to varying light. Chlorophyll fluorescence, P700, plastocyanin, and ferredoxin responses of wild-types Arabidopsis thaliana were measured in oscillating light of various frequencies. We also investigated the npq1 mutant lacking violaxanthin de-epoxidase, the npq4 mutant lacking PsbS protein, and the mutants crr2-2, and pgrl1ab impaired in different pathways of the cyclic electron transport. The fastest was the PsbS-regulation responding to oscillation periods longer than 10 s. Processes involving violaxanthin de-epoxidase dampened changes in chlorophyll fluorescence in oscillation periods of 2 min or longer. Knocking out the PGR5/PGRL1 pathway strongly reduced variations of all monitored parameters, probably due to congestion in the electron transport. Incapacitating the NDH-like pathway only slightly changed the photosynthetic dynamics. Our observations are consistent with the hypothesis that nonphotochemical quenching in slow light oscillations involves violaxanthin de-epoxidase to produce, presumably, a largely stationary level of zeaxanthin. We interpret the observed dynamics of photosystem I components as being formed in slow light oscillations partially by thylakoid remodeling that modulates the redox rates.
Collapse
Affiliation(s)
- Yuxi Niu
- Institute of Bio- and Geosciences/Plant Sciences, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, D-52428, Jülich, Germany
| | - Dušan Lazár
- Department of Biophysics, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Alfred R Holzwarth
- Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1105, NL-1081 HV, Amsterdam, the Netherlands
| | - David M Kramer
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
| | - Shizue Matsubara
- Institute of Bio- and Geosciences/Plant Sciences, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, D-52428, Jülich, Germany
| | - Fabio Fiorani
- Institute of Bio- and Geosciences/Plant Sciences, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, D-52428, Jülich, Germany
| | - Hendrik Poorter
- Institute of Bio- and Geosciences/Plant Sciences, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, D-52428, Jülich, Germany
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Silvia D Schrey
- Institute of Bio- and Geosciences/Plant Sciences, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, D-52428, Jülich, Germany
| | - Ladislav Nedbal
- Institute of Bio- and Geosciences/Plant Sciences, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, D-52428, Jülich, Germany
- Department of Biophysics, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
- PASTEUR, Department of Chemistry, École Normale Supérieure, Université PSL, Sorbonne Université, CNRS, 24, rue Lhomond, 75005, Paris, France
| |
Collapse
|
11
|
Lysenko V, Guo Y, Rajput V, Chalenko E, Yadronova O, Zaruba T, Varduny T, Kirichenko E. Changes of dorsoventral asymmetry and anoxygenic photosynthesis in response of Chelidonium majus leaves to the SiO 2 nanoparticle treatment. PHOTOSYNTHETICA 2023; 61:275-284. [PMID: 39651360 PMCID: PMC11558580 DOI: 10.32615/ps.2023.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 04/06/2023] [Indexed: 12/11/2024]
Abstract
Natural SiO2 nanoparticles (SiO2-NPs) are widely distributed in the environment, and at the same time, synthetic SiO2-NP may be applied in agriculture. Evaluations of physiological responses to SiO2-NPs treatment of plants are controversial. They are often performed at adaxial leaf sides whereas NPs permeate leaf tissues through stomata located at the abaxial leaf side in the majority of bifacial plants. We measured coefficients of the functional dorsoventral asymmetry of NPs-stressed Chelidonium majus leaves, S, by values of the CO2 assimilation rate (SP N), dark respiration (SR), maximal and operating quantum yields of photosystem II (SFv/Fm, SFv'/Fm'; using PAM-fluorometry), and oxygen coefficients of photosynthesis (SΨO2; using photoacoustics). The results indicated that SP N and SΨO2 were significantly influenced by SiO2-NPs treatment, since P N and ΨO2 were declining more markedly when the light was directed to the abaxial side of leaves compared to the adaxial side. Overall, SiO2-NPs-induced stress increased 'anoxygenity' of photosynthesis.
Collapse
Affiliation(s)
- V. Lysenko
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Y. Guo
- Key Laboratory of Advanced Process Control for Light Industry, Jiangnan University, Wuxi, China
| | - V.D. Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - E. Chalenko
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - O. Yadronova
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - T. Zaruba
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - T. Varduny
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - E. Kirichenko
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| |
Collapse
|
12
|
Lyu H, Lazár D. Effect of ion fluxes on regulating the light-induced transthylakoid electric potential difference. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 194:60-69. [PMID: 36379178 DOI: 10.1016/j.plaphy.2022.10.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/11/2022] [Accepted: 10/29/2022] [Indexed: 06/16/2023]
Abstract
The light-induced transthylakoid membrane potential (ΔΨ) can not only drive the ATP synthesis through the ATP-synthase in chloroplasts but serve as an essential modifier in the acclimation of photosynthesis to fluctuating light conditions. It has been manifested that during photosynthesis, the light-induced ΔΨ is responsive to multiple factors among which the ion channels/transporters (e.g., V-K+, VCCN1, and KEA3) are key to adjust the ion distribution on the two sides of the thylakoid membrane and hence shape the kinetics of ΔΨ. However, an in-depth mechanistic understanding of ion fluxes on adjusting the transthylakoid electric potentials is still unclear. This lack of a mechanistic understanding is due to the experimental difficulty of closely observing ion fluxes in vivo and also hacking the evolution of parameters in a highly intertwined photosynthetic network. In this work, a computer model was applied to investigate the roles of ion fluxes on adjusting transthylakoid electric potentials upon a temporal cycle of a period of high illumination followed by a dark-adapted phase. The computing data revealed that, firstly, upon illumination, the dissipation of the steady-ΔΨ by ∼10 mV is contributed from the V-K+-driven K+ flux whilst ∼8 mV of the steady-ΔΨ is dissipated by the VCCN1-pumped Cl- flux, but there were no appreciable KEA3-evoked variations on ΔΨ; secondly, on transition from high light to darkness, V-K+ and KEA3 are serving as major contributors whereas VCCN1 taking a counterbalancing part in shaping a standard trace of ECS (electrochromic shift), which commonly shows a sharp fall to a minimum before returning to the baseline in darkness. Besides, the functional consequences on components of ΔΨ adjusted by every particular ion channel/transporter were also explored. By employing the model, we bring evidence that particular thylakoid-harbored proteins, namely V-K+, VCCN1, and KEA3, function by distinct mechanisms in the dynamic adjustment of electric potential, which might be mainly importnat under fluctuating light conditions.
Collapse
Affiliation(s)
- Hui Lyu
- School of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun, China.
| | - Dušan Lazár
- Department of Biophysics, Faculty of Science, Palacký University, Olomouc, Czech Republic.
| |
Collapse
|