1
|
Baca Cabrera JC, Vanderborght J, Boursiac Y, Behrend D, Gaiser T, Nguyen TH, Lobet G. Decreased root hydraulic traits in German winter wheat cultivars over 100 years of breeding. PLANT PHYSIOLOGY 2025; 198:kiaf166. [PMID: 40329876 PMCID: PMC12053364 DOI: 10.1093/plphys/kiaf166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Accepted: 04/07/2025] [Indexed: 04/25/2025]
Abstract
Wheat (Triticum aestivum L.) plays a vital role in global food security, and understanding its root traits is essential for improving water uptake under varying environmental conditions. This study investigated how over a century of breeding has influenced root morphological and hydraulic properties in 6 German winter wheat cultivars released between 1895 and 2002. Field and hydroponic experiments were used to measure root diameter, root number, branching density, and whole root system hydraulic conductance (Krs). The results showed a significant decline in root axes number and Krs with release year, while root diameter remained stable across cultivars. Additionally, dynamic functional-structural modeling using the whole-plant model CPlantBox was employed to simulate Krs development with root system growth, revealing that older cultivars consistently had higher hydraulic conductance than modern ones. The combined approach of field phenotyping and modeling provided a comprehensive view of the changes in root traits arising from breeding. These findings suggest that breeding may have unintentionally favored cultivars with smaller root systems and more conservative water uptake strategies under the high-input, high-density conditions of modern agriculture. The results of this study may inform future breeding efforts aimed at optimizing wheat root systems, helping to develop cultivars with water uptake strategies better tailored to locally changing environmental conditions.
Collapse
Affiliation(s)
- Juan C Baca Cabrera
- Institute of Bio- and Geoscience, Agrosphere (IBG-3), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Str., Jülich 52428, Germany
| | - Jan Vanderborght
- Institute of Bio- and Geoscience, Agrosphere (IBG-3), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Str., Jülich 52428, Germany
| | - Yann Boursiac
- Institute for Plant Sciences of Montpellier (IPSiM), Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier 34060, France
| | - Dominik Behrend
- Institute of Crop Science and Resources Conservation, University of Bonn, Katzenburgweg 5, Bonn 53115, Germany
| | - Thomas Gaiser
- Institute of Crop Science and Resources Conservation, University of Bonn, Katzenburgweg 5, Bonn 53115, Germany
| | - Thuy Huu Nguyen
- Institute of Crop Science and Resources Conservation, University of Bonn, Katzenburgweg 5, Bonn 53115, Germany
| | - Guillaume Lobet
- Institute of Bio- and Geoscience, Agrosphere (IBG-3), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Str., Jülich 52428, Germany
- Earth and Life Institute, UC-Louvain, Croix du sud, 1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
2
|
Baca Cabrera JC, Vanderborght J, Couvreur V, Behrend D, Gaiser T, Nguyen TH, Lobet G. Root hydraulic properties: An exploration of their variability across scales. PLANT DIRECT 2024; 8:e582. [PMID: 38590783 PMCID: PMC10999368 DOI: 10.1002/pld3.582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/26/2024] [Accepted: 03/05/2024] [Indexed: 04/10/2024]
Abstract
Root hydraulic properties are key physiological traits that determine the capacity of root systems to take up water, at a specific evaporative demand. They can strongly vary among species, cultivars or even within the same genotype, but a systematic analysis of their variation across plant functional types (PFTs) is still missing. Here, we reviewed published empirical studies on root hydraulic properties at the segment-, individual root-, or root system scale and determined its variability and the main factors contributing to it. This corresponded to a total of 241 published studies, comprising 213 species, including woody and herbaceous vegetation. We observed an extremely large range of variation (of orders of magnitude) in root hydraulic properties, but this was not caused by systematic differences among PFTs. Rather, the (combined) effect of factors such as root system age, driving force used for measurement, or stress treatments shaped the results. We found a significant decrease in root hydraulic properties under stress conditions (drought and aquaporin inhibition, p < .001) and a significant effect of the driving force used for measurement (hydrostatic or osmotic gradients, p < .001). Furthermore, whole root system conductance increased significantly with root system age across several crop species (p < .01), causing very large variation in the data (>2 orders of magnitude). Interestingly, this relationship showed an asymptotic shape, with a steep increase during the first days of growth and a flattening out at later stages of development. We confirmed this dynamic through simulations using a state-of-the-art computational model of water flow in the root system for a variety of crop species, suggesting common patterns across studies and species. These findings provide better understanding of the main causes of root hydraulic properties variations observed across empirical studies. They also open the door to better representation of hydraulic processes across multiple plant functional types and at large scales. All data collected in our analysis has been aggregated into an open access database (https://roothydraulic-properties.shinyapps.io/database/), fostering scientific exchange.
Collapse
Affiliation(s)
- Juan C Baca Cabrera
- Institute of Bio- and Geoscience, Agrosphere (IBG-3) Forschungszentrum Jülich GmbH Jülich Germany
| | - Jan Vanderborght
- Institute of Bio- and Geoscience, Agrosphere (IBG-3) Forschungszentrum Jülich GmbH Jülich Germany
| | - Valentin Couvreur
- Earth and Life Institute Université catholique de Louvain Louvain-la-Neuve Belgium
| | - Dominik Behrend
- Institute of Crop Science and Resources Conservation University of Bonn Bonn Germany
| | - Thomas Gaiser
- Institute of Crop Science and Resources Conservation University of Bonn Bonn Germany
| | - Thuy Huu Nguyen
- Institute of Crop Science and Resources Conservation University of Bonn Bonn Germany
| | - Guillaume Lobet
- Institute of Bio- and Geoscience, Agrosphere (IBG-3) Forschungszentrum Jülich GmbH Jülich Germany
| |
Collapse
|
3
|
Protto V, Bauget F, Rishmawi L, Nacry P, Maurel C. Primary, seminal and lateral roots of maize show type-specific growth and hydraulic responses to water deficit. PLANT PHYSIOLOGY 2024; 194:2564-2579. [PMID: 38217868 PMCID: PMC10980523 DOI: 10.1093/plphys/kiad675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/07/2023] [Accepted: 11/27/2023] [Indexed: 01/15/2024]
Abstract
The water uptake capacity of a root system is determined by its architecture and hydraulic properties, which together shape the root hydraulic architecture. Here, we investigated root responses to water deficit (WD) in seedlings of a maize (Zea mays) hybrid line (B73H) grown in hydroponic conditions, taking into account the primary root (PR), the seminal roots (SR), and their respective lateral roots. WD was induced by various polyethylene glycol concentrations and resulted in dose-dependent inhibitions of axial and lateral root growth, lateral root formation, and hydraulic conductivity (Lpr), with slightly distinct sensitivities to WD between PR and SR. Inhibition of Lpr by WD showed a half-time of 5 to 6 min and was fully (SR) or partially (PR) reversible within 40 min. In the two root types, WD resulted in reduced aquaporin expression and activity, as monitored by mRNA abundance of 13 plasma membrane intrinsic protein (ZmPIP) isoforms and inhibition of Lpr by sodium azide, respectively. An enhanced suberization/lignification of the epi- and exodermis was observed under WD in axial roots and in lateral roots of the PR but not in those of SR. Inverse modeling revealed a steep increase in axial conductance in root tips of PR and SR grown under WD that may be due to the decreased growth rate of axial roots in these conditions. Overall, our work reveals that these root types show quantitative differences in their anatomical, architectural, and hydraulic responses to WD, in terms of sensitivity, amplitude and reversibility. This distinct functionalization may contribute to integrative acclimation responses of whole root systems to soil WD.
Collapse
Affiliation(s)
- Virginia Protto
- Institute for Plant Sciences of Montpellier (IPSiM), Univ Montpellier, CNRS, INRAE, Institut Agro, 2 place Viala, 34060 Montpellier, France
| | - Fabrice Bauget
- Institute for Plant Sciences of Montpellier (IPSiM), Univ Montpellier, CNRS, INRAE, Institut Agro, 2 place Viala, 34060 Montpellier, France
| | - Louai Rishmawi
- Institute for Plant Sciences of Montpellier (IPSiM), Univ Montpellier, CNRS, INRAE, Institut Agro, 2 place Viala, 34060 Montpellier, France
| | - Philippe Nacry
- Institute for Plant Sciences of Montpellier (IPSiM), Univ Montpellier, CNRS, INRAE, Institut Agro, 2 place Viala, 34060 Montpellier, France
| | - Christophe Maurel
- Institute for Plant Sciences of Montpellier (IPSiM), Univ Montpellier, CNRS, INRAE, Institut Agro, 2 place Viala, 34060 Montpellier, France
| |
Collapse
|
4
|
Rishmawi L, Bauget F, Protto V, Bauland C, Nacry P, Maurel C. Natural variation of maize root hydraulic architecture underlies highly diverse water uptake capacities. PLANT PHYSIOLOGY 2023; 192:2404-2418. [PMID: 37052178 PMCID: PMC10315320 DOI: 10.1093/plphys/kiad213] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/21/2023] [Accepted: 03/16/2023] [Indexed: 06/19/2023]
Abstract
Plant water uptake is determined by the root system architecture and its hydraulic capacity, which together define the root hydraulic architecture. The current research aims at understanding the water uptake capacities of maize (Zea mays), a model organism and major crop. We explored the genetic variations within a collection of 224 maize inbred Dent lines and successively defined core genotype subsets to access multiple architectural, anatomical, and hydraulic parameters in the primary root (PR) and seminal roots (SR) of hydroponically grown seedlings. We found 9-, 3.5-, and 12.4-fold genotypic differences for root hydraulics (Lpr), PR size, and lateral root size, respectively, that shaped wide and independent variations of root structure and function. Within genotypes, PR and SR showed similarities in hydraulics and, to a lesser extent, in anatomy. They had comparable aquaporin activity profiles that, however, could not be explained by aquaporin expression levels. Genotypic variations in the size and number of late meta xylem vessels were positively correlated with Lpr. Inverse modeling further revealed dramatic genotypic differences in the xylem conductance profile. Thus, tremendous natural variation of maize root hydraulic architecture underlies a high diversity of water uptake strategies and paves the way to quantitative genetic dissection of its elementary traits.
Collapse
Affiliation(s)
- Louai Rishmawi
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, 34060 Montpellier, France
| | - Fabrice Bauget
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, 34060 Montpellier, France
| | - Virginia Protto
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, 34060 Montpellier, France
| | - Cyril Bauland
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE—Le Moulon, Gif-sur-Yvette, France
| | - Philippe Nacry
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, 34060 Montpellier, France
| | - Christophe Maurel
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, 34060 Montpellier, France
| |
Collapse
|