1
|
Panicucci G, Barreto P, Herzog M, Lichtenauer S, Schwarzländer M, Pedersen O, Weits DA. Tools to understand hypoxia responses in plant tissues. PLANT PHYSIOLOGY 2024; 197:kiae624. [PMID: 39576019 DOI: 10.1093/plphys/kiae624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 11/20/2024] [Indexed: 12/24/2024]
Abstract
Our understanding of how low oxygen (O2) conditions arise in plant tissues and how they shape specific responses has seen major advancement in recent years. Important drivers have been (1) the discovery of the molecular machinery that underpins plant O2 sensing; and (2) a growing set of dedicated tools to define experimental conditions and assess plant responses with increasing accuracy and resolution. While some of those tools, such as the Clark-type O2 electrode, were established decades ago, recent customization has set entirely new standards and enabled novel research avenues in plant hypoxia research. Other tools, such as optical hypoxia reporters and O2 biosensor systems, have been introduced more recently. Yet, their adoption into plant hypoxia research has started to generate novel insight into hypoxia physiology at the tissue and cellular levels. The aim of this update is to provide an overview of the currently available and emerging tools for O2 hypoxia measurements in plants, with an emphasis on high-resolution analyses in living plant tissues and cells. Furthermore, it offers directions for future development and deployment of tools to aid progress with the most pressing questions in plant hypoxia research.
Collapse
Affiliation(s)
- Gabriele Panicucci
- Experimental and Computational Plant Development, Institute of Environment Biology, Utrecht University, Padualaan 8, Utrecht 3584 CH, Netherlands
| | - Pedro Barreto
- Plant Energy Biology, Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, Münster 48143, Germany
| | - Max Herzog
- Department of Biology, University of Copenhagen, Universitetsparken 4, Copenhagen 2100, Denmark
| | - Sophie Lichtenauer
- Plant Energy Biology, Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, Münster 48143, Germany
| | - Markus Schwarzländer
- Plant Energy Biology, Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, Münster 48143, Germany
| | - Ole Pedersen
- Department of Biology, University of Copenhagen, Universitetsparken 4, Copenhagen 2100, Denmark
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Daan A Weits
- Experimental and Computational Plant Development, Institute of Environment Biology, Utrecht University, Padualaan 8, Utrecht 3584 CH, Netherlands
| |
Collapse
|
2
|
Yamauchi T, Sumi K, Morishita H, Nomura Y. Root anatomical plasticity contributes to the different adaptive responses of two Phragmites species to water-deficit and low-oxygen conditions. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP23231. [PMID: 38479793 DOI: 10.1071/fp23231] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 02/22/2024] [Indexed: 04/04/2024]
Abstract
The runner reed (Phragmites japonica ) is the dominant species on riverbanks, whereas the common reed (Phragmites australis ) thrives in continuously flooded areas. Here, we aimed to identify the key root anatomical traits that determine the different adaptative responses of the two Phragmites species to water-deficit and low-oxygen conditions. Growth measurements revealed that P . japonica tolerated high osmotic conditions, whereas P . australis preferred low-oxygen conditions. Root anatomical analysis revealed that the ratios of the cortex to stele area and aerenchyma (gas space) to cortex area in both species increased under low-oxygen conditions. However, a higher ratio of cortex to stele area in P . australis resulted in a higher ratio of aerenchyma to stele, which includes xylem vessels that are essential for water and nutrient uptakes. In contrast, a lower ratio of cortex to stele area in P . japonica could be advantageous for efficient water uptake under high-osmotic conditions. In addition to the ratio of root tissue areas, rigid outer apoplastic barriers composed of a suberised exodermis may contribute to the adaptation of P . japonica and P . australis to water-deficit and low-oxygen conditions, respectively. Our results suggested that root anatomical plasticity is essential for plants to adapt and respond to different soil moisture levels.
Collapse
Affiliation(s)
- Takaki Yamauchi
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi, Japan
| | - Kurumi Sumi
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
| | - Hiromitsu Morishita
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
| | | |
Collapse
|
3
|
Du Q, Song K, Wang L, Du L, Du H, Li B, Li H, Yang L, Wang Y, Liu P. Integrated Transcriptomics and Metabolomics Analysis Promotes the Understanding of Adventitious Root Formation in Eucommia ulmoides Oliver. PLANTS (BASEL, SWITZERLAND) 2024; 13:136. [PMID: 38202444 PMCID: PMC10780705 DOI: 10.3390/plants13010136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024]
Abstract
As a primary approach to nutrient propagation for many woody plants, cutting roots is essential for the breeding and production of Eucommia ulmoides Oliver. In this study, hormone level, transcriptomics, and metabolomics analyses were performed on two E. ulmoides varieties with different adventitious root (AR) formation abilities. The higher JA level on the 0th day and the lower JA level on the 18th day promoted superior AR development. Several hub genes executed crucial roles in the crosstalk regulation of JA and other hormones, including F-box protein (EU012075), SAUR-like protein (EU0125382), LOB protein (EU0124232), AP2/ERF transcription factor (EU0128499), and CYP450 protein (EU0127354). Differentially expressed genes (DEGs) and metabolites of AR formation were enriched in phenylpropanoid biosynthesis, flavonoid biosynthesis, and isoflavonoid biosynthesis pathways. The up-regulated expression of PAL, CCR, CAD, DFR, and HIDH genes on the 18th day could contribute to AR formation. The 130 cis-acting lncRNAs had potential regulatory functions on hub genes in the module that significantly correlated with JA and DEGs in three metabolism pathways. These revealed key molecules, and vital pathways provided more comprehensive insight for the AR formation mechanism of E. ulmoides and other plants.
Collapse
Affiliation(s)
- Qingxin Du
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou 450003, China; (Q.D.); (L.W.); (L.D.); (H.D.)
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Kangkang Song
- College of Plant Protection and Agricultural Big-Data Research Center, Shandong Agricultural University, Tai’an 271018, China; (K.S.); (B.L.)
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Mountain Tai Forest Ecosystem Research Station of State Forestry and Grassland Administration, College of Forestry, Shandong Agricultural University, Tai’an 271018, China
| | - Lu Wang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou 450003, China; (Q.D.); (L.W.); (L.D.); (H.D.)
| | - Lanying Du
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou 450003, China; (Q.D.); (L.W.); (L.D.); (H.D.)
| | - Hongyan Du
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou 450003, China; (Q.D.); (L.W.); (L.D.); (H.D.)
| | - Bin Li
- College of Plant Protection and Agricultural Big-Data Research Center, Shandong Agricultural University, Tai’an 271018, China; (K.S.); (B.L.)
| | - Haozhen Li
- College of Plant Protection and Agricultural Big-Data Research Center, Shandong Agricultural University, Tai’an 271018, China; (K.S.); (B.L.)
| | - Long Yang
- College of Plant Protection and Agricultural Big-Data Research Center, Shandong Agricultural University, Tai’an 271018, China; (K.S.); (B.L.)
| | - Yan Wang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou 450003, China; (Q.D.); (L.W.); (L.D.); (H.D.)
| | - Panfeng Liu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou 450003, China; (Q.D.); (L.W.); (L.D.); (H.D.)
| |
Collapse
|
4
|
Lin C, Zhang Z, Shen X, Liu D, Pedersen O. Flooding-adaptive root and shoot traits in rice. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP23226. [PMID: 38167593 DOI: 10.1071/fp23226] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024]
Abstract
Wetland plants, including rice (Oryza spp.), have developed multiple functional adaptive traits to survive soil flooding, partial submergence or even complete submergence. In waterlogged soils and under water, diffusion of O2 and CO2 is extremely slow with severe impacts on photosynthesis and respiration. As a response to shallow floods or rising floodwater, several rice varieties, including deepwater rice, elongate their stems to keep their leaves above the water surface so that photosynthesis can occur unhindered during partial submergence. In stark contrast, some other varieties hardly elongate even if they become completely submerged. Instead, their metabolism is reduced to an absolute minimum so that carbohydrates are conserved enabling fast regrowth once the floodwater recedes. This review focuses on the fascinating functional adaptive traits conferring tolerance to soil flooding, partial or complete submergence. We provide a general analysis of these traits focusing on molecular, anatomical and morphological, physiological and ecological levels. Some of these key traits have already been introgressed into modern high-yielding genotypes improving flood tolerance of several cultivars used by millions of farmers in Asia. However, with the ongoing changes in climate, we propose that even more emphasis should be placed on improving flood tolerance of rice by breeding for rice that can tolerate longer periods of complete submergence or stagnant flooding. Such tolerance could be achieved via additional tissues; i.e. aquatic adventitious roots relevant during partial submergence, and leaves with higher underwater photosynthesis caused by a longer gas film retention time.
Collapse
Affiliation(s)
- Chen Lin
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China; and Plant Developmental Biology and Plant Physiology, University of Kiel, Am Botanischen Garten 5, Kiel 24118, Germany
| | - Zhao Zhang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Xuwen Shen
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Dan Liu
- Plant Developmental Biology and Plant Physiology, University of Kiel, Am Botanischen Garten 5, Kiel 24118, Germany; and Freshwater Biological Laboratory, Department of Biology, University of Copenhagen, Universitetsparken 4, Copenhagen 2100, Denmark
| | - Ole Pedersen
- Freshwater Biological Laboratory, Department of Biology, University of Copenhagen, Universitetsparken 4, Copenhagen 2100, Denmark; and School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| |
Collapse
|
5
|
Khalil MI, Hassan MM, Samanta SC, Chowdhury AK, Hassan MZ, Ahmed NU, Somaddar U, Ghosal S, Robin AHK, Nath UK, Mostofa MG, Burritt DJ, Ha CV, Gupta A, Tran LSP, Saha G. Unraveling the genetic enigma of rice submergence tolerance: Shedding light on the role of ethylene response factor-encoding gene SUB1A-1. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108224. [PMID: 38091930 DOI: 10.1016/j.plaphy.2023.108224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 11/07/2023] [Accepted: 11/21/2023] [Indexed: 02/15/2024]
Abstract
The world's low-lying rice (Oryza sativa) cultivation areas are under threat of submergence or flash flooding due to global warming. Rice plants manifest a variety of physiological and morphological changes to cope with submergence and hypoxia, including lowering carbohydrate consumption, inhibiting shoot elongation, and forming a thicker leaf gas film during submergence. Functional studies have revealed that submergence tolerance in rice is mainly determined by an ethylene response factor (ERF) transcription factor-encoding gene, namely SUBMERGENCE 1A-1 (SUB1A-1) located in the SUB1 quantitative trait locus. The SUB1A-1-dependent submergence tolerance is manifested through hormonal signaling involving ethylene, gibberellic acid, brassinosteroid, auxin and jasmonic acid. Considerable progress has been made toward the introduction of SUB1A-1 into rice varieties through a conventional marker-assisted backcrossing approach. Here, we review the recent advances in the physiological, biochemical and molecular dynamics of rice submergence tolerance mediated by the 'quiescence strategy'. Thus, the present review aims to provide researchers with insights into the genetics of rice submergence tolerance and future perspectives for designing submergence-resilient plants for sustainable agriculture under the uncertainties of climate change.
Collapse
Affiliation(s)
- Md Ibrahim Khalil
- Department of Agronomy, Patuakhali Science and Technology University, Dumki, Patuakhali, 8602, Bangladesh; Department of Genetics and Plant Breeding, Patuakhali Science and Technology University, Dumki, Patuakhali, 8602, Bangladesh.
| | - Md Mahmudul Hassan
- Department of Genetics and Plant Breeding, Patuakhali Science and Technology University, Dumki, Patuakhali, 8602, Bangladesh.
| | - Swadesh Chandra Samanta
- Department of Agronomy, Patuakhali Science and Technology University, Dumki, Patuakhali, 8602, Bangladesh.
| | - Abul Kashem Chowdhury
- Department of Genetics and Plant Breeding, Patuakhali Science and Technology University, Dumki, Patuakhali, 8602, Bangladesh.
| | - Md Zahid Hassan
- Department of Agronomy, Patuakhali Science and Technology University, Dumki, Patuakhali, 8602, Bangladesh.
| | - Nasar Uddin Ahmed
- Department of Genetics and Plant Breeding, Patuakhali Science and Technology University, Dumki, Patuakhali, 8602, Bangladesh.
| | - Uzzal Somaddar
- Department of Agronomy, Patuakhali Science and Technology University, Dumki, Patuakhali, 8602, Bangladesh.
| | - Sharmistha Ghosal
- Plant Breeding Division, Bangladesh Rice Research Institute, Gazipur, 1701, Bangladesh.
| | - Arif Hasan Khan Robin
- Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh.
| | - Ujjal Kumar Nath
- Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh.
| | - Mohammad Golam Mostofa
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA.
| | - David J Burritt
- Department of Botany, University of Otago, Dunedin, 9054, New Zealand.
| | - Chien Van Ha
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, 79409, USA.
| | - Aarti Gupta
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, 79409, USA.
| | - Lam-Son Phan Tran
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, 79409, USA.
| | - Gopal Saha
- Department of Agronomy, Patuakhali Science and Technology University, Dumki, Patuakhali, 8602, Bangladesh.
| |
Collapse
|
6
|
Liu T, Kreszies T. The exodermis: A forgotten but promising apoplastic barrier. JOURNAL OF PLANT PHYSIOLOGY 2023; 290:154118. [PMID: 37871477 DOI: 10.1016/j.jplph.2023.154118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/13/2023] [Accepted: 10/15/2023] [Indexed: 10/25/2023]
Abstract
The endodermis and exodermis are widely recognized as two important barriers in plant roots that play a role in regulating the movement of water and ions. While the endodermis is present in nearly all plant roots, the exodermis, characterized by Casparian strips and suberin lamellae is absent in certain plant species. The exodermis can be classified into three types: uniform, dimorphic, and inducible exodermis. Apart from its role in water and ion transport, the exodermis acts as a protective barrier against harmful substances present in the external environment. Furthermore, the exodermis is a complex barrier influenced by various environmental factors, and its resistance to water and ions varies depending on the type of exodermis and the maturity of the root. Therefore, investigations concerning the exodermis necessitate a plant-specific approach. However, our current understanding of the exodermal physiological functions and molecular mechanisms governing its development is limited due to the absence of an exodermis in the model plant Arabidopsis. Due to that, unfortunately, the exodermis has been largely overlooked until now. In this review, we aim to summarize the current fundamental knowledge regarding the exodermis in common research used crop species and propose suggestions for future research endeavors.
Collapse
Affiliation(s)
- Tingting Liu
- Institute of Applied Plant Nutrition, University of Göttingen, Carl-Sprengel-Weg 1, 37075, Göttingen, Germany
| | - Tino Kreszies
- Plant Nutrition and Crop Physiology, University of Göttingen, Carl-Sprengel-Weg 1, 37075, Göttingen, Germany.
| |
Collapse
|
7
|
Jiménez JDLC, Pedersen O. Mitigation of Greenhouse Gas Emissions from Rice via Manipulation of Key Root Traits. RICE (NEW YORK, N.Y.) 2023; 16:24. [PMID: 37160782 PMCID: PMC10169991 DOI: 10.1186/s12284-023-00638-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/18/2023] [Indexed: 05/11/2023]
Abstract
Rice production worldwide represents a major anthropogenic source of greenhouse gas emissions. Nitrogen fertilization and irrigation practices have been fundamental to achieve optimal rice yields, but these agricultural practices together with by-products from plants and microorganisms, facilitate the production, accumulation and venting of vast amounts of CO2, CH4 and N2O. We propose that the development of elite rice varieties should target root traits enabling an effective internal O2 diffusion, via enlarged aerenchyma channels. Moreover, gas tight barriers impeding radial O2 loss in basal parts of the roots will increase O2 diffusion to the root apex where molecular O2 diffuses into the rhizosphere. These developments result in plants with roots penetrating deeper into the flooded anoxic soils, producing higher volumes of oxic conditions in the interface between roots and rhizosphere. Molecular O2 in these zones promotes CH4 oxidation into CO2 by methanotrophs and nitrification (conversion of NH4+ into NO3-), reducing greenhouse gas production and at the same time improving plant nutrition. Moreover, roots with tight barriers to radial O2 loss will have restricted diffusional entry of CH4 produced in the anoxic parts of the rhizosphere and therefore plant-mediated diffusion will be reduced. In this review, we describe how the exploitation of these key root traits in rice can potentially reduce greenhouse gas emissions from paddy fields.
Collapse
Affiliation(s)
- Juan de la Cruz Jiménez
- Department of Biology, University of Copenhagen, Universitetsparken 4, 3rd floor, Copenhagen, 2100, Denmark.
| | - Ole Pedersen
- Department of Biology, University of Copenhagen, Universitetsparken 4, 3rd floor, Copenhagen, 2100, Denmark.
- School of Agriculture and Environment, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia.
| |
Collapse
|