1
|
Korek M, Mehta D, Uhrig GR, Daszkowska-Golec A, Novak O, Buchcik W, Marzec M. Strigolactone insensitivity affects the hormonal homeostasis in barley. Sci Rep 2025; 15:9375. [PMID: 40102576 PMCID: PMC11920428 DOI: 10.1038/s41598-025-94430-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 03/13/2025] [Indexed: 03/20/2025] Open
Abstract
In response to environmental changes, plants continuously make architectural changes in order to optimize their growth and development. The regulation of plant branching, influenced by environmental conditions and affecting hormone balance and gene expression, is crucial for agronomic purposes due to its direct correlation with yield. Strigolactones (SL), the youngest class of phytohormones, function to shape the architecture of plants by inhibiting axillary outgrowth. Barley plants harboring the mutation in the HvDWARF14 (HvD14) gene, which encodes the SL-specific receptor, produce almost twice as many tillers as wild-type (WT) Sebastian plants. Here, through hormone profiling and comparison of transcriptomic and proteomic changes between 2- and 4-week-old plants of WT and hvd14 genotypes, we elucidate a regulatory mechanism that might affect the tillering of SL-insensitive plants. The analysis showed statistically significant increased cytokinin content and decreased auxin and abscisic acid content in 'bushy' hvd14 compared to WT, which aligns with the commonly known actions of these hormones regarding branching regulation. Further, transcriptomic and proteomic analysis revealed a set of differentially expressed genes (DEG) and abundant proteins (DAP), among which 11.6% and 14.6% were associated with phytohormone-related processes, respectively. Bioinformatics analyses then identified a series of potential SL-dependent transcription factors (TF), which may control the differences observed in the hvd14 transcriptome and proteome. Comparison to available Arabidopsis thaliana data implicates a sub-selection of these TF as being involved in the transduction of SL signal in both monocotyledonous and dicotyledonous plants.
Collapse
Affiliation(s)
- Magdalena Korek
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellonska 28, 40-032, Katowice, Poland.
| | - Devang Mehta
- Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive, Edmonton, AB, T6G 2E9, Canada
| | - Glen R Uhrig
- Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive, Edmonton, AB, T6G 2E9, Canada
| | - Agata Daszkowska-Golec
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellonska 28, 40-032, Katowice, Poland
| | - Ondrej Novak
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany, The Czech Academy of Sciences, Olomouc, Czech Republic
| | - Weronika Buchcik
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellonska 28, 40-032, Katowice, Poland
| | - Marek Marzec
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellonska 28, 40-032, Katowice, Poland
| |
Collapse
|
2
|
Pei W, Zhang J, Shen R, Xie H, Zhang Y, Zhang J, Lian X, Zhang H, Hou N, Wang L, Zheng X, Cheng J, Wang W, Ye X, Li J, Wang X, Feng J, Tan B. PpSPL1 and PpSPL15 inhibit peach branching by increasing strigolactone synthesis. PLANTA 2025; 261:77. [PMID: 40042656 DOI: 10.1007/s00425-025-04659-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 02/22/2025] [Indexed: 03/29/2025]
Abstract
MAIN CONCLUSION PpSPL1 and PpSPL15 inhibit peach branching by directly binding to and upregulating the expression of strigolactone (SL) synthesis gene PpLBO1. Branch number is a crucial agronomic trait that influences tree architecture, directly affecting fruit yield and quality. It remains unknown whether SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL), an important transcription factor in determining plant architecture, is involved in the peach branching process. In this study, we found that PpSPL1 and PpSPL15 exhibited significantly higher expression levels in pillar type peach 'Sahonglongzhu' (with fewer secondary branches) compared to standard-type peach 'Okubo' (with more secondary branches). PpSPL1 and PpSPL15 can directly bind to the promoter of the SL synthesis gene PpLBO1. Transient overexpression of PpSPL1 and PpSPL15 in 'Sahonglongzhu' peach axillary buds significantly increased the expression of PpLBO1 and endogenous SL content. Conversely, opposite results were obtained when the expression of PpSPL1 and PpSPL15 was transiently silenced in peach axillary buds. Gene function analysis indicated that transient overexpression of PpSPL1 and PpSPL15 in peach seedlings clearly inhibited peach branching. On the contrary, the number of branches dramatically increased when the expression of PpSPL1 and PpSPL15 were transiently silenced in peach seedlings. These results suggested that PpSPL1 and PpSPL15 could bind to and enhance the expression of PpLBO1, further inhibiting peach branching.
Collapse
Affiliation(s)
- Wan Pei
- College of Horticulture, Henan Agricultural University, 218 Pingan Road, Zhengzhou, 450046, China
| | - Jie Zhang
- College of Horticulture, Henan Agricultural University, 218 Pingan Road, Zhengzhou, 450046, China
| | - Ruixian Shen
- College of Horticulture, Henan Agricultural University, 218 Pingan Road, Zhengzhou, 450046, China
| | - Hefang Xie
- College of Horticulture, Henan Agricultural University, 218 Pingan Road, Zhengzhou, 450046, China
| | - Yajia Zhang
- College of Horticulture, Henan Agricultural University, 218 Pingan Road, Zhengzhou, 450046, China
| | - Junjie Zhang
- College of Horticulture, Henan Agricultural University, 218 Pingan Road, Zhengzhou, 450046, China
| | - Xiaodong Lian
- College of Horticulture, Henan Agricultural University, 218 Pingan Road, Zhengzhou, 450046, China
- Henan Engineering and Technology Center for Peach Germplasm Innovation and Utilization, Zhengzhou, 450046, China
- International Joint Laboratory of Henan Horticultural Crop Biology, 218 Pingan Road, Zhengzhou, 450046, China
| | - Haipeng Zhang
- College of Horticulture, Henan Agricultural University, 218 Pingan Road, Zhengzhou, 450046, China
- Henan Engineering and Technology Center for Peach Germplasm Innovation and Utilization, Zhengzhou, 450046, China
- International Joint Laboratory of Henan Horticultural Crop Biology, 218 Pingan Road, Zhengzhou, 450046, China
| | - Nan Hou
- College of Horticulture, Henan Agricultural University, 218 Pingan Road, Zhengzhou, 450046, China
- Henan Engineering and Technology Center for Peach Germplasm Innovation and Utilization, Zhengzhou, 450046, China
- International Joint Laboratory of Henan Horticultural Crop Biology, 218 Pingan Road, Zhengzhou, 450046, China
| | - Lei Wang
- College of Horticulture, Henan Agricultural University, 218 Pingan Road, Zhengzhou, 450046, China
- Henan Engineering and Technology Center for Peach Germplasm Innovation and Utilization, Zhengzhou, 450046, China
- International Joint Laboratory of Henan Horticultural Crop Biology, 218 Pingan Road, Zhengzhou, 450046, China
| | - Xianbo Zheng
- College of Horticulture, Henan Agricultural University, 218 Pingan Road, Zhengzhou, 450046, China
- Henan Engineering and Technology Center for Peach Germplasm Innovation and Utilization, Zhengzhou, 450046, China
- International Joint Laboratory of Henan Horticultural Crop Biology, 218 Pingan Road, Zhengzhou, 450046, China
| | - Jun Cheng
- College of Horticulture, Henan Agricultural University, 218 Pingan Road, Zhengzhou, 450046, China
- Henan Engineering and Technology Center for Peach Germplasm Innovation and Utilization, Zhengzhou, 450046, China
- International Joint Laboratory of Henan Horticultural Crop Biology, 218 Pingan Road, Zhengzhou, 450046, China
| | - Wei Wang
- College of Horticulture, Henan Agricultural University, 218 Pingan Road, Zhengzhou, 450046, China
- Henan Engineering and Technology Center for Peach Germplasm Innovation and Utilization, Zhengzhou, 450046, China
- International Joint Laboratory of Henan Horticultural Crop Biology, 218 Pingan Road, Zhengzhou, 450046, China
| | - Xia Ye
- College of Horticulture, Henan Agricultural University, 218 Pingan Road, Zhengzhou, 450046, China
- Henan Engineering and Technology Center for Peach Germplasm Innovation and Utilization, Zhengzhou, 450046, China
- International Joint Laboratory of Henan Horticultural Crop Biology, 218 Pingan Road, Zhengzhou, 450046, China
| | - Jidong Li
- Henan Engineering and Technology Center for Peach Germplasm Innovation and Utilization, Zhengzhou, 450046, China
- College of Forestry, Henan Agricultural University, 218 Pingan Road, Zhengzhou, 450046, China
| | - Xiaobei Wang
- College of Horticulture, Henan Agricultural University, 218 Pingan Road, Zhengzhou, 450046, China.
- Henan Engineering and Technology Center for Peach Germplasm Innovation and Utilization, Zhengzhou, 450046, China.
- International Joint Laboratory of Henan Horticultural Crop Biology, 218 Pingan Road, Zhengzhou, 450046, China.
| | - Jiancan Feng
- College of Horticulture, Henan Agricultural University, 218 Pingan Road, Zhengzhou, 450046, China.
- Henan Engineering and Technology Center for Peach Germplasm Innovation and Utilization, Zhengzhou, 450046, China.
- International Joint Laboratory of Henan Horticultural Crop Biology, 218 Pingan Road, Zhengzhou, 450046, China.
| | - Bin Tan
- College of Horticulture, Henan Agricultural University, 218 Pingan Road, Zhengzhou, 450046, China.
- Henan Engineering and Technology Center for Peach Germplasm Innovation and Utilization, Zhengzhou, 450046, China.
- International Joint Laboratory of Henan Horticultural Crop Biology, 218 Pingan Road, Zhengzhou, 450046, China.
| |
Collapse
|
3
|
Tang Y, Xu H, Yu R, Lu L, Zhao D, Meng J, Tao J. The SBP-box transcription factor PlSPL2 negatively regulates stem development in herbaceous peony. PLANT CELL REPORTS 2024; 43:275. [PMID: 39511032 DOI: 10.1007/s00299-024-03355-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 10/03/2024] [Indexed: 11/15/2024]
Abstract
KEY MESSAGE The SBP-box transcription factor PlSPL2 silencing in herbaceous peony enhanced stem strength by regulating xylem development, whereas its overexpression in tobacco resulted in weaker stem strength and undeveloped xylem. The strength of plant stems is a critical determinant of lodging resistance of plants, which significantly affects crop yield and cut-flower quality. Squamosa promoter binding (SBP) protein-like (SPL) transcription factors (TFs), participate in multiple regulatory processes, particularly in stem development. In this study, PlSPL2, an orthologous gene of Arabidopsis AtSPL2 in herbaceous peony, was isolated and found to contain a conserved SBP domain featuring two typical Zn-binding sites, as well as a nuclear localization sequence (NLS). Subsequently, transient infection of tobacco leaf epidermal cells using Agrobacterium confirmed the nuclear localization of PISPL2 protein. Additionally, gene expression analyses revealed that PlSPL2 was preferentially expressed in stems, and demonstrated a download trend in expression levels within vascular bundles during stem cell wall development. Furthermore, silencing of PlSPL2 in herbaceous peony enhanced stem strength. The silenced plants exhibited more developed xylems with wider radii and higher numbers of cell layers. Overexpression of PlSPL2 in tobacco, however, resulted in weaker stem strength, accompanied by a narrower radius of the xylem. These findings suggested that PlSPL2 was a negative regulator of herbaceous peony stem development, and its discovery and research could significantly contribute to a deeper understanding of stem growth and development mechanisms.
Collapse
Affiliation(s)
- Yuhan Tang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Huajie Xu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Renkui Yu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Lili Lu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Daqiu Zhao
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Jiasong Meng
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Jun Tao
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| |
Collapse
|
4
|
Walker CH, Bennett T. Cytokinin and reproductive shoot architecture: bigger and better? Biochem Soc Trans 2024; 52:1885-1893. [PMID: 39083016 PMCID: PMC11668285 DOI: 10.1042/bst20231565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/18/2024] [Accepted: 07/18/2024] [Indexed: 08/29/2024]
Abstract
Cytokinin (CK) is a key plant hormone, but one whose effects are often misunderstood, partly due to reliance on older data from before the molecular genetic age of plant science. In this mini-review, we examine the role of CK in controlling the reproductive shoot architecture of flowering plants. We begin with a long overdue re-examination of the role of CK in shoot branching, and discuss the relatively paucity of genetic evidence that CK does play a major role in this process. We then examine the role of CK in determining the number of inflorescences, flowers, fruit and seed that plants initiate during reproductive development, and how these are arranged in space and time. The genetic evidence for a major role of CK in controlling these processes is much clearer, and CK has profound effects in boosting the size and number of most reproductive structures. Conversely, the attenuation of CK levels during the reproductive phase likely contributes to reduced organ size seen later in flowering, and the ultimate arrest of inflorescence meristems during end-of-flowering. We finish by discussing how this information can potentially be used to improve crop yields.
Collapse
Affiliation(s)
- Catriona H. Walker
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K
| | - Tom Bennett
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K
| |
Collapse
|
5
|
Ku W, Su Y, Peng X, Wang R, Li H, Xiao L. Comparative Transcriptome Analysis Reveals Inhibitory Roles of Strigolactone in Axillary Bud Outgrowth in Ratoon Rice. PLANTS (BASEL, SWITZERLAND) 2024; 13:899. [PMID: 38592943 PMCID: PMC10975295 DOI: 10.3390/plants13060899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/04/2024] [Accepted: 03/18/2024] [Indexed: 04/11/2024]
Abstract
Axillary bud outgrowth, a key factor in ratoon rice yield formation, is regulated by several phytohormone signals. The regulatory mechanism of key genes underlying ratoon buds in response to phytohormones in ratoon rice has been less reported. In this study, GR24 (a strigolactone analogue) was used to analyze the ratooning characteristics in rice cultivar Huanghuazhan (HHZ). Results show that the elongation of the axillary buds in the first seasonal rice was significantly inhibited and the ratoon rate was reduced at most by up to 40% with GR24 treatment. Compared with the control, a significant reduction in the content of auxin and cytokinin in the second bud from the upper spike could be detected after GR24 treatment, especially 3 days after treatment. Transcriptome analysis suggested that there were at least 742 and 2877 differentially expressed genes (DEGs) within 6 h of GR24 treatment and 12 h of GR24 treatment, respectively. Further bioinformatics analysis revealed that GR24 treatment had a significant effect on the homeostasis and signal transduction of cytokinin and auxin. It is noteworthy that the gene expression levels of OsCKX1, OsCKX2, OsGH3.6, and OsGH3.8, which are involved in cytokinin or auxin metabolism, were enhanced by the 12 h GR24 treatment. Taken overall, this study showed the gene regulatory network of auxin and cytokinin homeostasis to be regulated by strigolactone in the axillary bud outgrowth of ratoon rice, which highlights the importance of these biological pathways in the regulation of axillary bud outgrowth in ratoon rice and would provide theoretical support for the molecular breeding of ratoon rice.
Collapse
Affiliation(s)
- Wenzhen Ku
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China; (W.K.); (Y.S.); (X.P.); (R.W.)
- Hunan Provincial Key Lab of Dark Tea and Jin-Hua, College of Materials and Chemical Engineering, Hunan City University, Yiyang 413000, China
| | - Yi Su
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China; (W.K.); (Y.S.); (X.P.); (R.W.)
| | - Xiaoyun Peng
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China; (W.K.); (Y.S.); (X.P.); (R.W.)
- Hunan Provincial Key Lab of Dark Tea and Jin-Hua, College of Materials and Chemical Engineering, Hunan City University, Yiyang 413000, China
| | - Ruozhong Wang
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China; (W.K.); (Y.S.); (X.P.); (R.W.)
| | - Haiou Li
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China; (W.K.); (Y.S.); (X.P.); (R.W.)
| | - Langtao Xiao
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China; (W.K.); (Y.S.); (X.P.); (R.W.)
| |
Collapse
|
6
|
Larriba E, Yaroshko O, Pérez-Pérez JM. Recent Advances in Tomato Gene Editing. Int J Mol Sci 2024; 25:2606. [PMID: 38473859 PMCID: PMC10932025 DOI: 10.3390/ijms25052606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
The use of gene-editing tools, such as zinc finger nucleases, TALEN, and CRISPR/Cas, allows for the modification of physiological, morphological, and other characteristics in a wide range of crops to mitigate the negative effects of stress caused by anthropogenic climate change or biotic stresses. Importantly, these tools have the potential to improve crop resilience and increase yields in response to challenging environmental conditions. This review provides an overview of gene-editing techniques used in plants, focusing on the cultivated tomatoes. Several dozen genes that have been successfully edited with the CRISPR/Cas system were selected for inclusion to illustrate the possibilities of this technology in improving fruit yield and quality, tolerance to pathogens, or responses to drought and soil salinity, among other factors. Examples are also given of how the domestication of wild species can be accelerated using CRISPR/Cas to generate new crops that are better adapted to the new climatic situation or suited to use in indoor agriculture.
Collapse
Affiliation(s)
- Eduardo Larriba
- Instituto de Bioingeniería, Universidad Miguel Hernández, 03202 Elche, Spain;
| | | | | |
Collapse
|
7
|
Song X, Gu X, Chen S, Qi Z, Yu J, Zhou Y, Xia X. Far-red light inhibits lateral bud growth mainly through enhancing apical dominance independently of strigolactone synthesis in tomato. PLANT, CELL & ENVIRONMENT 2024; 47:429-441. [PMID: 37916615 DOI: 10.1111/pce.14758] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/09/2023] [Accepted: 10/20/2023] [Indexed: 11/03/2023]
Abstract
The ratio of red light to far-red light (R:FR) is perceived by light receptors and consequently regulates plant architecture. Regulation of shoot branching by R:FR ratio involves plant hormones. However, the roles of strigolactone (SL), the key shoot branching hormone and the interplay of different hormones in the light regulation of shoot branching in tomato (Solanum lycopersicum) are elusive. Here, we found that defects in SL synthesis genes CAROTENOID CLEAVAGE DIOXYGENASE 7 (CCD7) and CCD8 in tomato resulted in more lateral bud growth but failed to reverse the FR inhibition of lateral bud growth, which was associated with increased auxin synthesis and decreased synthesis of cytokinin (CK) and brassinosteroid (BR). Treatment of auxin also inhibited shoot branching in ccd mutants. However, CK released the FR inhibition of lateral bud growth in ccd mutants, concomitant with the upregulation of BR synthesis genes. Furthermore, plants that overexpressed BR synthesis gene showed more lateral bud growth and the shoot branching was less sensitive to the low R:FR ratio. The results indicate that SL synthesis is dispensable for light regulation of shoot branching in tomato. Auxin mediates the response to R:FR ratio to regulate shoot branching by suppressing CK and BR synthesis.
Collapse
Affiliation(s)
- Xuewei Song
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, People's Republic of China
| | - Xiaohua Gu
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, People's Republic of China
| | - Shangyu Chen
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, People's Republic of China
| | - Zhenyu Qi
- Hainan Institute, Zhejiang University, Sanya, People's Republic of China
- Agricultural Experiment Station, Zhejiang University, Hangzhou, People's Republic of China
| | - Jingquan Yu
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, People's Republic of China
- Hainan Institute, Zhejiang University, Sanya, People's Republic of China
| | - Yanhong Zhou
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, People's Republic of China
- Hainan Institute, Zhejiang University, Sanya, People's Republic of China
| | - Xiaojian Xia
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, People's Republic of China
- Hainan Institute, Zhejiang University, Sanya, People's Republic of China
| |
Collapse
|
8
|
Özbilen A, Sezer F, Taşkin KM. Identification and expression of strigolactone biosynthesis and signaling genes and the in vitro effects of strigolactones in olive ( Olea europaea L.). PLANT DIRECT 2024; 8:e568. [PMID: 38405354 PMCID: PMC10894696 DOI: 10.1002/pld3.568] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 02/27/2024]
Abstract
Strigolactones (SLs), synthesized in plant roots, play a dual role in modulating plant growth and development, and in inducing the germination of parasitic plant seeds and arbuscular mycorrhizal fungi in the rhizosphere. As phytohormones, SLs are crucial in regulating branching and shaping plant architecture. Despite the significant impact of branching strategies on the yield performance of fruit crops, limited research has been conducted on SLs in these crops. In our study, we identified the transcript sequences of SL biosynthesis and signaling genes in olive (Olea europaea L.) using rapid amplification of cDNA ends. We predicted the corresponding protein sequences, analyzed their characteristics, and conducted molecular docking with bioinformatics tools. Furthermore, we quantified the expression levels of these genes in various tissues using quantitative real-time PCR. Our findings demonstrate the predominant expression of SL biosynthesis and signaling genes (OeD27, OeMAX3, OeMAX4, OeMAX1, OeD14, and OeMAX2) in roots and lateral buds, highlighting their importance in branching. Treatment with rac-GR24, an SL analog, enhanced the germination frequency of olive seeds in vitro compared with untreated embryos. Conversely, inhibition of SL biosynthesis with TIS108 increased lateral bud formation in a hard-to-root cultivar, underscoring the role of SLs as phytohormones in olives. These results suggest that modifying SL biosynthesis and signaling pathways could offer novel approaches for olive breeding, with potential applicability to other fruit crops.
Collapse
Affiliation(s)
- Aslıhan Özbilen
- Department of BiologyCanakkale Onsekiz Mart UniversityCanakkaleTurkey
| | - Fatih Sezer
- Department of Molecular Biology and GeneticsCanakkale Onsekiz Mart UniversityCanakkaleTurkey
| | - Kemal Melih Taşkin
- Department of Molecular Biology and GeneticsCanakkale Onsekiz Mart UniversityCanakkaleTurkey
| |
Collapse
|
9
|
Baranov D, Dolgov S, Timerbaev V. New Advances in the Study of Regulation of Tomato Flowering-Related Genes Using Biotechnological Approaches. PLANTS (BASEL, SWITZERLAND) 2024; 13:359. [PMID: 38337892 PMCID: PMC10856997 DOI: 10.3390/plants13030359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/21/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024]
Abstract
The tomato is a convenient object for studying reproductive processes, which has become a classic. Such complex processes as flowering and fruit setting require an understanding of the fundamental principles of molecular interaction, the structures of genes and proteins, the construction of signaling pathways for transcription regulation, including the synchronous actions of cis-regulatory elements (promoter and enhancer), trans-regulatory elements (transcription factors and regulatory RNAs), and transposable elements and epigenetic regulators (DNA methylation and acetylation, chromatin structure). Here, we discuss the current state of research on tomatoes (2017-2023) devoted to studying the function of genes that regulate flowering and signal regulation systems using genome-editing technologies, RNA interference gene silencing, and gene overexpression, including heterologous expression. Although the central candidate genes for these regulatory components have been identified, a complete picture of their relationship has yet to be formed. Therefore, this review summarizes the latest achievements related to studying the processes of flowering and fruit set. This work attempts to display the gene interaction scheme to better understand the events under consideration.
Collapse
Affiliation(s)
- Denis Baranov
- Laboratory of Expression Systems and Plant Genome Modification, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia; (D.B.); (S.D.)
- Laboratory of Plant Genetic Engineering, All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia
| | - Sergey Dolgov
- Laboratory of Expression Systems and Plant Genome Modification, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia; (D.B.); (S.D.)
- Laboratory of Plant Genetic Engineering, All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia
| | - Vadim Timerbaev
- Laboratory of Expression Systems and Plant Genome Modification, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia; (D.B.); (S.D.)
- Laboratory of Plant Genetic Engineering, All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia
| |
Collapse
|