1
|
Du J, Song XY, Shi XB, Tang X, Chen JB, Zhang ZH, Chen G, Zhang Z, Zhou XG, Liu Y, Zhang DY. NSs, the Silencing Suppressor of Tomato Spotted Wilt Orthotospovirus, Interferes With JA-Regulated Host Terpenoids Expression to Attract Frankliniella occidentalis. Front Microbiol 2020; 11:590451. [PMID: 33362737 PMCID: PMC7758462 DOI: 10.3389/fmicb.2020.590451] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/13/2020] [Indexed: 01/04/2023] Open
Abstract
Tomato spotted wilt orthotospovirus (TSWV) causes serious crop losses worldwide and is transmitted by Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae). NSs protein is the silencing suppressor of TSWV and plays an important role in virus infection, cycling, and transmission process. In this research, we investigated the influences of NSs protein on the interaction of TSWV, plants, and F. occidentalis with the transgenic Arabidopsis thaliana. Compared with the wild-type Col-0 plant, F. occidentalis showed an increased number and induced feeding behavior on transgenic Arabidopsis thaliana expressing exogenous NSs. Further analysis showed that NSs reduced the expression of terpenoids synthesis-related genes and the content of monoterpene volatiles in Arabidopsis. These monoterpene volatiles played a repellent role in respect to F. occidentalis. In addition, the expression level of plant immune-related genes and the content of the plant resistance hormone jasmonic acid (JA) in transgenic Arabidopsis were reduced. The silencing suppressor of TSWV NSs alters the emission of plant volatiles and reduces the JA-regulated plant defenses, resulting in enhanced attractiveness of plants to F. occidentalis and may increase the transmission probability of TSWV.
Collapse
Affiliation(s)
- Jiao Du
- College of Plant Protection, Hunan Agricultural University, Changsha, China.,Hunan Academy of Agricultural Sciences, Institute of Plant Protection, Changsha, China
| | - Xiao-Yu Song
- Hunan Academy of Agricultural Sciences, Institute of Plant Protection, Changsha, China.,High & New Technology Research Center of Henan Academy of Sciences, Zhengzhou, China
| | - Xiao-Bin Shi
- Hunan Academy of Agricultural Sciences, Institute of Plant Protection, Changsha, China
| | - Xin Tang
- Hunan Academy of Agricultural Sciences, Institute of Plant Protection, Changsha, China
| | - Jian-Bin Chen
- Hunan Academy of Agricultural Sciences, Institute of Plant Protection, Changsha, China
| | - Zhan-Hong Zhang
- Hunan Academy of Agricultural Sciences, Institute of Vegetable, Changsha, China
| | - Gong Chen
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Zhuo Zhang
- Hunan Academy of Agricultural Sciences, Institute of Plant Protection, Changsha, China
| | - Xu-Guo Zhou
- Department of Entomology, University of Kentucky, Lexington, KY, United States
| | - Yong Liu
- College of Plant Protection, Hunan Agricultural University, Changsha, China.,Hunan Academy of Agricultural Sciences, Institute of Plant Protection, Changsha, China
| | - De-Yong Zhang
- College of Plant Protection, Hunan Agricultural University, Changsha, China.,Hunan Academy of Agricultural Sciences, Institute of Plant Protection, Changsha, China
| |
Collapse
|
2
|
Bashir Z, Shafique S, Ahmad A, Shafique S, Yasin NA, Ashraf Y, Ibrahim A, Akram W, Noreen S. Tomato Plant Proteins Actively Responding to Fungal Applications and Their Role in Cell Physiology. Front Physiol 2016; 7:257. [PMID: 27445848 PMCID: PMC4927627 DOI: 10.3389/fphys.2016.00257] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 06/11/2016] [Indexed: 11/13/2022] Open
Abstract
The pattern of protein induction in tomato plants has been investigated after the applications of pathogenic and non-pathogenic fungal species. Moreover, particular roles of the most active protein against biological applications were also determined using chromatographic techniques. Alternaria alternata and Penicillium oxalicum were applied as a pathogenic and non-pathogenic fungal species, respectively. Protein profile analysis revealed that a five protein species (i.e., protein 1, 6, 10, 12, and 13) possessed completely coupled interaction with non-pathogenic inducer application (P. oxalicum). However, three protein species (i.e., 10, 12, and 14) recorded a strong positive interaction with both fungal species. Protein 14 exhibited the maximum interaction with fungal applications, and its role in plant metabolism was studied after its identification as protein Q9M1W6. It was determined that protein Q1M1W6 was involved in guaiacyl lignin biosynthesis, and its inhibition increased the coumarin contents in tomato plants. Moreover, it was also observed that the protein Q9M1W6 takes significant part in the biosynthesis of jasmonic acid and Indole acetic acid contents, which are defense and growth factors of tomato plants. The study will help investigators to design fundamental rules of plant proteins affecting cell physiology under the influence of external fungal applications.
Collapse
Affiliation(s)
- Zoobia Bashir
- Department of Physics, University of the PunjabLahore, Pakistan
| | - Sobiya Shafique
- Institute of Agricultural Sciences, University of the PunjabLahore, Pakistan
| | - Aqeel Ahmad
- Institute of Agricultural Sciences, University of the PunjabLahore, Pakistan
- Institute for Medicinal Plants, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Shazia Shafique
- Institute of Agricultural Sciences, University of the PunjabLahore, Pakistan
| | - Nasim A. Yasin
- Institute of Agricultural Sciences, University of the PunjabLahore, Pakistan
| | - Yaseen Ashraf
- Institute of Agricultural Sciences, University of the PunjabLahore, Pakistan
| | - Asma Ibrahim
- Institute of Agricultural Sciences, University of the PunjabLahore, Pakistan
| | - Waheed Akram
- Institute of Agricultural Sciences, University of the PunjabLahore, Pakistan
- Institute for Medicinal Plants, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
- Institute of Molecular Biology and Biotechnology, University of LahoreLahore, Pakistan
| | - Sibgha Noreen
- Institute of Pure and Applied Biology, Bahauddin Zakariya UniversityMultan, Pakistan
| |
Collapse
|
3
|
Bruce TJA. Interplay between insects and plants: dynamic and complex interactions that have coevolved over millions of years but act in milliseconds. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:455-65. [PMID: 25271259 DOI: 10.1093/jxb/eru391] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
In an environment with changing availability and quality of host plants, phytophagous insects are under selection pressure to find quality hosts. They need to maximize their fitness by locating suitable plants and avoiding unsuitable ones. Thus, they have evolved a finely tuned sensory system, for detection of host cues, and a nervous system, capable of integrating inputs from sensory neurons with a high level of spatio-temporal resolution. Insect responses to cues are not fixed but depend on the context in which they are perceived, the physiological state of the insect, and prior learning experiences. However, there are examples of insects making 'mistakes' and being attracted to poor quality hosts. While insects have evolved ways of finding hosts, plants have been under selection pressure to do precisely the opposite and evade detection or defend themselves when attacked. Once on the plant, insect-associated molecules may trigger or suppress defence depending on whether the plant or the insect is ahead in evolutionary terms. Plant volatile emission is influenced by defence responses induced by insect feeding or oviposition which can attract natural enemies but repel herbivores. Conversely, plant reproductive fitness is increased by attraction of pollinators. Interactions can be altered by other organisms associated with the plant such as other insects, plant pathogens, or mycorrhizal fungi. Plant phenotype is plastic and can be changed by epigenetic factors in adaptation to periods of biotic stress. Space and time play crucial roles in influencing the outcome of interactions between insects and plants.
Collapse
|
4
|
Takei M, Yoshida S, Kawai T, Hasegawa M, Suzuki Y. Adaptive significance of gall formation for a gall-inducing aphids on Japanese elm trees. JOURNAL OF INSECT PHYSIOLOGY 2015; 72:43-51. [PMID: 25437243 DOI: 10.1016/j.jinsphys.2014.11.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 11/07/2014] [Accepted: 11/13/2014] [Indexed: 05/04/2023]
Abstract
Insect galls are abnormal plant tissues induced by external stimuli from parasitizing insects. It has been suggested that the stimuli include phytohormones such as auxin and cytokinins produced by the insects. In our study on the role of hormones in gall induction by the aphid Tetraneura nigriabdominalis, it was found that feedback regulation related to auxin and cytokinin activity is absent in gall tissues, even though the aphids contain higher concentrations of those phytohormones than do plant tissues. Moreover, jasmonic acid signaling appears to be compromised in gall tissue, and consequently, the production of volatile organic compounds, which are a typical defense response of host plants to herbivory, is diminished. These findings suggest that these traits of the gall tissue benefit aphids, because the gall tissue is highly sensitive to auxin and cytokinin, which induce and maintain it. The induced defenses against aphid feeding are also compromised. The abnormal responsiveness to phytohormones is regarded as a new type of extended phenotype of gall-inducing insects.
Collapse
Affiliation(s)
- Mami Takei
- Department of Bioresource Science, College of Agriculture, Ibaraki University, 3-21-1 Chuo, Ami-machi, Inashiki-gun, Ibaraki 300-0393, Japan
| | - Sayaka Yoshida
- Department of Bioresource Science, College of Agriculture, Ibaraki University, 3-21-1 Chuo, Ami-machi, Inashiki-gun, Ibaraki 300-0393, Japan
| | - Takashi Kawai
- Department of Bioresource Science, College of Agriculture, Ibaraki University, 3-21-1 Chuo, Ami-machi, Inashiki-gun, Ibaraki 300-0393, Japan
| | - Morifumi Hasegawa
- Department of Bioresource Science, College of Agriculture, Ibaraki University, 3-21-1 Chuo, Ami-machi, Inashiki-gun, Ibaraki 300-0393, Japan
| | - Yoshihito Suzuki
- Department of Bioresource Science, College of Agriculture, Ibaraki University, 3-21-1 Chuo, Ami-machi, Inashiki-gun, Ibaraki 300-0393, Japan.
| |
Collapse
|
5
|
Frago E, Godfray HCJ. Avoidance of intraguild predation leads to a long-term positive trait-mediated indirect effect in an insect community. Oecologia 2014; 174:943-52. [PMID: 24122178 DOI: 10.1007/s00442-013-2799-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 10/01/2013] [Indexed: 11/30/2022]
Abstract
Intraguild predation among natural enemies is common in food webs with insect herbivores at their base. Though intraguild predation may be reciprocal, typically one species suffers more than the other and frequently exhibits behavioural strategies to lessen these effects. How such short-term behaviours influence population dynamics over several generations has been little studied. We worked with a model insect community consisting of two species of aphid feeding on different host plants (Acyrthosiphon pisum on Vicia and Sitobion avenae on Triticum), a parasitoid (Aphidius ervi) that attacks both species, and a dominant intraguild predator (Coccinella septempunctata) that also feeds on both aphids (whether parasitized or not). As reported previously, we found A. ervi avoided chemical traces of C. septempunctata. In population cages in the laboratory, application of C. septempunctata extracts to Vicia plants reduced parasitism on A. pisum. This did not increase parasitism on the other aphid species, our predicted short-term trait-mediated effect. However, a longer term multigenerational consequence of intraguild predator avoidance was observed. In cages where extracts were applied in the first generation of the study, parasitoid recruitment was reduced leading to higher population densities of both aphid species. S. avenae thus benefits from the presence of a dominant intraguild predator foraging on another species of aphid (A. pisum) on a different food plant, a long-term, trait-mediated example of apparent mutualism. The mechanism underlying this effect is hypothesized to be the reduced searching efficiency of a shared parasitoid in the presence of cues associated with the dominant predator.
Collapse
|
6
|
Guzmán-Téllez E, Montenegro DD, Benavides-Mendoza A. Concentration of Salicylic Acid in Tomato Leaves after Foliar Aspersions of This Compound. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/ajps.2014.513220] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
7
|
Zhang PJ, Xu CX, Zhang JM, Lu YB, Wei JN, Liu YQ, David A, Boland W, Turlings TCJ. Phloem-feeding whiteflies can fool their host plants, but not their parasitoids. Funct Ecol 2013. [DOI: 10.1111/1365-2435.12132] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Peng-Jun Zhang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control; Institute of Plant Protection and Microbiology; Zhejiang Academy of Agricultural Sciences; Hangzhou 310021, China
| | - Cai-Xia Xu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops; Ministry of Agriculture; Beijing China
| | - Jin-Ming Zhang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control; Institute of Plant Protection and Microbiology; Zhejiang Academy of Agricultural Sciences; Hangzhou 310021, China
| | - Yao-Bin Lu
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control; Institute of Plant Protection and Microbiology; Zhejiang Academy of Agricultural Sciences; Hangzhou 310021, China
| | - Jia-Ning Wei
- State Key Laboratory of Integrated Management of Pest Insects & Rodents; Institute of Zoology; Chinese Academy of Sciences; Beijing 100080, China
| | - Yin-Quan Liu
- Institute of Insect Sciences; Zhejiang University; Hangzhou 310029, China
| | - Anja David
- Max Planck Institute for Chemical Ecology; Hans-Knoell-Strasse 8 07745 Jena Germany
| | - Wilhelm Boland
- Max Planck Institute for Chemical Ecology; Hans-Knoell-Strasse 8 07745 Jena Germany
| | - Ted C. J. Turlings
- Laboratory of Fundamental and Applied Research in Chemical Ecology (FARCE); University of Neuchâtel; CH-2000 Neuchâtel Switzerland
| |
Collapse
|
8
|
Li R, Afsheen S, Xin Z, Han X, Lou Y. OsNPR1 negatively regulates herbivore-induced JA and ethylene signaling and plant resistance to a chewing herbivore in rice. PHYSIOLOGIA PLANTARUM 2013; 147:340-51. [PMID: 22694163 DOI: 10.1111/j.1399-3054.2012.01666.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 05/26/2012] [Accepted: 05/29/2012] [Indexed: 05/23/2023]
Abstract
NPR1 (a non-expressor of pathogenesis-related genes1) has been reported to play an important role in plant defense by regulating signaling pathways. However, little to nothing is known about its function in herbivore-induced defense in monocot plants. Here, using suppressive substrate hybridization, we identified a NPR1 gene from rice, OsNPR1, and found that its expression levels were upregulated in response to infestation by the rice striped stem borer (SSB) Chilo suppressalis and rice leaf folder (LF) Cnaphalocrocis medinalis, and to mechanical wounding and treatment with jasmonic acid (JA) and salicylic acid (SA). Moreover, mechanical wounding induced the expression of OsNPR1 quickly, whereas herbivore infestation induced the gene more slowly. The antisense expression of OsNPR1 (as-npr1), which reduced the expression of the gene by 50%, increased elicited levels of JA and ethylene (ET) as well as of expression of a lipoxygenase gene OsHI-LOX and an ACC synthase gene OsACS2. The enhanced JA and ET signaling in as-npr1 plants increased the levels of herbivore-induced trypsin proteinase inhibitors (TrypPIs) and volatiles, and reduced the performance of SSB. Our results suggest that OsNPR1 is an early responding gene in herbivore-induced defense and that plants can use it to activate a specific and appropriate defense response against invaders by modulating signaling pathways.
Collapse
Affiliation(s)
- Ran Li
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | | | | | | | | |
Collapse
|
9
|
Pineda A, Dicke M, Pieterse CM, Pozo MJ. Beneficial microbes in a changing environment: are they always helping plants to deal with insects? Funct Ecol 2013. [DOI: 10.1111/1365-2435.12050] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Ana Pineda
- Laboratory of Entomology Wageningen University PO Box 8031 6700 EH Wageningen The Netherlands
| | - Marcel Dicke
- Laboratory of Entomology Wageningen University PO Box 8031 6700 EH Wageningen The Netherlands
| | - Corné M.J. Pieterse
- Plant–Microbe Interactions Institute of Environmental Biology Utrecht University PO Box 800.56 3508 TB Utrecht The Netherlands
| | - María J. Pozo
- Department of Soil Microbiology and Symbiotic Systems Estación Experimental del Zaidín CSIC Profesor Albareda 1 18008 Granada Spain
| |
Collapse
|
10
|
Pineda A, Soler R, Weldegergis BT, Shimwela MM, VAN Loon JJA, Dicke M. Non-pathogenic rhizobacteria interfere with the attraction of parasitoids to aphid-induced plant volatiles via jasmonic acid signalling. PLANT, CELL & ENVIRONMENT 2013; 36:393-404. [PMID: 22812443 DOI: 10.1111/j.1365-3040.2012.02581.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Beneficial soil-borne microbes, such as mycorrhizal fungi or rhizobacteria, can affect the interactions of plants with aboveground insects at several trophic levels. While the mechanisms of interactions with herbivorous insects, that is, the second trophic level, are starting to be understood, it remains unknown how plants mediate the interactions between soil microbes and carnivorous insects, that is, the third trophic level. Using Arabidopsis thaliana Col-0 and the aphid Myzus persicae, we evaluate here the underlying mechanisms involved in the plant-mediated interaction between the non-pathogenic rhizobacterium Pseudomonas fluorescens and the parasitoid Diaeretiella rapae, by combining ecological, chemical and molecular approaches. Rhizobacterial colonization modifies the composition of the blend of herbivore-induced plant volatiles. The volatile blend from rhizobacteria-treated aphid-infested plants is less attractive to an aphid parasitoid, in terms of both olfactory preference behaviour and oviposition, than the volatile blend from aphid-infested plants without rhizobacteria. Importantly, the effect of rhizobacteria on both the emission of herbivore-induced volatiles and parasitoid response to aphid-infested plants is lost in an Arabidopsis mutant (aos/dde2-2) that is impaired in jasmonic acid production. By modifying the blend of herbivore-induced plant volatiles that depend on the jasmonic acid-signalling pathway, root-colonizing microbes interfere with the attraction of parasitoids of leaf herbivores.
Collapse
Affiliation(s)
- Ana Pineda
- Laboratory of Entomology, Wageningen University, PO Box 8031, 6700 EH Wageningen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
11
|
Pareja M, Qvarfordt E, Webster B, Mayon P, Pickett J, Birkett M, Glinwood R. Herbivory by a Phloem-feeding insect inhibits floral volatile production. PLoS One 2012; 7:e31971. [PMID: 22384116 PMCID: PMC3285634 DOI: 10.1371/journal.pone.0031971] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 01/20/2012] [Indexed: 12/30/2022] Open
Abstract
There is extensive knowledge on the effects of insect herbivory on volatile emission from vegetative tissue, but little is known about its impact on floral volatiles. We show that herbivory by phloem-feeding aphids inhibits floral volatile emission in white mustard Sinapis alba measured by gas chromatographic analysis of headspace volatiles. The effect of the Brassica specialist aphid Lipaphis erysimi was stronger than the generalist aphid Myzus persicae and feeding by chewing larvae of the moth Plutella xylostella caused no reduction in floral volatile emission. Field observations showed no effect of L. erysimi-mediated floral volatile emission on the total number of flower visits by pollinators. Olfactory bioassays suggested that although two aphid natural enemies could detect aphid inhibition of floral volatiles, their olfactory orientation to infested plants was not disrupted. This is the first demonstration that phloem-feeding herbivory can affect floral volatile emission, and that the outcome of interaction between herbivory and floral chemistry may differ depending on the herbivore's feeding mode and degree of specialisation. The findings provide new insights into interactions between insect herbivores and plant chemistry.
Collapse
Affiliation(s)
- Martin Pareja
- Departmento de Entomologia, Universidade Federal de Lavras, Lavras, Brazil
| | - Erika Qvarfordt
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Ben Webster
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Patrick Mayon
- Rothamsted Research, Department of Biological Chemistry, Harpenden, United Kingdom
| | - John Pickett
- Rothamsted Research, Department of Biological Chemistry, Harpenden, United Kingdom
| | - Michael Birkett
- Rothamsted Research, Department of Biological Chemistry, Harpenden, United Kingdom
| | - Robert Glinwood
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
- * E-mail:
| |
Collapse
|
12
|
Girling RD, Stewart-Jones A, Dherbecourt J, Staley JT, Wright DJ, Poppy GM. Parasitoids select plants more heavily infested with their caterpillar hosts: a new approach to aid interpretation of plant headspace volatiles. Proc Biol Sci 2011; 278:2646-53. [PMID: 21270031 PMCID: PMC3136836 DOI: 10.1098/rspb.2010.2725] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 01/07/2011] [Indexed: 11/12/2022] Open
Abstract
Plants produce volatile organic compounds (VOCs) in response to herbivore attack, and these VOCs can be used by parasitoids of the herbivore as host location cues. We investigated the behavioural responses of the parasitoid Cotesia vestalis to VOCs from a plant-herbivore complex consisting of cabbage plants (Brassica oleracea) and the parasitoids host caterpillar, Plutella xylostella. A Y-tube olfactometer was used to compare the parasitoids' responses to VOCs produced as a result of different levels of attack by the caterpillar and equivalent levels of mechanical damage. Headspace VOC production by these plant treatments was examined using gas chromatography-mass spectrometry. Cotesia vestalis were able to exploit quantitative and qualitative differences in volatile emissions, from the plant-herbivore complex, produced as a result of different numbers of herbivores feeding. Cotesia vestalis showed a preference for plants with more herbivores and herbivore damage, but did not distinguish between different levels of mechanical damage. Volatile profiles of plants with different levels of herbivores/herbivore damage could also be separated by canonical discriminant analyses. Analyses revealed a number of compounds whose emission increased significantly with herbivore load, and these VOCs may be particularly good indicators of herbivore number, as the parasitoid processes cues from its external environment.
Collapse
Affiliation(s)
- Robbie D Girling
- School of Biological Sciences, University of Southampton, Southampton, Hampshire SO17 1BJ, UK.
| | | | | | | | | | | |
Collapse
|
13
|
Digilio MC, Corrado G, Sasso R, Coppola V, Iodice L, Pasquariello M, Bossi S, Maffei ME, Coppola M, Pennacchio F, Rao R, Guerrieri E. Molecular and chemical mechanisms involved in aphid resistance in cultivated tomato. THE NEW PHYTOLOGIST 2010; 187:1089-1101. [PMID: 20546139 DOI: 10.1111/j.1469-8137.2010.03314.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
*An integrated approach has been used to obtain an understanding of the molecular and chemical mechanisms underlying resistance to aphids in cherry-like tomato (Solanum lycopersicum) landraces from the Campania region (southern Italy). The aphid-parasitoid system Macrosiphum euphorbiae-Aphidius ervi was used to describe the levels of resistance against aphids in two tomato accessions (AN5, AN7) exhibiting high yield and quality traits and lacking the tomato Mi gene. *Aphid development and reproduction, flight response by the aphid parasitoid A. ervi, gas chromatography-mass spectrometry headspace analysis of plant volatile organic compounds and transcriptional analysis of aphid responsive genes were performed on selected tomato accessions and on a susceptible commercial variety (M82). *When compared with the cultivated variety, M82, AN5 and AN7 showed a significant reduction of M. euphorbiae fitness, the release of larger amounts of specific volatile organic compounds that are attractive to the aphid parasitoid A. ervi, a constitutively higher level of expression of plant defence genes and differential enhancement of plant indirect resistance induced by aphid feeding. *These results provide new insights on how local selection can offer the possibility of the development of innovative genetic strategies to increase tomato resistance against aphids.
Collapse
Affiliation(s)
- Maria Cristina Digilio
- Dipartimento di Entomologia e Zoologia agraria 'Filippo Silvestri', Università di Napoli 'Federico II', Via Università 100, 80055 Portici (NA), Italy
| | - Giandomenico Corrado
- Dipartimento di Scienze del Suolo della Pianta e dell'Ambiente, Università di Napoli 'Federico II', Via Università 100, 80055 Portici (NA), Italy
| | - Raffaele Sasso
- Istituto per la Protezione delle Piante, Consiglio Nazionale delle Ricerche, Via Università 133, 80055 Portici (NA), Italy
| | - Valentina Coppola
- Dipartimento di Scienze del Suolo della Pianta e dell'Ambiente, Università di Napoli 'Federico II', Via Università 100, 80055 Portici (NA), Italy
| | - Luigi Iodice
- Istituto per la Protezione delle Piante, Consiglio Nazionale delle Ricerche, Via Università 133, 80055 Portici (NA), Italy
| | - Marianna Pasquariello
- Dipartimento di Scienze del Suolo della Pianta e dell'Ambiente, Università di Napoli 'Federico II', Via Università 100, 80055 Portici (NA), Italy
| | - Simone Bossi
- Dipartimento di Biologia Vegetale, Unità di Fisiologia Vegetale, Università di Torino - Centro della Innovazione, Via Quarello 11/A, 10135 Torino, Italy
| | - Massimo E Maffei
- Dipartimento di Biologia Vegetale, Unità di Fisiologia Vegetale, Università di Torino - Centro della Innovazione, Via Quarello 11/A, 10135 Torino, Italy
| | - Mariangela Coppola
- Dipartimento di Scienze del Suolo della Pianta e dell'Ambiente, Università di Napoli 'Federico II', Via Università 100, 80055 Portici (NA), Italy
| | - Francesco Pennacchio
- Dipartimento di Entomologia e Zoologia agraria 'Filippo Silvestri', Università di Napoli 'Federico II', Via Università 100, 80055 Portici (NA), Italy
| | - Rosa Rao
- Dipartimento di Scienze del Suolo della Pianta e dell'Ambiente, Università di Napoli 'Federico II', Via Università 100, 80055 Portici (NA), Italy
| | - Emilio Guerrieri
- Istituto per la Protezione delle Piante, Consiglio Nazionale delle Ricerche, Via Università 133, 80055 Portici (NA), Italy
| |
Collapse
|
14
|
Mumm R, Dicke M. Variation in natural plant products and the attraction of bodyguards involved in indirect plant defenseThe present review is one in the special series of reviews on animal–plant interactions. CAN J ZOOL 2010. [DOI: 10.1139/z10-032] [Citation(s) in RCA: 225] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Plants can respond to feeding or egg deposition by herbivorous arthropods by changing the volatile blend that they emit. These herbivore-induced plant volatiles (HIPVs) can attract carnivorous natural enemies of the herbivores, such as parasitoids and predators, a phenomenon that is called indirect plant defense. The volatile blends of infested plants can be very complex, sometimes consisting of hundreds of compounds. Most HIPVs can be classified as terpenoids (e.g., (E)-β-ocimene, (E,E)-α-farnesene, (E)-4,8-dimethyl-1,3,7-nonatriene), green leaf volatiles (e.g., hexanal, (Z)-3-hexen-1-ol, (Z)-3-hexenyl acetate), phenylpropanoids (e.g., methyl salicylate, indole), and sulphur- or nitrogen-containing compounds (e.g., isothiocyanates or nitriles, respectively). One highly intriguing question has been which volatiles out of the complex blend are the most important ones for the carnivorous natural enemies to locate "suitable host plants. Here, we review the methods and techniques that have been used to elucidate the carnivore-attracting compounds. Electrophysiological methods such as electroantennography have been used with parasitoids to elucidate which compounds can be perceived by the antennae. Different types of elicitors and inhibitors have widely been applied to manipulate plant volatile blends. Furthermore, transgenic plants that were genetically modified in specific steps in one of the signal transduction pathways or biosynthetic routes have been used to find steps in HIPV emission crucial for indirect plant defense. Furthermore, we provide an overview on biotic and abiotic factors that influence the emission of HIPVs and how this can affect the interactions between members of different trophic levels. Consequently, we review the progress that has been made in this exciting research field during the past 30 years since the first studies on HIPVs emerged and we highlight important issues to be addressed in the future.
Collapse
Affiliation(s)
- Roland Mumm
- Laboratory of Entomology, Wageningen University, 6700 EH Wageningen, the Netherlands
- Plant Research International, Wageningen UR, 6700 PB Wageningen, the Netherlands
- Centre of BioSystems Genomics, 6700AB Wageningen, the Netherlands
| | - Marcel Dicke
- Laboratory of Entomology, Wageningen University, 6700 EH Wageningen, the Netherlands
- Plant Research International, Wageningen UR, 6700 PB Wageningen, the Netherlands
- Centre of BioSystems Genomics, 6700AB Wageningen, the Netherlands
| |
Collapse
|
15
|
Blande JD, Korjus M, Holopainen JK. Foliar methyl salicylate emissions indicate prolonged aphid infestation on silver birch and black alder. TREE PHYSIOLOGY 2010; 30:404-16. [PMID: 20097686 DOI: 10.1093/treephys/tpp124] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
It is well documented that when plants are damaged by insects they respond by emitting a range of volatile organic compounds (VOCs). While there have been numerous reports concerning VOCs induced by chewing herbivores, there are relatively few studies detailing the VOCs induced by aphid feeding. The effects of aphid feeding on VOCs emitted by boreal forest trees have been particularly neglected. Herbivore-induced VOCs have relevance to direct and indirect plant defence and atmospheric chemistry. In this study, we analysed the VOCs emitted by Betula pendula (Roth) and Alnus glutinosa (L.) (Gaertn.) infested by specialist aphid species under laboratory conditions. We also complemented this by collecting VOCs from leaf beetle-damaged saplings under field conditions. In addition to induction of some inducible terpenes, we detected substantial aphid-induced emissions of methyl salicylate (MeSA) in both B. pendula and A. glutinosa. MeSA emission intensity depended on the length of aphid infestation. Feeding by beetles induced emission of (E)-DMNT in both tree species and (E)-beta-ocimene in A. glutinosa but had no effect on MeSA emissions. MeSA has been shown to have aphid-repellent qualities and has been shown recently to have impact on formation of secondary organic aerosols in the atmosphere. We discuss our results in relation to these two phenomena.
Collapse
Affiliation(s)
- James D Blande
- Department of Environmental Science, University of Kuopio, P.O. Box 1627, FIN-70211, Kuopio, Finland
| | | | | |
Collapse
|
16
|
Arimura GI, Matsui K, Takabayashi J. Chemical and molecular ecology of herbivore-induced plant volatiles: proximate factors and their ultimate functions. PLANT & CELL PHYSIOLOGY 2009; 50:911-23. [PMID: 19246460 DOI: 10.1093/pcp/pcp030] [Citation(s) in RCA: 258] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
In response to herbivory, plants emit specific blends of herbivore-induced plant volatiles (HIPVs). HIPVs mediate sizable arrays of interactions between plants and arthropods, microorganisms, undamaged neighboring plants or undamaged sites within the plant in various ecosystems. HIPV profiles vary according to the plant and herbivore species, and the developmental stages and conditions of the live plants and herbivores. To understand the regulatory mechanisms underling HIPV biosynthesis, the following issues are reviewed here: (i) herbivore-induced formation of plant volatile terpenoids and green leaf volatiles; (ii) initial activation of plant responses by feeding herbivores; and (iii) the downstream network of the signal transduction. To understand the ecological significance of HIPVs, we also review case studies of insect-plant and inter-/intraplant interactions mediated by HIPVs that have been documented in the field and laboratory in recent years.
Collapse
|
17
|
Laothawornkitkul J, Taylor JE, Paul ND, Hewitt CN. Biogenic volatile organic compounds in the Earth system. THE NEW PHYTOLOGIST 2009; 183:27-51. [PMID: 19422541 DOI: 10.1111/j.1469-8137.2009.02859.x] [Citation(s) in RCA: 201] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Biogenic volatile organic compounds produced by plants are involved in plant growth, development, reproduction and defence. They also function as communication media within plant communities, between plants and between plants and insects. Because of the high chemical reactivity of many of these compounds, coupled with their large mass emission rates from vegetation into the atmosphere, they have significant effects on the chemical composition and physical characteristics of the atmosphere. Hence, biogenic volatile organic compounds mediate the relationship between the biosphere and the atmosphere. Alteration of this relationship by anthropogenically driven changes to the environment, including global climate change, may perturb these interactions and may lead to adverse and hard-to-predict consequences for the Earth system.
Collapse
Affiliation(s)
| | - Jane E Taylor
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Nigel D Paul
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - C Nicholas Hewitt
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| |
Collapse
|
18
|
Gosset V, Harmel N, Göbel C, Francis F, Haubruge E, Wathelet JP, du Jardin P, Feussner I, Fauconnier ML. Attacks by a piercing-sucking insect (Myzus persicae Sultzer) or a chewing insect (Leptinotarsa decemlineata Say) on potato plants (Solanum tuberosum L.) induce differential changes in volatile compound release and oxylipin synthesis. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:1231-40. [PMID: 19221142 PMCID: PMC2657539 DOI: 10.1093/jxb/erp015] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Revised: 12/12/2008] [Accepted: 12/22/2008] [Indexed: 05/20/2023]
Abstract
Plant defensive strategies bring into play blends of compounds dependent on the type of attacker and coming from different synthesis pathways. Interest in the field is mainly focused on volatile organic compounds (VOCs) and jasmonic acid (JA). By contrast, little is known about the oxidized polyunsaturated fatty acids (PUFAs), such as PUFA-hydroperoxides, PUFA-hydroxides, or PUFA-ketones. PUFA-hydroperoxides and their derivatives might be involved in stress response and show antimicrobial activities. Hydroperoxides are also precursors of JA and some volatile compounds. In this paper, the differential biochemical response of a plant against insects with distinct feeding behaviours is characterized not only in terms of VOC signature and JA profile but also in terms of their precursors synthesized through the lipoxygenase (LOX)-pathway at the early stage of the plant response. For this purpose, two leading pests of potato with distinct feeding behaviours were used: the Colorado Potato Beetle (Leptinotarsa decemlineata Say), a chewing herbivore, and the Green Peach Aphid (Myzus persicae Sulzer), a piercing-sucking insect. The volatile signatures identified clearly differ in function with the feeding behaviour of the attacker and the aphid, which causes the smaller damages, triggers the emission of a higher number of volatiles. In addition, 9-LOX products, which are usually associated with defence against pathogens, were exclusively activated by aphid attack. Furthermore, a correlation between volatiles and JA accumulation and the evolution of their precursors was determined. Finally, the role of the insect itself on the plant response after insect infestation was highlighted.
Collapse
Affiliation(s)
- Virginie Gosset
- Plant Biology Unit, Gembloux Agricultural University, Passage des déportés 2, B-5030 Gembloux, Belgium
| | - Nicolas Harmel
- Functional and Evolutionary Entomology Unit, Gembloux Agricultural University, Passage des déportés 2, B-5030 Gembloux, Belgium
| | - Cornelia Göbel
- Department of Plant Biochemistry, Albrecht-von-Haller Institute of Plant Sciences, Georg-August-University Göttingen, Justus-von-Liebig-Weg 11, D-37077 Göttingen, Germany
| | - Frédéric Francis
- Functional and Evolutionary Entomology Unit, Gembloux Agricultural University, Passage des déportés 2, B-5030 Gembloux, Belgium
| | - Eric Haubruge
- Functional and Evolutionary Entomology Unit, Gembloux Agricultural University, Passage des déportés 2, B-5030 Gembloux, Belgium
| | - Jean-Paul Wathelet
- General and Organic Chemistry Unit, Gembloux Agricultural University, Passage des déportés 2, B-5030 Gembloux, Belgium
| | - Patrick du Jardin
- Plant Biology Unit, Gembloux Agricultural University, Passage des déportés 2, B-5030 Gembloux, Belgium
| | - Ivo Feussner
- Department of Plant Biochemistry, Albrecht-von-Haller Institute of Plant Sciences, Georg-August-University Göttingen, Justus-von-Liebig-Weg 11, D-37077 Göttingen, Germany
| | - Marie-Laure Fauconnier
- Plant Biology Unit, Gembloux Agricultural University, Passage des déportés 2, B-5030 Gembloux, Belgium
- To whom correspondence should be addressed: E-mail:
| |
Collapse
|