1
|
Qin Z, Wang T, Zhao Y, Ma C, Shao Q. Molecular Machinery of Lipid Droplet Degradation and Turnover in Plants. Int J Mol Sci 2023; 24:16039. [PMID: 38003229 PMCID: PMC10671748 DOI: 10.3390/ijms242216039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/23/2023] [Accepted: 10/29/2023] [Indexed: 11/26/2023] Open
Abstract
Lipid droplets (LDs) are important organelles conserved across eukaryotes with a fascinating biogenesis and consumption cycle. Recent intensive research has focused on uncovering the cellular biology of LDs, with emphasis on their degradation. Briefly, two major pathways for LD degradation have been recognized: (1) lipolysis, in which lipid degradation is catalyzed by lipases on the LD surface, and (2) lipophagy, in which LDs are degraded by autophagy. Both of these pathways require the collective actions of several lipolytic and proteolytic enzymes, some of which have been purified and analyzed for their in vitro activities. Furthermore, several genes encoding these proteins have been cloned and characterized. In seed plants, seed germination is initiated by the hydrolysis of stored lipids in LDs to provide energy and carbon equivalents for the germinating seedling. However, little is known about the mechanism regulating the LD mobilization. In this review, we focus on recent progress toward understanding how lipids are degraded and the specific pathways that coordinate LD mobilization in plants, aiming to provide an accurate and detailed outline of the process. This will set the stage for future studies of LD dynamics and help to utilize LDs to their full potential.
Collapse
Affiliation(s)
| | | | | | - Changle Ma
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250358, China
| | - Qun Shao
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250358, China
| |
Collapse
|
2
|
Khatoon U, Prasad V, Sawant SV. Expression dynamics and a loss-of-function of Arabidopsis RabC1 GTPase unveil its role in plant growth and seed development. PLANTA 2023; 257:89. [PMID: 36988700 DOI: 10.1007/s00425-023-04122-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 03/16/2023] [Indexed: 06/19/2023]
Abstract
Transcript isoform dynamics, spatiotemporal expression, and mutational analysis uncover that Arabidopsis RabC1 GTPase is required for root length, flowering time, seed size, and seed mucilage. Rab GTPases are crucial regulators for moving different molecules to their specific compartments according to the needs of the cell. In this work, we illustrate the role of RabC1 GTPase in Arabidopsis growth and seed development. We identify and analyze the expression pattern of three transcript isoforms of RabC1 in different development stages, along with their tissue-specific transcript abundance. The promoter activity of RabC1 using promoter-GUS fusion shows that it is widely expressed during the growth of Arabidopsis, particularly in seed tissues such as chalazal seed coat and chalazal endosperm. Lack of RabC1 function led to shorter roots, lesser biomass, delayed flowering, and sluggish plant development. The mutants had smaller seeds than the wildtype, less seed mass, and lower seed coat permeability. Developing seeds also revealed a smaller endosperm cavity and shorter integument cells. Additionally, we found that the knock-out mutant had downregulated expression of genes implicated in the transit of sugars and amino acids from maternal tissue to developing seed. The seeds of the loss-of-function mutant had reduced seed mucilage. All the observed mutant phenotypes were restored in the complemented lines confirming the function of RabC1 in seed development and plant growth.
Collapse
Affiliation(s)
- Uzma Khatoon
- Plant Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India
- Department of Botany, University of Lucknow, Lucknow, 226007, India
| | - Vivek Prasad
- Department of Botany, University of Lucknow, Lucknow, 226007, India
| | - Samir V Sawant
- Plant Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India.
| |
Collapse
|
3
|
Zhang W, Huang L, Zhang C, Staiger CJ. Arabidopsis myosin XIK interacts with the exocyst complex to facilitate vesicle tethering during exocytosis. THE PLANT CELL 2021; 33:2454-2478. [PMID: 33871640 PMCID: PMC8364239 DOI: 10.1093/plcell/koab116] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 04/13/2021] [Indexed: 05/17/2023]
Abstract
Myosin motors are essential players in secretory vesicle trafficking and exocytosis in yeast and mammalian cells; however, similar roles in plants remain a matter for debate, at least for diffusely growing cells. Here, we demonstrate that Arabidopsis (Arabidopsis thaliana) myosin XIK, via its globular tail domain (GTD), participates in the vesicle tethering step of exocytosis through direct interactions with the exocyst complex. Specifically, myosin XIK GTD bound directly to several exocyst subunits in vitro and functional fluorescently tagged XIK colocalized with multiple exocyst subunits at plasma membrane (PM)-associated stationary foci. Moreover, genetic and pharmacological inhibition of myosin XI activity reduced the rate of appearance and lifetime of stationary exocyst complexes at the PM. By tracking single exocytosis events of cellulose synthase (CESA) complexes with high spatiotemporal resolution imaging and pair-wise colocalization of myosin XIK, exocyst subunits, and CESA6, we demonstrated that XIK associates with secretory vesicles earlier than exocyst and is required for the efficient localization and normal dynamic behavior of exocyst complex at the PM tethering site. This study reveals an important functional role for myosin XI in secretion and provides insights about the dynamic regulation of exocytosis in plants.
Collapse
Affiliation(s)
- Weiwei Zhang
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA
| | - Lei Huang
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907, USA
| | - Chunhua Zhang
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907, USA
- Center for Plant Biology, College of Agriculture, Purdue University, West Lafayette, Indiana 47907, USA
| | - Christopher J. Staiger
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907, USA
- Center for Plant Biology, College of Agriculture, Purdue University, West Lafayette, Indiana 47907, USA
- Author for correspondence:
| |
Collapse
|
4
|
Turowski VR, Ruiz DM, Nascimento AFZ, Millán C, Sammito MD, Juanhuix J, Cremonesi AS, Usón I, Giuseppe PO, Murakami MT. Structure of the class XI myosin globular tail reveals evolutionary hallmarks for cargo recognition in plants. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2021; 77:522-533. [PMID: 33825712 DOI: 10.1107/s2059798321001583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 02/09/2021] [Indexed: 11/10/2022]
Abstract
The plant-specific class XI myosins (MyoXIs) play key roles at the molecular, cellular and tissue levels, engaging diverse adaptor proteins to transport cargoes along actin filaments. To recognize their cargoes, MyoXIs have a C-terminal globular tail domain (GTD) that is evolutionarily related to those of class V myosins (MyoVs) from animals and fungi. Despite recent advances in understanding the functional roles played by MyoXI in plants, the structure of its GTD, and therefore the molecular determinants for cargo selectivity and recognition, remain elusive. In this study, the first crystal structure of a MyoXI GTD, that of MyoXI-K from Arabidopsis thaliana, was elucidated at 2.35 Å resolution using a low-identity and fragment-based phasing approach in ARCIMBOLDO_SHREDDER. The results reveal that both the composition and the length of the α5-α6 loop are distinctive features of MyoXI-K, providing evidence for a structural stabilizing role for this loop, which is otherwise carried out by a molecular zipper in MyoV GTDs. The crystal structure also shows that most of the characterized cargo-binding sites in MyoVs are not conserved in plant MyoXIs, pointing to plant-specific cargo-recognition mechanisms. Notably, the main elements involved in the self-regulation mechanism of MyoVs are conserved in plant MyoXIs, indicating this to be an ancient ancestral trait.
Collapse
Affiliation(s)
- Valeria R Turowski
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas-SP 13083-100, Brazil
| | - Diego M Ruiz
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas-SP 13083-100, Brazil
| | - Andrey F Z Nascimento
- Structural Biology, Instituto de Biología Molecular de Barcelona, CSIC, Carrer de Baldiri Reixac 15, 08028 Barcelona, Spain
| | - Claudia Millán
- Structural Biology, Instituto de Biología Molecular de Barcelona, CSIC, Carrer de Baldiri Reixac 15, 08028 Barcelona, Spain
| | - Massimo D Sammito
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Judith Juanhuix
- XALOC Beamline, Experiments Division, ALBA Synchrotron Light Source, Cerdanyola del Vallès, 08290 Barcelona, Spain
| | - Aline Sampaio Cremonesi
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas-SP 13083-100, Brazil
| | - Isabel Usón
- Structural Biology, Instituto de Biología Molecular de Barcelona, CSIC, Carrer de Baldiri Reixac 15, 08028 Barcelona, Spain
| | - Priscila O Giuseppe
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas-SP 13083-100, Brazil
| | - Mario T Murakami
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas-SP 13083-100, Brazil
| |
Collapse
|
5
|
Veerabagu M, Rinne PLH, Skaugen M, Paul LK, van der Schoot C. Lipid Body Dynamics in Shoot Meristems: Production, Enlargement, and Putative Organellar Interactions and Plasmodesmal Targeting. FRONTIERS IN PLANT SCIENCE 2021; 12:674031. [PMID: 34367200 PMCID: PMC8335594 DOI: 10.3389/fpls.2021.674031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 06/14/2021] [Indexed: 05/20/2023]
Abstract
Post-embryonic cells contain minute lipid bodies (LBs) that are transient, mobile, engage in organellar interactions, and target plasmodesmata (PD). While LBs can deliver γ-clade 1,3-β-glucanases to PD, the nature of other cargo is elusive. To gain insight into the poorly understood role of LBs in meristems, we investigated their dynamics by microscopy, gene expression analyzes, and proteomics. In developing buds, meristems accumulated LBs, upregulated several LB-specific OLEOSIN genes and produced OLEOSINs. During bud maturation, the major gene OLE6 was strongly downregulated, OLEOSINs disappeared from bud extracts, whereas lipid biosynthesis genes were upregulated, and LBs were enlarged. Proteomic analyses of the LB fraction of dormant buds confirmed that OLEOSINs were no longer present. Instead, we identified the LB-associated proteins CALEOSIN (CLO1), Oil Body Lipase 1 (OBL1), Lipid Droplet Interacting Protein (LDIP), Lipid Droplet Associated Protein1a/b (LDAP1a/b) and LDAP3a/b, and crucial components of the OLEOSIN-deubiquitinating and degradation machinery, such as PUX10 and CDC48A. All mRFP-tagged LDAPs localized to LBs when transiently expressed in Nicotiana benthamiana. Together with gene expression analyzes, this suggests that during bud maturation, OLEOSINs were replaced by LDIP/LDAPs at enlarging LBs. The LB fraction contained the meristem-related actin7 (ACT7), "myosin XI tail-binding" RAB GTPase C2A, an LB/PD-associated γ-clade 1,3-β-glucanase, and various organelle- and/or PD-localized proteins. The results are congruent with a model in which LBs, motorized by myosin XI-k/1/2, traffic on F-actin, transiently interact with other organelles, and deliver a diverse cargo to PD.
Collapse
Affiliation(s)
- Manikandan Veerabagu
- Faculty of Biosciences, Department of Plant Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Päivi L. H. Rinne
- Faculty of Biosciences, Department of Plant Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Morten Skaugen
- Faculty of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Laju K. Paul
- Faculty of Biosciences, Department of Plant Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Christiaan van der Schoot
- Faculty of Biosciences, Department of Plant Sciences, Norwegian University of Life Sciences, Ås, Norway
- *Correspondence: Christiaan van der Schoot
| |
Collapse
|
6
|
Nielsen E. The Small GTPase Superfamily in Plants: A Conserved Regulatory Module with Novel Functions. ANNUAL REVIEW OF PLANT BIOLOGY 2020; 71:247-272. [PMID: 32442390 DOI: 10.1146/annurev-arplant-112619-025827] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Small GTP-binding proteins represent a highly conserved signaling module in eukaryotes that regulates diverse cellular processes such as signal transduction, cytoskeletal organization and cell polarity, cell proliferation and differentiation, intracellular membrane trafficking and transport vesicle formation, and nucleocytoplasmic transport. These proteins function as molecular switches that cycle between active and inactive states, and this cycle is linked to GTP binding and hydrolysis. In this review, the roles of the plant complement of small GTP-binding proteins in these cellular processes are described, as well as accessory proteins that control their activity, and current understanding of the functions of individual members of these families in plants-with a focus on the model organism Arabidopsis-is presented. Some potential novel roles of these GTPases in plants, relative to their established roles in yeast and/or animal systems, are also discussed.
Collapse
Affiliation(s)
- Erik Nielsen
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA;
| |
Collapse
|
7
|
Kim S, Nie H, Jun B, Kim J, Lee J, Kim S, Kim E, Kim S. Functional genomics by integrated analysis of transcriptome of sweet potato (Ipomoea batatas (L.) Lam.) during root formation. Genes Genomics 2020; 42:581-596. [PMID: 32240514 DOI: 10.1007/s13258-020-00927-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 03/26/2020] [Indexed: 12/30/2022]
Abstract
BACKGROUND Sweet potato is easily propagated by cuttings. But the molecular biological mechanism of adventitious root formation are not yet clear. OBJECTIVE To understand the molecular mechanisms of adventitious root formation from stem cuttings in sweet potato. METHODS RNA-seq analysis was performed using un-rooted stem (0 day) and rooted stem (3 days). Gene Ontology (GO) enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, comparison with Arabidopsis transcription factors (TFs) of DEGs were conducted to investigate the characteristics of genes and TFs involved in root formation. In addition, qRT-PCR analysis using roots at 0, 3, 6, 9, and 12 days after planting was performed to confirm RNA-seq reliability and related genes expression. RESULTS 42,459 representative transcripts and 2092 DEGs were obtained through the RNA-seq analysis. The DEGs indicated the GO terms related to the single-organism metabolic process and cell periphery, and involved in the biosynthesis of secondary metabolites, and phenylpropanoid biosynthesis in KEGG pathways. The comparison with Arabidopsis thaliana TF database showed that 3 TFs (WRKY, NAC, bHLH) involved in root formation of sweet potato. qRT-PCR analysis, which was conducted to confirm the reliability of RNA-seq analysis, indicated that some metabolisms including oxidative stress and wounding, transport, hormone may be involved in adventitious root formation. CONCLUSIONS The detected genes related to secondary metabolism, some hormone (auxin, gibberellin), transports, etc. and 3 TFs (WRKY, NAC, bHLH) may have functions in adventitious roots formation. This results provide valuable resources for future research on the adventitious root formation of sweet potato.
Collapse
Affiliation(s)
- Sujung Kim
- Department of Environmental Horticulture, University of Seoul, Seoul, 02504, Korea
| | - Hualin Nie
- Department of Environmental Horticulture, University of Seoul, Seoul, 02504, Korea
| | - Byungki Jun
- Department of Environmental Horticulture, University of Seoul, Seoul, 02504, Korea.,NH Seed Research Development Center, Nonghyup Agribusiness Group Incorporation, Anseong, 17558, Korea
| | - Jiseong Kim
- Department of Environmental Horticulture, University of Seoul, Seoul, 02504, Korea
| | - Jeongeun Lee
- Department of Environmental Horticulture, University of Seoul, Seoul, 02504, Korea
| | - Seungill Kim
- Department of Environmental Horticulture, University of Seoul, Seoul, 02504, Korea
| | - Ekyune Kim
- College of Pharmacy, Catholic University of Daegu, Gyeongsan, Gyeongbuk, 38430, Korea
| | - Sunhyung Kim
- Department of Environmental Horticulture, University of Seoul, Seoul, 02504, Korea.
| |
Collapse
|
8
|
Huang S, Jiang L, Zhuang X. Possible Roles of Membrane Trafficking Components for Lipid Droplet Dynamics in Higher Plants and Green Algae. FRONTIERS IN PLANT SCIENCE 2019; 10:207. [PMID: 30858860 PMCID: PMC6397863 DOI: 10.3389/fpls.2019.00207] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 02/07/2019] [Indexed: 05/04/2023]
Abstract
Lipid droplets are ubiquitous dynamic organelles that contain neutral lipids surrounded by a phospholipid monolayer. They can store and supply lipids for energy metabolism and membrane synthesis. In addition, protein transport and lipid exchange often occur between LDs and various organelles to control lipid homeostasis in response to multiple stress responses and cellular signaling. In recent years, multiple membrane trafficking proteins have been identified through LD proteomics and genetic analyses. These membrane trafficking machineries are emerging as critical regulators to function in different LD-organelle interactions, e.g., for LD dynamics, biogenesis and turnover. In this review, we will summarize recent advances in regard to LD-related membrane trafficking proteins and discuss future investigations in higher plants and green algae.
Collapse
Affiliation(s)
- Shuxian Huang
- Centre for Cell and Developmental Biology, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Liwen Jiang
- Centre for Cell and Developmental Biology, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
- The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Xiaohong Zhuang
- Centre for Cell and Developmental Biology, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
- *Correspondence: Xiaohong Zhuang,
| |
Collapse
|
9
|
Haraguchi T, Ito K, Duan Z, Rula S, Takahashi K, Shibuya Y, Hagino N, Miyatake Y, Nakano A, Tominaga M. Functional Diversity of Class XI Myosins in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2018; 59:2268-2277. [PMID: 30398666 PMCID: PMC6217714 DOI: 10.1093/pcp/pcy147] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 07/20/2018] [Indexed: 05/24/2023]
Abstract
Plant myosin XI acts as a motive force for cytoplasmic streaming through interacting with actin filaments within the cell. Arabidopsis thaliana (At) has 13 genes belonging to the myosin XI family. Previous reverse genetic approaches suggest that At myosin XIs are partially redundant, but are functionally diverse for their specific tasks within the plant. However, the tissue-specific expression and enzymatic properties of myosin XIs have to date been poorly understood, primarily because of the difficulty in cloning and expressing large myosin XI genes and proteins. In this study, we cloned full-length cDNAs and promoter regions for all 13 At myosin XIs and identified tissue-specific expression (using promoter-reporter assays) and motile and enzymatic activities (using in vitro assays). In general, myosins belonging to the same class have similar velocities and ATPase activities. However, the velocities and ATPase activities of the 13 At myosin XIs are significantly different and are classified broadly into three groups based on velocity (high group, medium group and low group). Interestingly, the velocity groups appear roughly correlated with the tissue-specific expression patterns. Generally, ubiquitously expressed At myosin XIs belong to the medium-velocity group, pollen-specific At myosin XIs belong to the high-velocity group and only one At myosin XI (XI-I) is classified as belonging to the low-velocity group. In this study, we demonstrated the diversity of the 13 myosin XIs in Arabidopsis at the molecular and tissue levels. Our results indicate that myosin XIs in higher plants have distinct motile and enzymatic activities adapted for their specific roles.
Collapse
Affiliation(s)
- Takeshi Haraguchi
- Department of Biology, Graduate School of Science, Chiba University, Inage-ku, Chiba, Japan
| | - Kohji Ito
- Department of Biology, Graduate School of Science, Chiba University, Inage-ku, Chiba, Japan
| | - Zhongrui Duan
- Faculty of Education and Integrated Arts and Sciences, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, Japan
| | - Sa Rula
- Department of Biology, Graduate School of Science, Chiba University, Inage-ku, Chiba, Japan
| | - Kento Takahashi
- Department of Biology, Graduate School of Science, Chiba University, Inage-ku, Chiba, Japan
| | - Yuno Shibuya
- Department of Integrative Bioscience and Biomedical Engineering, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, Japan
| | - Nanako Hagino
- Department of Integrative Bioscience and Biomedical Engineering, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, Japan
| | - Yuko Miyatake
- Department of Integrative Bioscience and Biomedical Engineering, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, Japan
| | - Akihiko Nakano
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Live Cell Super-Resolution Imaging Research Team, Extreme Photonics Research Group, RIKEN Center for Advanced Photonics, Wako, Saitama, Japan
| | - Motoki Tominaga
- Faculty of Education and Integrated Arts and Sciences, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, Japan
- Department of Integrative Bioscience and Biomedical Engineering, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
10
|
Perico C, Sparkes I. Plant organelle dynamics: cytoskeletal control and membrane contact sites. THE NEW PHYTOLOGIST 2018; 220:381-394. [PMID: 30078196 DOI: 10.1111/nph.15365] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 06/10/2018] [Indexed: 05/22/2023]
Abstract
Contents Summary 381 I. Introduction 381 II. Basic movement characteristics 382 III. Actin and associated motors, myosins, play a primary role in plant organelle movement and positioning 382 IV. Mechanisms of myosin recruitment: a tightly regulated system? 384 V. Microtubules, associated motors and interplay with actin 386 VI. Role of organelle interactions: tales of tethers 387 VII. Summary model to describe organelle movement in higher plants 390 VIII. Why is organelle movement important? 390 IX. Conclusions and future perspectives 391 Acknowledgements 391 References 391 SUMMARY: Organelle movement and positioning are correlated with plant growth and development. Movement characteristics are seemingly erratic yet respond to external stimuli including pathogens and light. Given these clear correlations, we still do not understand the specific roles that movement plays in these processes. There are few exceptions including organelle inheritance during cell division and photorelocation of chloroplasts to prevent photodamage. The molecular and biophysical components that drive movement can be broken down into cytoskeletal components, motor proteins and tethers, which allow organelles to physically interact with one another. Our understanding of these components and concepts has exploded over the past decade, with recent technological advances allowing an even more in-depth profiling. Here, we provide an overview of the cytoskeletal and tethering components and discuss the mechanisms behind organelle movement in higher plants.
Collapse
Affiliation(s)
- Chiara Perico
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Imogen Sparkes
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| |
Collapse
|
11
|
Geitmann A, Nebenführ A. Navigating the plant cell: intracellular transport logistics in the green kingdom. Mol Biol Cell 2016; 26:3373-8. [PMID: 26416952 PMCID: PMC4591683 DOI: 10.1091/mbc.e14-10-1482] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Intracellular transport in plant cells occurs on microtubular and actin arrays. Cytoplasmic streaming, the rapid motion of plant cell organelles, is mostly driven by an actin–myosin mechanism, whereas specialized functions, such as the transport of large cargo or the assembly of a new cell wall during cell division, are performed by the microtubules. Different modes of transport are used, fast and slow, to either haul cargo over long distances or ascertain high-precision targeting, respectively. Various forms of the actin-specific motor protein myosin XI exist in plant cells and might be involved in different cellular functions.
Collapse
Affiliation(s)
- Anja Geitmann
- Department of Biological Sciences, Institut de recherche en biologie végétale, University of Montreal, Montreal, QC H1X 2B2, Canada
| | - Andreas Nebenführ
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996-0840
| |
Collapse
|
12
|
Ueda H, Tamura K, Hara-Nishimura I. Functions of plant-specific myosin XI: from intracellular motility to plant postures. CURRENT OPINION IN PLANT BIOLOGY 2015; 28:30-8. [PMID: 26432645 DOI: 10.1016/j.pbi.2015.08.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Revised: 08/11/2015] [Accepted: 08/14/2015] [Indexed: 05/02/2023]
Abstract
The plant-specific protein motor class myosin XI is known to function in rapid bulk flow of the cytoplasm (cytoplasmic streaming) and in organellar movements. Recent studies unveiled a wide range of physiological functions of myosin XI motors, from intracellular motility to organ movements. Arabidopsis thaliana has 13 members of myosin XI class. In vegetative organs, myosins XIk, XI1, and XI2 primarily contribute to dynamics and spatial configurations of endoplasmic reticulum that develops a tubular network in the cell periphery and thick strand-like structures in the inner cell regions. Myosin XI-i forms a nucleocytoplasmic linker and is responsible for nuclear movement and shape. In addition to these intracellular functions, myosin XIf together with myosin XIk is involved in the fundamental nature of plants; the actin-myosin XI cytoskeleton regulates organ straightening to adjust plant posture.
Collapse
Affiliation(s)
- Haruko Ueda
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Kentaro Tamura
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Ikuko Hara-Nishimura
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.
| |
Collapse
|
13
|
Tominaga M, Ito K. The molecular mechanism and physiological role of cytoplasmic streaming. CURRENT OPINION IN PLANT BIOLOGY 2015; 27:104-110. [PMID: 26202096 DOI: 10.1016/j.pbi.2015.06.017] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 06/25/2015] [Accepted: 06/26/2015] [Indexed: 05/20/2023]
Abstract
Cytoplasmic streaming occurs widely in plants ranging from algae to angiosperms. However, the molecular mechanism and physiological role of cytoplasmic streaming have long remained unelucidated. Recent molecular genetic approaches have identified specific myosin members (XI-2 and XI-K as major and XI-1, XI-B, and XI-I as minor motive forces) for the generation of cytoplasmic streaming among 13 myosin XIs in Arabidopsis thaliana. Simultaneous knockout of these myosin XI members led to a reduced velocity of cytoplasmic streaming and marked defects of plant development. Furthermore, the artificial modifications of myosin XI-2 velocity changed plant and cell sizes along with the velocity of cytoplasmic streaming. Therefore, we assume that cytoplasmic streaming is one of the key regulators in determining plant size.
Collapse
Affiliation(s)
- Motoki Tominaga
- Faculty of Education and Integrated Arts and Sciences, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan; Japan Science and Technology Agency, PRESTO, 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan.
| | - Kohji Ito
- Department of Biology, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan.
| |
Collapse
|
14
|
Buchnik L, Abu-Abied M, Sadot E. Role of plant myosins in motile organelles: is a direct interaction required? JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2015; 57:23-30. [PMID: 25196231 DOI: 10.1111/jipb.12282] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 08/31/2014] [Indexed: 06/03/2023]
Abstract
Plant organelles are highly motile, with speed values of 3-7 µm/s in cells of land plants and about 20-60 µm/s in characean algal cells. This movement is believed to be important for rapid distribution of materials around the cell, for the plant's ability to respond to environmental biotic and abiotic signals and for proper growth. The main machinery that propels motility of organelles within plant cells is based on the actin cytoskeleton and its motor proteins the myosins. Most plants express multiple members of two main classes: myosin VIII and myosin XI. While myosin VIII has been characterized as a slow motor protein, myosins from class XI were found to be the fastest motor proteins known in all kingdoms. Paradoxically, while it was found that myosins from class XI regulate most organelle movement, it is not quite clear how or even if these motor proteins attach to the organelles whose movement they regulate.
Collapse
Affiliation(s)
- Limor Buchnik
- The Institute of Plant Sciences, The Volcani Center, ARO, PO Box 6, Bet-Dagan, 50250, Israel
| | | | | |
Collapse
|
15
|
Thatcher SR, Zhou W, Leonard A, Wang BB, Beatty M, Zastrow-Hayes G, Zhao X, Baumgarten A, Li B. Genome-wide analysis of alternative splicing in Zea mays: landscape and genetic regulation. THE PLANT CELL 2014; 26:3472-87. [PMID: 25248552 PMCID: PMC4213170 DOI: 10.1105/tpc.114.130773] [Citation(s) in RCA: 159] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 08/07/2014] [Accepted: 09/10/2014] [Indexed: 05/18/2023]
Abstract
Alternative splicing enhances transcriptome diversity in all eukaryotes and plays a role in plant tissue identity and stress adaptation. To catalog new maize (Zea mays) transcripts and identify genomic loci that regulate alternative splicing, we analyzed over 90 RNA-seq libraries from maize inbred lines B73 and Mo17, as well as Syn10 doubled haploid lines (progenies from B73 × Mo17). Transcript discovery was augmented with publicly available data from 14 maize tissues, expanding the maize transcriptome by more than 30,000 and increasing the percentage of intron-containing genes that undergo alternative splicing to 40%. These newly identified transcripts greatly increase the diversity of the maize proteome, sometimes coding for entirely different proteins compared with their most similar annotated isoform. In addition to increasing proteome diversity, many genes encoding novel transcripts gained an additional layer of regulation by microRNAs, often in a tissue-specific manner. We also demonstrate that the majority of genotype-specific alternative splicing can be genetically mapped, with cis-acting quantitative trait loci (QTLs) predominating. A large number of trans-acting QTLs were also apparent, with nearly half located in regions not shown to contain genes associated with splicing. Taken together, these results highlight the currently underappreciated role that alternative splicing plays in tissue identity and genotypic variation in maize.
Collapse
Affiliation(s)
| | | | | | - Bing-Bing Wang
- DuPont Pioneer, Johnston, Iowa 50131 Huazhi Rice Biotech Company, Changsha, Hunan 410125, China
| | | | | | - Xiangyu Zhao
- DuPont Pioneer, Wilmington, Delaware 19880 Shandong Agricultural University, Shandong 271000, China
| | | | - Bailin Li
- DuPont Pioneer, Wilmington, Delaware 19880
| |
Collapse
|
16
|
Paul P, Simm S, Mirus O, Scharf KD, Fragkostefanakis S, Schleiff E. The complexity of vesicle transport factors in plants examined by orthology search. PLoS One 2014; 9:e97745. [PMID: 24844592 PMCID: PMC4028247 DOI: 10.1371/journal.pone.0097745] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 04/24/2014] [Indexed: 11/18/2022] Open
Abstract
Vesicle transport is a central process to ensure protein and lipid distribution in eukaryotic cells. The current knowledge on the molecular components and mechanisms of this process is majorly based on studies in Saccharomyces cerevisiae and Arabidopsis thaliana, which revealed 240 different proteinaceous factors either experimentally proven or predicted to be involved in vesicle transport. In here, we performed an orthologue search using two different algorithms to identify the components of the secretory pathway in yeast and 14 plant genomes by using the 'core-set' of 240 factors as bait. We identified 4021 orthologues and (co-)orthologues in the discussed plant species accounting for components of COP-II, COP-I, Clathrin Coated Vesicles, Retromers and ESCRTs, Rab GTPases, Tethering factors and SNAREs. In plants, we observed a significantly higher number of (co-)orthologues than yeast, while only 8 tethering factors from yeast seem to be absent in the analyzed plant genomes. To link the identified (co-)orthologues to vesicle transport, the domain architecture of the proteins from yeast, genetic model plant A. thaliana and agriculturally relevant crop Solanum lycopersicum has been inspected. For the orthologous groups containing (co-)orthologues from yeast, A. thaliana and S. lycopersicum, we observed the same domain architecture for 79% (416/527) of the (co-)orthologues, which documents a very high conservation of this process. Further, publically available tissue-specific expression profiles for a subset of (co-)orthologues found in A. thaliana and S. lycopersicum suggest that some (co-)orthologues are involved in tissue-specific functions. Inspection of localization of the (co-)orthologues based on available proteome data or localization predictions lead to the assignment of plastid- as well as mitochondrial localized (co-)orthologues of vesicle transport factors and the relevance of this is discussed.
Collapse
Affiliation(s)
- Puneet Paul
- Department of Biosciences Molecular Cell Biology of Plants
| | - Stefan Simm
- Department of Biosciences Molecular Cell Biology of Plants
| | - Oliver Mirus
- Department of Biosciences Molecular Cell Biology of Plants
| | | | | | - Enrico Schleiff
- Department of Biosciences Molecular Cell Biology of Plants
- Cluster of Excellence Frankfurt
- Center of Membrane Proteomics; Goethe University Frankfurt, Frankfurt/Main, Germany
- * E-mail:
| |
Collapse
|
17
|
Liang WH, Wang HH, Li H, Wang JJ, Yang DD, Hao YF, Li JJ, Lou C, Lin QT, Hou CQ. Isolation and characterization of OsMY1, a putative partner of OsRac5 from Oryza sativa L. Mol Biol Rep 2014; 41:1829-36. [PMID: 24464125 DOI: 10.1007/s11033-014-3032-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2013] [Accepted: 01/03/2014] [Indexed: 11/22/2022]
Abstract
OsRac5 belongs to the rice Rho of plants family, and acts as the molecular switch in the signal pathway which is pivotally involved in the rice fertility control. One of its putative partners, OsMY1, was isolated by yeast two-hybrid screening from rice panicle cDNA library. Bioinformatics analysis shows that OsMY1 contains a coiled-coil domain which generally appeared in the partners of Rho GTPases. By yeast two-hybrid assay, it is confirmed that OsMY1 binds both the wild type (WT) and constitutively active (CA) OsRac5, but does not interact with dominantly negative OsRac5. In addition, the interactions between OsMY1 and WT-OsRac5 or CA-OsRac5 in vivo are demonstrated by bimolecular fluorescence complementation assay. Using PCR-mediated sequence deletion and point mutation of OsMY1, the interaction between OsMY1 and OsRac5 was identified to be mediated by the coiled-coil domain in OsMY1, and their binding was quantified by O-nitro-phenyl-β-D-galactopyranoside assay. Real-time PCR shows that OsMY1 and OsRac5 are coordinately expressed in rice leaves and panicles with similar expression patterns. Our results suggest that OsMY1 is an important target of OsRac5 and that these two genes are involved in the same biological processes in rice growth and development.
Collapse
Affiliation(s)
- Wei-Hong Liang
- College of Life Science, Henan Normal University, Xinxiang, 453007, China,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Madison SL, Nebenführ A. Understanding myosin functions in plants: are we there yet? CURRENT OPINION IN PLANT BIOLOGY 2013; 16:710-717. [PMID: 24446546 DOI: 10.1016/j.pbi.2013.10.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Myosins are motor proteins that drive movements along actin filaments and have long been assumed to be responsible for cytoplasmic streaming in plant cells. This conjecture is now firmly established by genetic analysis in the reference species, Arabidopsis thaliana. This work and similar approaches in the moss, Physcomitrella patens, also established that myosin-driven movements are necessary for cell growth and polarity, organelle distribution and shape, and actin organization and dynamics. Identification of a mechanistic link between intracellular movements and cell expansion has proven more challenging, not the least because of the high level of apparent genetic redundancy among myosin family members. Recent progress in the creation of functional complementation constructs and identification of interaction partners promises a way out of this dilemma.
Collapse
|
19
|
Peremyslov VV, Morgun EA, Kurth EG, Makarova KS, Koonin EV, Dolja VV. Identification of myosin XI receptors in Arabidopsis defines a distinct class of transport vesicles. THE PLANT CELL 2013; 25:3022-38. [PMID: 23995081 PMCID: PMC3784596 DOI: 10.1105/tpc.113.113704] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
To characterize the mechanism through which myosin XI-K attaches to its principal endomembrane cargo, a yeast two-hybrid library of Arabidopsis thaliana cDNAs was screened using the myosin cargo binding domain as bait. This screen identified two previously uncharacterized transmembrane proteins (hereinafter myosin binding proteins or MyoB1/2) that share a myosin binding, conserved domain of unknown function 593 (DUF593). Additional screens revealed that MyoB1/2 also bind myosin XI-1, whereas myosin XI-I interacts with the distantly related MyoB7. The in vivo interactions of MyoB1/2 with myosin XI-K were confirmed by immunoprecipitation and colocalization analyses. In epidermal cells, the yellow fluorescent protein-tagged MyoB1/2 localize to vesicles that traffic in a myosin XI-dependent manner. Similar to myosin XI-K, MyoB1/2 accumulate in the tip-growing domain of elongating root hairs. Gene knockout analysis demonstrated that functional cooperation between myosin XI-K and MyoB proteins is required for proper plant development. Unexpectedly, the MyoB1-containing vesicles did not correspond to brefeldin A-sensitive Golgi and post-Golgi or prevacuolar compartments and did not colocalize with known exocytic or endosomal compartments. Phylogenomic analysis suggests that DUF593 emerged in primitive land plants and founded a multigene family that is conserved in all flowering plants. Collectively, these findings indicate that MyoB are membrane-anchored myosin receptors that define a distinct, plant-specific transport vesicle compartment.
Collapse
Affiliation(s)
- Valera V. Peremyslov
- Department of Botany and Plant Pathology and Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon 97331
| | - Eva A. Morgun
- Department of Botany and Plant Pathology and Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon 97331
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742
| | - Elizabeth G. Kurth
- Department of Botany and Plant Pathology and Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon 97331
| | - Kira S. Makarova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894
| | - Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894
| | - Valerian V. Dolja
- Department of Botany and Plant Pathology and Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon 97331
- Address correspondence to
| |
Collapse
|
20
|
Abstract
Micro syndrome (OMIM 60018) and Martsolf syndrome (OMIM 21270) are related rare autosomal recessive disorders characterized by ocular and neurological abnormalities and hypothalamic hypogonadism. Micro syndrome has been associated with causative mutations in three disease genes: RAB3GAP1, RAB3GAP2 and RAB18. Martsolf syndrome has been associated with a mutation in RAB3GAP2. The present review summarizes the current literature on these genes and the proteins they encode.
Collapse
|
21
|
Avisar D, Abu-Abied M, Belausov E, Sadot E. Myosin XIK is a major player in cytoplasm dynamics and is regulated by two amino acids in its tail. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:241-9. [PMID: 21914656 PMCID: PMC3245463 DOI: 10.1093/jxb/err265] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 07/22/2011] [Accepted: 08/02/2011] [Indexed: 05/18/2023]
Abstract
It has recently been found that among the 17 Arabidopsis myosins, six (XIC, XIE, XIK, XI-I, MYA1, and MYA2) have a major role in the motility of Golgi bodies and mitochondria in Nicotiana benthamiana and Nicotiana tabacum. Here, the same dominant negative tail fragments were also found to arrest the movement of Gogi bodies when transiently expressed in Arabidopsis plants. However, when a Golgi marker was transiently expressed in plants knocked out in these myosins, its movement was dramatically inhibited only in the xik mutant. In addition, a tail fragment of myosin XIK could inhibit the movement of several post-Golgi organelles, such as the trans-Golgi network, pre-vacuolar compartment, and endosomes, as well as total cytoplasmic streaming, suggesting that myosin XIK is a major player in cytoplasm kinetics. However, no co-localization of myosin tails with the arrested organelles was observed. Several deletion truncations of the myosin XIK tail were generated to corroborate function with localization. All deletion mutants possessing an inhibitory effect on organelle movement exhibited a diffuse cytoplasmic distribution. Point mutations in the tail of myosin XIK revealed that Arg1368 and Arg1443 are essential for its activity. These residues correspond to Lys1706 and Lys1779 from mouse myosin Va, which mediate the inhibitory head-tail interaction in this myosin. Therefore, such an interaction might underlie the dominant negative effect of truncated plant myosin tails and explain the mislocalization with target organelles.
Collapse
Affiliation(s)
| | | | | | - Einat Sadot
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
22
|
Yokota E, Ueda H, Hashimoto K, Orii H, Shimada T, Hara-Nishimura I, Shimmen T. Myosin XI-dependent formation of tubular structures from endoplasmic reticulum isolated from tobacco cultured BY-2 cells. PLANT PHYSIOLOGY 2011; 156:129-43. [PMID: 21427277 PMCID: PMC3091044 DOI: 10.1104/pp.111.175018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 03/18/2011] [Indexed: 05/17/2023]
Abstract
The reticular network of the endoplasmic reticulum (ER) consists of tubular and lamellar elements and is arranged in the cortical region of plant cells. This network constantly shows shape change and remodeling motion. Tubular ER structures were formed when GTP was added to the ER vesicles isolated from tobacco (Nicotiana tabacum) cultured BY-2 cells expressing ER-localized green fluorescent protein. The hydrolysis of GTP during ER tubule formation was higher than that under conditions in which ER tubule formation was not induced. Furthermore, a shearing force, such as the flow of liquid, was needed for the elongation/extension of the ER tubule. The shearing force was assumed to correspond to the force generated by the actomyosin system in vivo. To confirm this hypothesis, the S12 fraction was prepared, which contained both cytosol and microsome fractions, including two classes of myosins, XI (175-kD myosin) and VIII (BY-2 myosin VIII-1), and ER-localized green fluorescent protein vesicles. The ER tubules and their mesh-like structures were arranged in the S12 fraction efficiently by the addition of ATP, GTP, and exogenous filamentous actin. The tubule formation was significantly inhibited by the depletion of 175-kD myosin from the S12 fraction but not BY-2 myosin VIII-1. Furthermore, a recombinant carboxyl-terminal tail region of 175-kD myosin also suppressed ER tubule formation. The tips of tubules moved along filamentous actin during tubule elongation. These results indicated that the motive force generated by the actomyosin system contributes to the formation of ER tubules, suggesting that myosin XI is responsible not only for the transport of ER in cytoplasm but also for the reticular organization of cortical ER.
Collapse
Affiliation(s)
- Etsuo Yokota
- Department of Life Science, Graduate School of Life Science, University of Hyogo, Harima Science Park City, Hyogo 678-1297, Japan.
| | | | | | | | | | | | | |
Collapse
|
23
|
Sattarzadeh A, Schmelzer E, Hanson MR. Analysis of Organelle Targeting by DIL Domains of the Arabidopsis Myosin XI Family. FRONTIERS IN PLANT SCIENCE 2011; 2:72. [PMID: 22645548 PMCID: PMC3355782 DOI: 10.3389/fpls.2011.00072] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 10/16/2011] [Indexed: 05/07/2023]
Abstract
The Arabidopsis thaliana genome encodes 13 myosin XI motor proteins. Previous insertional mutant analysis has implicated substantial redundancy of function of plant myosin XIs in transport of intracellular organelles. Considerable information is available about the interaction of cargo with the myosin XI-homologous yeast myosin V protein myo2p. We identified a region in each of 12 myosin XI sequences that correspond to the yeast myo2p secretory-vesicle binding domain (the "DIL" domain). Structural modeling of the myosin DIL domain region of plant myosin XIs revealed significant similarity to the yeast myo2p and myo4p DIL domains. Transient expression of YFP fusions with the Arabidopsis myosin XI DIL domain resulted in fluorescent labeling of a variety of organelles, including the endoplasmic reticulum, peroxisomes, Golgi, and nuclear envelope. With the exception of the YFP::MYA1 DIL fusion, expression of the DIL-YFP fusions resulted in loss of motility of labeled organelles, consistent with a dominant-negative effect. Certain fusions resulted in localization to the cytoplasm, plasma membrane, or to unidentified vesicles. The same YFP-domain fusion sometimes labeled more than one organelle. Expression of a YFP fusion to a yeast myo2p DIL domain resulted in labeling of plant peroxisomes. Fusions with some of the myosin XI domains resulted in labeling of known cargoes of the particular myosin XI; however, certain myosin XI YFP fusions labeled organelles that had not previously been found to be detectably affected by mutations nor by expression of dominant-negative constructs.
Collapse
Affiliation(s)
- Amirali Sattarzadeh
- Central Microscopy, Max-Planck-Institute for Plant Breeding ResearchCologne, Germany
- Department of Molecular Biology and Genetics, Cornell UniversityIthaca, NY, USA
| | - Elmon Schmelzer
- Central Microscopy, Max-Planck-Institute for Plant Breeding ResearchCologne, Germany
| | - Maureen R. Hanson
- Department of Molecular Biology and Genetics, Cornell UniversityIthaca, NY, USA
- *Correspondence: Maureen R. Hanson, Department of Molecular Biology and Genetics, Cornell University, Biotechnology Building, Ithaca, NY 14853, USA. e-mail:
| |
Collapse
|
24
|
Anthonio EA, Brees C, Baumgart-Vogt E, Hongu T, Huybrechts SJ, Van Dijck P, Mannaerts GP, Kanaho Y, Van Veldhoven PP, Fransen M. Small G proteins in peroxisome biogenesis: the potential involvement of ADP-ribosylation factor 6. BMC Cell Biol 2009; 10:58. [PMID: 19686593 PMCID: PMC3224584 DOI: 10.1186/1471-2121-10-58] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Accepted: 08/17/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Peroxisomes execute diverse and vital functions in virtually every eukaryote. New peroxisomes form by budding from pre-existing organelles or de novo by vesiculation of the ER. It has been suggested that ADP-ribosylation factors and COPI coatomer complexes are involved in these processes. RESULTS Here we show that all viable Saccharomyces cerevisiae strains deficient in one of the small GTPases which have an important role in the regulation of vesicular transport contain functional peroxisomes, and that the number of these organelles in oleate-grown cells is significantly upregulated in the arf1 and arf3 null strains compared to the wild-type strain. In addition, we provide evidence that a portion of endogenous Arf6, the mammalian orthologue of yeast Arf3, is associated with the cytoplasmic face of rat liver peroxisomes. Despite this, ablation of Arf6 did neither influence the regulation of peroxisome abundance nor affect the localization of peroxisomal proteins in cultured fetal hepatocytes. However, co-overexpression of wild-type, GTP hydrolysis-defective or (dominant-negative) GTP binding-defective forms of Arf1 and Arf6 caused mislocalization of newly-synthesized peroxisomal proteins and resulted in an alteration of peroxisome morphology. CONCLUSION These observations suggest that Arf6 is a key player in mammalian peroxisome biogenesis. In addition, they also lend strong support to and extend the concept that specific Arf isoform pairs may act in tandem to regulate exclusive trafficking pathways.
Collapse
Affiliation(s)
- Erin A Anthonio
- Department of Molecular Cell Biology, Catholic University of Leuven, Leuven, Belgium.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Avisar D, Abu-Abied M, Belausov E, Sadot E, Hawes C, Sparkes IA. A comparative study of the involvement of 17 Arabidopsis myosin family members on the motility of Golgi and other organelles. PLANT PHYSIOLOGY 2009; 150:700-9. [PMID: 19369591 PMCID: PMC2689979 DOI: 10.1104/pp.109.136853] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Accepted: 04/08/2009] [Indexed: 05/17/2023]
Abstract
Gene families with multiple members are predicted to have individuals with overlapping functions. We examined all of the Arabidopsis (Arabidopsis thaliana) myosin family members for their involvement in Golgi and other organelle motility. Truncated fragments of all 17 annotated Arabidopsis myosins containing either the IQ tail or tail domains only were fused to fluorescent markers and coexpressed with a Golgi marker in two different plants. We tracked and calculated Golgi body displacement rate in the presence of all myosin truncations and found that tail fragments of myosins MYA1, MYA2, XI-C, XI-E, XI-I, and XI-K were the best inhibitors of Golgi body movement in the two plants. Tail fragments of myosins XI-B, XI-F, XI-H, and ATM1 had an inhibitory effect on Golgi bodies only in Nicotiana tabacum, while tail fragments of myosins XI-G and ATM2 had a slight effect on Golgi body motility only in Nicotiana benthamiana. The best myosin inhibitors of Golgi body motility were able to arrest mitochondrial movement too. No exclusive colocalization was found between these myosins and Golgi bodies in our system, although the excess of cytosolic signal observed could mask myosin molecules bound to the surface of the organelle. From the preserved actin filaments found in the presence of enhanced green fluorescent protein fusions of truncated myosins and the motility of myosin punctae, we conclude that global arrest of actomyosin-derived cytoplasmic streaming had not occurred. Taken together, our data suggest that the above myosins are involved, directly or indirectly, in the movement of Golgi and mitochondria in plant cells.
Collapse
Affiliation(s)
- Dror Avisar
- Institute of Plant Sciences, Volcani Center, Bet-Dagan 50250, Israel
| | | | | | | | | | | |
Collapse
|
26
|
Higashi-Fujime S, Nakamura A. Cell and molecular biology of the fastest myosins. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2009; 276:301-47. [PMID: 19584016 DOI: 10.1016/s1937-6448(09)76007-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Chara myosin is a class XI plant myosin in green algae Chara corallina and responsible for fast cytoplasmic streaming. The Chara myosin exhibits the fastest sliding movement of F-actin at 60 mum/s as observed so far, 10-fold of the shortening speed of muscle. It has some distinct properties differing from those of muscle myosin. Although knowledge about Chara myosin is very limited at present, we have tried to elucidate functional bases of its characteristics by comparing with those of other myosins. In particular, we have built the putative atomic model of Chara myosin by using the homology-based modeling system and databases. Based on the putative structure of Chara myosin obtained, we have analyzed the relationship between structure and function of Chara myosin to understand its distinct properties from various aspects by referring to the accumulated knowledge on mechanochemical and structural properties of other classes of myosin, particularly animal and fungal myosin V. We will also discuss the functional significance of Chara myosin in a living cell.
Collapse
Affiliation(s)
- Sugie Higashi-Fujime
- Department of Molecular and Cellular Pharmacology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | | |
Collapse
|
27
|
Cai G, Cresti M. Organelle motility in the pollen tube: a tale of 20 years. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:495-508. [PMID: 19112169 DOI: 10.1093/jxb/ern321] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Organelle movement is an evident feature of pollen tubes and is essential for the process of tube growth because it enables the proper distribution of organelles and the accumulation of secretory vesicles in the tube apex. Organelles move along the actin filaments through dynamic interactions with myosin but other proteins are probably responsible for control of this activity. The role of microtubules and microtubule-based motors is less clear and somewhat enigmatic. Nevertheless, the pollen tube is an excellent cell model in which to study and analyse the molecular mechanisms that drive and control organelle motility in relation to plant cell expansion. Current knowledge and the main scientific discoveries in this field of research over the last 20 years are summarized here. Future prospects in the study of the molecular mechanisms that mediate organelle transport and vesicle accumulation during pollen tube elongation are also discussed.
Collapse
Affiliation(s)
- Giampiero Cai
- Dipartimento Scienze Ambientali, Università di Siena, via Mattioli 4, I-53100 Siena, Italy.
| | | |
Collapse
|