1
|
Gupta R, Verma N, Tewari RK. Micronutrient deficiency-induced oxidative stress in plants. PLANT CELL REPORTS 2024; 43:213. [PMID: 39133336 DOI: 10.1007/s00299-024-03297-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 08/01/2024] [Indexed: 08/13/2024]
Abstract
Micronutrients like iron (Fe), zinc (Zn), copper (Cu), manganese (Mn), boron (B), nickel (Ni), and molybdenum (Mo) perform significant roles in the regulation of plant metabolism, growth, and development. Micronutrients, namely Fe, Zn, Cu, Mn, and Ni, are involved in oxidative stress and antioxidant defense as they are cofactors or activators of various antioxidant enzymes, viz., superoxide dismutase (Fe, Cu/Zn, Mn, and Ni), catalase (Fe), and ascorbate peroxidase (Fe). An effort has been made to incorporate recent advances along with classical work done on the micronutrient deficiency-induced oxidative stress and associated antioxidant responses of plants. Deficiency of a micronutrient produces ROS in the cellular compartments. Enzymatic and non-enzymatic antioxidant defense systems are often modulated by micronutrient deficiency to regulate redox balance and scavenge deleterious ROS for the safety of cellular constituents. ROS can strike cellular constituents such as lipids, proteins, and nucleic acids and can destruct cellular membranes and proteins. ROS might act as a signaling molecule and activate the antioxidant proteins by interacting with signaling partners such as respiratory burst oxidase homolog (RBOH), G-proteins, Ca2+, mitogen activated protein kinases (MAPKs), and various transcription factors (TFs). Opinions on probable ROS signaling under micronutrient deficiency have been described in this review. However, further research is required to decipher micronutrient deficiency-induced ROS generation, perception, and associated downstream signaling events, leading to the development of antioxidant responses in plants.
Collapse
Affiliation(s)
- Roshani Gupta
- Department of Botany, University of Lucknow, Lucknow, 226007, India
| | - Nikita Verma
- Department of Botany, University of Lucknow, Lucknow, 226007, India
| | | |
Collapse
|
2
|
Dong Q, Chen M, Yu C, Zhang Y, Zha L, Kakumyan P, Yang H, Zhao Y. Combined Proteomic and Metabolomic Analyses Reveal the Comprehensive Regulation of Stropharia rugosoannulata Mycelia Exposed to Cadmium Stress. J Fungi (Basel) 2024; 10:134. [PMID: 38392806 PMCID: PMC10890358 DOI: 10.3390/jof10020134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/04/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024] Open
Abstract
The potential of Stropharia rugosoannulata as a microbial remediation material for cadmium (Cd)-contaminated soil lies in its capacity to absorb and accumulate Cd in its mycelia. This study utilized the TMT and LC-MS techniques to conduct integrated proteomic and metabolomic analyses with the aim of investigating the mycelial response mechanisms of S. rugosoannulata under low- and high-Cd stresses. The results revealed that mycelia employed a proactive defense mechanism to maintain their physiological functions, leading to reduced sensitivity to low-Cd stress. The ability of mycelia to withstand high levels of Cd stress was influenced primarily by the comprehensive regulation of six metabolic pathways, which led to a harmonious balance between nitrogen and carbohydrate metabolism and to reductions in oxidative stress and growth inhibition caused by Cd. The results provide valuable insights into the molecular mechanisms involved in the response of S. rugosoannulata mycelia to Cd stress.
Collapse
Affiliation(s)
- Qin Dong
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Mingjie Chen
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Changxia Yu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Yaru Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Lei Zha
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Pattana Kakumyan
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Huanling Yang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Yan Zhao
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| |
Collapse
|
3
|
Fan Z, Wu Y, Zhao L, Fu L, Deng L, Deng J, Ding D, Xiao S, Deng X, Peng S, Pan Z. MYB308-mediated transcriptional activation of plasma membrane H + -ATPase 6 promotes iron uptake in citrus. HORTICULTURE RESEARCH 2022; 9:uhac088. [PMID: 35685222 PMCID: PMC9171118 DOI: 10.1093/hr/uhac088] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/30/2022] [Indexed: 05/15/2023]
Abstract
Iron-deficiency chlorosis is a common nutritional disorder in crops grown on alkaline or calcareous soils. Although the acclimation mechanism to iron deficiency has been investigated, the genetic regulation of iron acquisition is still unclear. Here, by comparing the iron uptake process between the iron-poor-soil-tolerant citrus species Zhique (ZQ) and the iron-poor-soil-sensitive citrus species trifoliate orange (TO), we discovered that enhanced root H + efflux is crucial for the tolerance to iron deficiency in ZQ. The H+ efflux is mainly regulated by a plasma membrane-localized H+-ATPase, HA6, the expression of which is upregulated in plants grown in soil with low iron content, and significantly higher in the roots of ZQ than TO. Overexpression of the HA6 gene in the Arabidopsis thaliana aha2 mutant, defective in iron uptake, recovered the wild-type phenotype. In parallel, overexpression of the HA6 gene in TO significantly increased iron content of plants. Moreover, an iron deficiency-induced transcription factor, MYB308, was revealed to bind the promoter and activate the expression of HA6 in ZQ in yeast one-hybrid, electrophoretic mobility shift, and dual-luciferase assays. Overexpression of MYB308 in ZQ roots significantly increased the expression level of the HA6 gene. However, MYB308 cannot bind or activate the HA6 promoter in TO due to the sequence variation of the corresponding MYB308 binding motif. Taking these results together, we propose that the MYB308 could activate HA6 to promote root H+ efflux and iron uptake, and that the distinctive MYB308-HA6 transcriptional module may be, at least in part, responsible for the iron deficiency tolerance in citrus.
Collapse
Affiliation(s)
- Zhengyan Fan
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region, Ministry of Agriculture), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Yifang Wu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region, Ministry of Agriculture), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Liuying Zhao
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region, Ministry of Agriculture), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Lina Fu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region, Ministry of Agriculture), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Lile Deng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region, Ministry of Agriculture), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiarui Deng
- Chenggu Fruit Industry Technical Guidance Station, Shaanxi 723200, China
| | - Dekuan Ding
- Chenggu Fruit Industry Technical Guidance Station, Shaanxi 723200, China
| | - Shunyuan Xiao
- Institute for Bioscience and Biotechnology Research & Department of Plant Sciences and Landscape Architecture, University of Maryland College Park, Rockville, MD 20850, USA
| | - Xiuxin Deng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region, Ministry of Agriculture), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Shu’ang Peng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region, Ministry of Agriculture), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | | |
Collapse
|
4
|
Yuan J, Li D, Shen C, Wu C, Khan N, Pan F, Yang H, Li X, Guo W, Chen B, Li X. Transcriptome Analysis Revealed the Molecular Response Mechanism of Non-heading Chinese Cabbage to Iron Deficiency Stress. FRONTIERS IN PLANT SCIENCE 2022; 13:848424. [PMID: 35371147 PMCID: PMC8964371 DOI: 10.3389/fpls.2022.848424] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/22/2022] [Indexed: 05/10/2023]
Abstract
Iron is a trace metal that is found in animals, plants, and the human body. Human iron absorption is hampered by plant iron shortage, which leads to anemia. Leafy vegetables are one of the most direct and efficient sources of iron for humans. Despite the fact that ferrotrophic disorder is common in calcareous soil, however, non-heading Chinese cabbage performs a series of reactions in response to iron deficiency stress that help to preserve iron homeostasis in vivo. In this study, we discovered that iron deficiency stress caused leaf yellowing and impeded plant development in both iron-deficient and control treatments by viewing or measuring phenotypic, chlorophyll content, and Fe2+ content in both iron-deficient and control treatments. We found a total of 9213 differentially expressed genes (DEGs) in non-heading Chinese cabbage by comparing root and leaf transcriptome data with iron deficiency and control treatments. For instance, 1927 DEGs co-expressed in root and leaf, including 897 up-regulated and 1030 down-regulated genes, respectively. We selected some key antioxidant genes, hormone signal transduction, iron absorption and transport, chlorophyll metabolism, and transcription factors involved in the regulation of iron deficiency stress utilizing GO enrichment, KEGG enrichment, multiple types of functional annotation, and Weighted Gene Co-expression Network Analysis (WGCNA). This study identifies prospective genes for maintaining iron homeostasis under iron-deficient stress, offering a theoretical foundation for further research into the molecular mechanisms of greater adaptation to iron-deficient stress, and perhaps guiding the development of iron-tolerant varieties.
Collapse
Affiliation(s)
- Jingping Yuan
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, China
- Henan Engineering Research Center of the Development and Utilization of Characteristic Horticultural Plants, Xinxiang, China
- *Correspondence: Jingping Yuan,
| | - Daohan Li
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, China
- Henan Engineering Research Center of the Development and Utilization of Characteristic Horticultural Plants, Xinxiang, China
| | - Changwei Shen
- School of Resource and Environmental Sciences, Henan Institute of Science and Technology, Xinxiang, China
| | - Chunhui Wu
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, China
- Henan Engineering Research Center of the Development and Utilization of Characteristic Horticultural Plants, Xinxiang, China
| | - Nadeem Khan
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Feifei Pan
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, China
- Henan Engineering Research Center of the Development and Utilization of Characteristic Horticultural Plants, Xinxiang, China
| | - Helian Yang
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, China
- Henan Engineering Research Center of the Development and Utilization of Characteristic Horticultural Plants, Xinxiang, China
| | - Xin Li
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, China
- Henan Engineering Research Center of the Development and Utilization of Characteristic Horticultural Plants, Xinxiang, China
| | - Weili Guo
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, China
- Henan Engineering Research Center of the Development and Utilization of Characteristic Horticultural Plants, Xinxiang, China
| | - Bihua Chen
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, China
- Henan Engineering Research Center of the Development and Utilization of Characteristic Horticultural Plants, Xinxiang, China
| | - Xinzheng Li
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, China
- Henan Engineering Research Center of the Development and Utilization of Characteristic Horticultural Plants, Xinxiang, China
| |
Collapse
|
5
|
Qiu X, Xu Y, Xiong B, Dai L, Huang S, Dong T, Sun G, Liao L, Deng Q, Wang X, Zhu J, Wang Z. Effects of exogenous methyl jasmonate on the synthesis of endogenous jasmonates and the regulation of photosynthesis in citrus. PHYSIOLOGIA PLANTARUM 2020; 170:398-414. [PMID: 32691420 DOI: 10.1111/ppl.13170] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 06/28/2020] [Accepted: 07/15/2020] [Indexed: 05/21/2023]
Abstract
Methyl jasmonate (MeJA) is an airborne signaling phytohormone that can induce changes in endogenous jasmonates (JAs) and cause photosynthetic responses. However, the response of these two aspects of citrus plants at different MeJA concentrations is still unclear. Four MeJA concentrations were used in two citrus varieties, Huangguogan (C. reticulata × C. sinensis) and Shiranuhi [C. reticulata × (C. reticulata × C. sinensis)], to investigate the effects of MeJA dose on the endogenous JAs pathway and photosynthetic capacity. We observed that MeJA acted in a dose-dependent manner, and its stimulation in citrus leaves showed a bidirectional character at different concentrations. This work demonstrates that MeJA at only a concentration of 2.2 mM or less contributed to the activation of magnesium protoporphyrin IX methyltransferase (ChlM, EC 2.1.1.11) and protochlorophyllide oxidoreductase (POR, EC 1.3.1.11) and the simultaneous accumulation of Chl a and Chl b, which in turn contributed to an improved photosynthetic capacity and PSII photochemistry efficiency of citrus. Meanwhile, the inhibition of endogenous JAs synthesis by exogenous MeJA was observed. This was achieved by reducing the ratio of monogalactosyl diacylglycerol (MGDG) to diagalactosyl diacylglycerol (DGDG) and inhibiting the activities of key enzymes in JAs synthesis, especially 12-oxo-phytodienoic acid reductase (OPR, EC 1.3.1.42). Another noteworthy finding is that there may exist a JA-independent pathway that could regulate 12-oxo-phytodienoic acid (OPDA) synthesis. This study jointly analyzed the internal hormone regulation mechanism and the external physiological response, as well as revealed the effects of exogenous MeJA on promoting the photosynthesis and inhibiting the endogenous JAs synthesis.
Collapse
Affiliation(s)
- Xia Qiu
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yinghuan Xu
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
- Neusoft Institute Guangdong, Guangdong, 528225, China
| | - Bo Xiong
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lin Dai
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shengjia Huang
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Tiantian Dong
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Guochao Sun
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ling Liao
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qunxian Deng
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xun Wang
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jin Zhu
- Sichuan Horticultural Crop Extension Station, Sichuan, 610041, China
| | - Zhihui Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, 611130, China
| |
Collapse
|
6
|
Genome-wide analysis of zinc- and iron-regulated transporter-like protein family members in apple and functional validation of ZIP10. Biometals 2019; 32:657-669. [PMID: 31218467 DOI: 10.1007/s10534-019-00203-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 06/08/2019] [Indexed: 10/26/2022]
Abstract
Deficiency of zinc (Zn) and iron (Fe) is common in apple grown in orchards, which affects fruit yield and quality. However, the mechanisms of absorption and transport of Zn and Fe in apples are still unclear. In the present study, we aimed to identify MdZIP genes and explore the mechanism of response of MdZIPs to Zn and Fe deficiencies. Eighteen Zn- and Fe-regulated transporter-like protein (ZIP) family members were identified in apple (Malus domestica L.) and named according to their chromosomal location. Phylogenetic analysis divided MdZIPs into four groups, and the most closely related MdZIPs in the phylogenetic tree showed similar gene structures and protein motifs. Expression pattern analysis indicated that ZIP genes in apple were differentially expressed among tissues and developmental stages under Zn and Fe deficiency. The overexpression of MdZIP10 increased the content of Zn and Fe in Arabidopsis thaliana L. and MdZIP10 played crucial roles in the uptake and transport of Zn and Fe. MdZIP10 was able to rescue growth of Zn2+ and Fe2+ uptake defective yeast mutants under Zn2+ and Fe2+ deficient conditions, respectively. Symptoms of Zn and Fe deficiency were alleviated in the MdZIP10 transgenic plants. The expression of genes related to Fe and Zn uptake and transport was induced in the MdZIP10 transgenic plants, thereby stimulating endogenous Fe and Zn uptake and transport mechanisms. The present study lays the foundation for future functional analysis of ZIP genes in apple.
Collapse
|
7
|
Wei C, Li M, Qin J, Xu Y, Zhang Y, Wang H. Transcriptome analysis reveals the effects of grafting on sweetpotato scions during the full blooming stages. Genes Genomics 2019; 41:895-907. [PMID: 31030407 DOI: 10.1007/s13258-019-00823-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 04/20/2019] [Indexed: 01/21/2023]
Abstract
BACKGROUND Sweetpotato (Ipomoea batatas) is a hexaploid plant and generally most genotypes do not flower at all in sub-tropics. Heterografting was carried out between sweetpotato cultivar 'Xushu 18' and Japanese morning glory (Ipomoea nil). With sweetpotato as 'scion' and I. nil as 'rootstock', sweetpotato was induced flowering in the autumn. However, little is known about the molecular mechanisms underlying sweetpotato responses to grafting, especially during the full blooming stages. OBJECTIVES To investigate the poorly understood molecular responses underlying the grafting-induced phenotypic processes in sweetpotato at full anthesis. METHODS In this study, to explore the transcriptome diversity and complexity of sweetpotato, PacBio Iso-Seq and Illumina RNA-seq analysis were combined to obtain full-length transcripts and to profile the changes in gene expression of five tissues: scion flowers (SF), scion leaves (SL), scion stems (SS), own-rooted leaves (OL) and own-rooted stems (OS). RESULTS A total of 138,151 transcripts were generated with an average length of 2255 bp, and more than 72% (100,396) of the transcripts were full-length. During full blooming, to examine the difference in gene expression of sweetpotato under grafting and natural growth conditions, 7905, 7795 and 15,707 differentially expressed genes were detected in pairwise comparisons of OS versus SS, OL versus SL and SL versus SF, respectively. Moreover, differential transcription of genes associated with anthocyanin biosynthesis, light pathway and photosynthesis, ethylene signal transduction pathway was observed in scion responses to grafting. CONCLUSION Our study is useful in understanding the molecular basis of grafting-induced flowering in grafted sweetpotatoes, and will lay a foundation for further research on sweetpotato breeding in the future.
Collapse
Affiliation(s)
- Changhe Wei
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, Sichuan Key Laboratory of Molecular Biology and Biotechnology, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Ming Li
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, Sichuan Key Laboratory of Molecular Biology and Biotechnology, College of Life Sciences, Sichuan University, Chengdu, 610064, China.,Institute of Biotechnology and Nuclear Technology, Sichuan Academy of Agricultural Sciences, Chengdu, 610061, China
| | - Jia Qin
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, Sichuan Key Laboratory of Molecular Biology and Biotechnology, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Yunfan Xu
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, Sichuan Key Laboratory of Molecular Biology and Biotechnology, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Yizheng Zhang
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, Sichuan Key Laboratory of Molecular Biology and Biotechnology, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Haiyan Wang
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, Sichuan Key Laboratory of Molecular Biology and Biotechnology, College of Life Sciences, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
8
|
Martinez-Cuenca MR, Primo-Capella A, Quiñones A, Bermejo A, Forner-Giner MA. Rootstock influence on iron uptake responses in Citrus leaves and their regulation under the Fe paradox effect. PeerJ 2017; 5:e3553. [PMID: 28966887 PMCID: PMC5619235 DOI: 10.7717/peerj.3553] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 06/16/2017] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND AND AIMS This work evaluates the regulation of iron uptake responses in Citrus leaves and their involvement in the Fe paradox effect. METHODS Experiments were performed in field-grown 'Navelina' trees grafted onto two Cleopatra mandarin × Poncirus trifoliata (L.) Raf. hybrids with different Fe-chlorosis symptoms: 030146 (non-chlorotic) and 030122 (chlorotic). RESULTS Chlorotic leaves were smaller than non-chlorotic ones for both dry weight (DW) and area basis, and exhibited marked photosynthetic state affection, but reduced catalase and peroxidase enzymatic activities. Although both samples had a similar total Fe concentration on DW, it was lower in chlorotic leaves when expressed on an area basis. A similar pattern was observed for the total Fe concentration in the apoplast and cell sap and in active Fe (Fe2+) concentration. FRO2 gene expression and ferric chelate reductase (FC-R) activity were also lower in chlorotic samples, while HA1 and IRT1 were more induced. Despite similar apoplasmic pH, K+/Ca2+ was higher in chlorotic leaves, and both citrate and malate concentrations in total tissue and apoplast fluid were lower. CONCLUSION (1) The rootstock influences Fe acquisition system in the leaf; (2) the increased sensitivity to Fe-deficiency as revealed by chlorosis and decreased biomass, was correlated with lower FC-R activity and lower organic acid level in leaf cells, which could cause a decreased Fe mobility and trigger other Fe-stress responses in this organ to enhance acidification and Fe uptake inside cells; and (3) the chlorosis paradox phenomenon in citrus likely occurs as a combination of a marked FC-R activity impairment in the leaf and the strong growth inhibition in this organ.
Collapse
Affiliation(s)
- Mary-Rus Martinez-Cuenca
- Centre of Citriculture and Plant Production, Valencian Agricultural and Research Institute (IVIA), Moncada, Valencia, Spain
| | - Amparo Primo-Capella
- Centre of Citriculture and Plant Production, Valencian Agricultural and Research Institute (IVIA), Moncada, Valencia, Spain
| | - Ana Quiñones
- Centre of Sustainable Agricultural Development, Valencian Agricultural and Research Institute (IVIA), Moncada, Valencia, Spain
| | - Almudena Bermejo
- Centre of Citriculture and Plant Production, Valencian Agricultural and Research Institute (IVIA), Moncada, Valencia, Spain
| | - Maria Angeles Forner-Giner
- Centre of Citriculture and Plant Production, Valencian Agricultural and Research Institute (IVIA), Moncada, Valencia, Spain
| |
Collapse
|
9
|
Yu H, Yang J, Shi Y, Donelson J, Thompson SM, Sprague S, Roshan T, Wang DL, Liu J, Park S, Nakata PA, Connolly EL, Hirschi KD, Grusak MA, Cheng N. Arabidopsis Glutaredoxin S17 Contributes to Vegetative Growth, Mineral Accumulation, and Redox Balance during Iron Deficiency. FRONTIERS IN PLANT SCIENCE 2017; 8:1045. [PMID: 28674546 DOI: 10.3389/fpls.2017.01045/full] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 05/31/2017] [Indexed: 05/28/2023]
Abstract
Iron (Fe) is an essential mineral nutrient and a metal cofactor required for many proteins and enzymes involved in the processes of DNA synthesis, respiration, and photosynthesis. Iron limitation can have detrimental effects on plant growth and development. Such effects are mediated, at least in part, through the generation of reactive oxygen species (ROS). Thus, plants have evolved a complex regulatory network to respond to conditions of iron limitations. However, the mechanisms that couple iron deficiency and oxidative stress responses are not fully understood. Here, we report the discovery that an Arabidopsis thaliana monothiol glutaredoxin S17 (AtGRXS17) plays a critical role in the plants ability to respond to iron deficiency stress and maintain redox homeostasis. In a yeast expression assay, AtGRXS17 was able to suppress the iron accumulation in yeast ScGrx3/ScGrx4 mutant cells. Genetic analysis indicated that plants with reduced AtGRXS17 expression were hypersensitive to iron deficiency and showed increased iron concentrations in mature seeds. Disruption of AtGRXS17 caused plant sensitivity to exogenous oxidants and increased ROS production under iron deficiency. Addition of reduced glutathione rescued the growth and alleviates the sensitivity of atgrxs17 mutants to iron deficiency. These findings suggest AtGRXS17 helps integrate redox homeostasis and iron deficiency responses.
Collapse
Affiliation(s)
- Han Yu
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, HoustonTX, United States
| | - Jian Yang
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, HoustonTX, United States
| | - Yafei Shi
- College of Chemistry and Life Science, Zhejiang Normal UniversityJinhua, China
| | - Jimmonique Donelson
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, HoustonTX, United States
| | - Sean M Thompson
- Department of Horticultural Sciences, Texas A&M University, College StationTX, United States
| | - Stuart Sprague
- Department of Horticulture, Forestry and Recreation Resources, Kansas State University, ManhattanKS, United States
| | - Tony Roshan
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, HoustonTX, United States
| | - Da-Li Wang
- College of Chemistry and Life Science, Zhejiang Normal UniversityJinhua, China
| | - Jianzhong Liu
- College of Chemistry and Life Science, Zhejiang Normal UniversityJinhua, China
| | - Sunghun Park
- Department of Horticulture, Forestry and Recreation Resources, Kansas State University, ManhattanKS, United States
| | - Paul A Nakata
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, HoustonTX, United States
| | - Erin L Connolly
- Department of Plant Science, Penn State University, University ParkPA, United States
| | - Kendal D Hirschi
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, HoustonTX, United States
- Vegetable and Fruit Improvement Center, Texas A&M University, College StationTX, United States
| | - Michael A Grusak
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, HoustonTX, United States
- USDA/ARS Red River Valley Agricultural Research Center, FargoND, United States
| | - Ninghui Cheng
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, HoustonTX, United States
| |
Collapse
|
10
|
Vannozzi A, Donnini S, Vigani G, Corso M, Valle G, Vitulo N, Bonghi C, Zocchi G, Lucchin M. Transcriptional Characterization of a Widely-Used Grapevine Rootstock Genotype under Different Iron-Limited Conditions. FRONTIERS IN PLANT SCIENCE 2017; 7:1994. [PMID: 28105035 PMCID: PMC5214570 DOI: 10.3389/fpls.2016.01994] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 12/16/2016] [Indexed: 05/06/2023]
Abstract
Iron chlorosis is a serious deficiency that affects orchards and vineyards reducing quality and yield production. Chlorotic plants show abnormal photosynthesis and yellowing shoots. In grapevine iron uptake and homeostasis are most likely controlled by a mechanism known as "Strategy I," characteristic of non-graminaceous plants and based on a system of soil acidification, iron reduction and transporter-mediated uptake. Nowadays, grafting of varieties of economic interest on tolerant rootstocks is widely used practice against many biotic and abiotic stresses. Nevertheless, many interspecific rootstocks, and in particular those obtained by crossing exclusively non-vinifera genotypes, can show limited nutrient uptake and transport, in particular for what concerns iron. In the present study, 101.14, a commonly used rootstock characterized by susceptibility to iron chlorosis was subjected to both Fe-absence and Fe-limiting conditions. Grapevine plantlets were grown in control, Fe-deprived, and bicarbonate-supplemented hydroponic solutions. Whole transcriptome analyses, via mRNA-Seq, were performed on root apices of stressed and unstressed plants. Analysis of differentially expressed genes (DEGs) confirmed that Strategy I is the mechanism responsible for iron uptake in grapevine, since many orthologs genes to the Arabidopsis "ferrome" were differentially regulated in stressed plant. Molecular differences in the plant responses to Fe absence and presence of bicarbonate were also identified indicating the two treatments are able to induce response-mechanisms only partially overlapping. Finally, we measured the expression of a subset of genes differentially expressed in 101.14 (such as IRT1, FERRITIN1, bHLH38/39) or known to be fundamental in the "strategy I" mechanism (AHA2 and FRO2) also in a tolerant rootstock (M1) finding important differences which could be responsible for the different degrees of tolerance observed.
Collapse
Affiliation(s)
- Alessandro Vannozzi
- Dipartimento di Agronomia Animali Alimenti Risorse Naturali e Ambiente, Università di PadovaLegnaro, Italy
- Centro Interdipartimentale per la Ricerca in Viticoltura ed EnologiaConegliano, Italy
| | - Silvia Donnini
- Dipartimento di Scienze Agrarie e Ambientali, Università di MilanoMilano, Italy
| | - Gianpiero Vigani
- Dipartimento di Scienze Agrarie e Ambientali, Università di MilanoMilano, Italy
| | - Massimiliano Corso
- Dipartimento di Agronomia Animali Alimenti Risorse Naturali e Ambiente, Università di PadovaLegnaro, Italy
- Centro Interdipartimentale per la Ricerca in Viticoltura ed EnologiaConegliano, Italy
| | - Giorgio Valle
- Centro di Ricerca Interdipartimentale per le Biotecnologie InnovativePadova, Italy
| | - Nicola Vitulo
- Centro di Ricerca Interdipartimentale per le Biotecnologie InnovativePadova, Italy
| | - Claudio Bonghi
- Dipartimento di Agronomia Animali Alimenti Risorse Naturali e Ambiente, Università di PadovaLegnaro, Italy
- Centro Interdipartimentale per la Ricerca in Viticoltura ed EnologiaConegliano, Italy
| | - Graziano Zocchi
- Dipartimento di Scienze Agrarie e Ambientali, Università di MilanoMilano, Italy
| | - Margherita Lucchin
- Dipartimento di Agronomia Animali Alimenti Risorse Naturali e Ambiente, Università di PadovaLegnaro, Italy
- Centro Interdipartimentale per la Ricerca in Viticoltura ed EnologiaConegliano, Italy
| |
Collapse
|
11
|
Yu H, Yang J, Shi Y, Donelson J, Thompson SM, Sprague S, Roshan T, Wang DL, Liu J, Park S, Nakata PA, Connolly EL, Hirschi KD, Grusak MA, Cheng N. Arabidopsis Glutaredoxin S17 Contributes to Vegetative Growth, Mineral Accumulation, and Redox Balance during Iron Deficiency. FRONTIERS IN PLANT SCIENCE 2017; 8:1045. [PMID: 28674546 PMCID: PMC5474874 DOI: 10.3389/fpls.2017.01045] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 05/31/2017] [Indexed: 05/08/2023]
Abstract
Iron (Fe) is an essential mineral nutrient and a metal cofactor required for many proteins and enzymes involved in the processes of DNA synthesis, respiration, and photosynthesis. Iron limitation can have detrimental effects on plant growth and development. Such effects are mediated, at least in part, through the generation of reactive oxygen species (ROS). Thus, plants have evolved a complex regulatory network to respond to conditions of iron limitations. However, the mechanisms that couple iron deficiency and oxidative stress responses are not fully understood. Here, we report the discovery that an Arabidopsis thaliana monothiol glutaredoxin S17 (AtGRXS17) plays a critical role in the plants ability to respond to iron deficiency stress and maintain redox homeostasis. In a yeast expression assay, AtGRXS17 was able to suppress the iron accumulation in yeast ScGrx3/ScGrx4 mutant cells. Genetic analysis indicated that plants with reduced AtGRXS17 expression were hypersensitive to iron deficiency and showed increased iron concentrations in mature seeds. Disruption of AtGRXS17 caused plant sensitivity to exogenous oxidants and increased ROS production under iron deficiency. Addition of reduced glutathione rescued the growth and alleviates the sensitivity of atgrxs17 mutants to iron deficiency. These findings suggest AtGRXS17 helps integrate redox homeostasis and iron deficiency responses.
Collapse
Affiliation(s)
- Han Yu
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, HoustonTX, United States
| | - Jian Yang
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, HoustonTX, United States
| | - Yafei Shi
- College of Chemistry and Life Science, Zhejiang Normal UniversityJinhua, China
| | - Jimmonique Donelson
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, HoustonTX, United States
| | - Sean M. Thompson
- Department of Horticultural Sciences, Texas A&M University, College StationTX, United States
| | - Stuart Sprague
- Department of Horticulture, Forestry and Recreation Resources, Kansas State University, ManhattanKS, United States
| | - Tony Roshan
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, HoustonTX, United States
| | - Da-Li Wang
- College of Chemistry and Life Science, Zhejiang Normal UniversityJinhua, China
| | - Jianzhong Liu
- College of Chemistry and Life Science, Zhejiang Normal UniversityJinhua, China
| | - Sunghun Park
- Department of Horticulture, Forestry and Recreation Resources, Kansas State University, ManhattanKS, United States
| | - Paul A. Nakata
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, HoustonTX, United States
| | - Erin L. Connolly
- Department of Plant Science, Penn State University, University ParkPA, United States
| | - Kendal D. Hirschi
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, HoustonTX, United States
- Vegetable and Fruit Improvement Center, Texas A&M University, College StationTX, United States
| | - Michael A. Grusak
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, HoustonTX, United States
- USDA/ARS Red River Valley Agricultural Research Center, FargoND, United States
| | - Ninghui Cheng
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, HoustonTX, United States
- *Correspondence: Ninghui Cheng,
| |
Collapse
|
12
|
Fu L, Zhu Q, Sun Y, Du W, Pan Z, Peng S. Physiological and Transcriptional Changes of Three Citrus Rootstock Seedlings under Iron Deficiency. FRONTIERS IN PLANT SCIENCE 2017; 8:1104. [PMID: 28694816 PMCID: PMC5483480 DOI: 10.3389/fpls.2017.01104] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/07/2017] [Indexed: 05/06/2023]
Abstract
Iron is an essential micronutrient for plants, and plants have evolved adaptive mechanisms to improve iron acquisition from soils. Grafting on iron deficiency-tolerant rootstock is an effective strategy to prevent iron deficiency-chlorosis in fruit-tree crops. To determine the mechanisms underlying iron uptake in iron deficiency, two iron deficiency-tolerant citrus rootstocks, Zhique (ZQ) and Xiangcheng (XC), as well as iron deficiency-sensitive rootstock trifoliate orange (TO) seedlings were studied. Plants were grown in hydroponics system for 100 days, having 50 μM iron (control) and 0 μM iron (iron deficiency) nutrient solution. Under iron deficiency, more obvious visual symptoms of iron chlorosis were observed in the leaves of TO, whereas slight symptoms were observed in ZQ and XC. This was further supported by the lower chlorophyll concentration in the leaves of TO than in leaves of ZQ and XC. Ferrous iron showed no differences among the three citrus rootstock roots, whereas ferrous iron was significantly higher in leaves of ZQ and XC than TO. The specific iron absorption rate and leaf iron proportion were significantly higher in ZQ and XC than in TO, suggesting the iron deficiency tolerance can be explained by increased iron uptake in roots of ZQ and XC, allowed by subsequent translocation to shoots. In transcriptome analysis, 29, 298, and 500 differentially expressed genes (DEGs) in response to iron deficiency were identified in ZQ, XC, and TO, respectively (Fold change ≥ 2 and Probability ≥ 0.8 were used as thresholds to identify DEGs). A Gene Ontology analysis suggested that several genotype-specific biological processes are involved in response to iron deficiency. Genes associated with cell wall biosynthesis, ethylene and abscisic acid signal transduction pathways were involved in iron deficiency responses in citrus rootstocks. The results of this study provide a basis for future analyses of the physiological and molecular mechanisms of the tolerance of different citrus rootstocks to iron deficiency.
Collapse
Affiliation(s)
- Lina Fu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural UniversityWuhan, China
- Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), Ministry of AgricultureWuhan, China
| | - Qingqing Zhu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural UniversityWuhan, China
- Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), Ministry of AgricultureWuhan, China
| | - Yinya Sun
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural UniversityWuhan, China
- Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), Ministry of AgricultureWuhan, China
| | - Wei Du
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural UniversityWuhan, China
- Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), Ministry of AgricultureWuhan, China
| | - Zhiyong Pan
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural UniversityWuhan, China
- Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), Ministry of AgricultureWuhan, China
- *Correspondence: Zhiyong Pan, Shu’ang Peng,
| | - Shu’ang Peng
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural UniversityWuhan, China
- Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), Ministry of AgricultureWuhan, China
- *Correspondence: Zhiyong Pan, Shu’ang Peng,
| |
Collapse
|
13
|
Zamboni A, Zanin L, Tomasi N, Avesani L, Pinton R, Varanini Z, Cesco S. Early transcriptomic response to Fe supply in Fe-deficient tomato plants is strongly influenced by the nature of the chelating agent. BMC Genomics 2016; 17:35. [PMID: 26742479 PMCID: PMC4705743 DOI: 10.1186/s12864-015-2331-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Accepted: 12/17/2015] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND It is well known that in the rhizosphere soluble Fe sources available for plants are mainly represented by a mixture of complexes between the micronutrient and organic ligands such as carboxylates and phytosiderophores (PS) released by roots, as well as fractions of humified organic matter. The use by roots of these three natural Fe sources (Fe-citrate, Fe-PS and Fe complexed to water-extractable humic substances, Fe-WEHS) have been already studied at physiological level but the knowledge about the transcriptomic aspects is still lacking. RESULTS The (59)Fe concentration recorded after 24 h in tissues of tomato Fe-deficient plants supplied with (59)Fe complexed to WEHS reached values about 2 times higher than those measured in response to the supply with Fe-citrate and Fe-PS. However, after 1 h no differences among the three Fe-chelates were observed considering the (59)Fe concentration and the root Fe(III) reduction activity. A large-scale transcriptional analysis of root tissue after 1 h of Fe supply showed that Fe-WEHS modulated only two transcripts leaving the transcriptome substantially identical to Fe-deficient plants. On the other hand, Fe-citrate and Fe-PS affected 728 and 408 transcripts, respectively, having 289 a similar transcriptional behaviour in response to both Fe sources. CONCLUSIONS The root transcriptional response to the Fe supply depends on the nature of chelating agents (WEHS, citrate and PS). The supply of Fe-citrate and Fe-PS showed not only a fast back regulation of molecular mechanisms modulated by Fe deficiency but also specific responses due to the uptake of the chelating molecule. Plants fed with Fe-WEHS did not show relevant changes in the root transcriptome with respect to the Fe-deficient plants, indicating that roots did not sense the restored cellular Fe accumulation.
Collapse
Affiliation(s)
- Anita Zamboni
- Department of Biotechnology, University of Verona, via delle Grazie 15, 37134, Verona, Italy.
| | - Laura Zanin
- Department of Agriculture and Environmental Sciences, University of Udine, via delle Scienze 208, 33100, Udine, Italy.
| | - Nicola Tomasi
- Department of Agriculture and Environmental Sciences, University of Udine, via delle Scienze 208, 33100, Udine, Italy.
| | - Linda Avesani
- Department of Biotechnology, University of Verona, via delle Grazie 15, 37134, Verona, Italy.
| | - Roberto Pinton
- Department of Agriculture and Environmental Sciences, University of Udine, via delle Scienze 208, 33100, Udine, Italy.
| | - Zeno Varanini
- Department of Biotechnology, University of Verona, via delle Grazie 15, 37134, Verona, Italy.
| | - Stefano Cesco
- Faculty of Science and Technology, Free University of Bolzano, piazza Università 5, 39100, Bolzano, Italy.
| |
Collapse
|
14
|
Zhu M, Wang R, Kong P, Zhang X, Wang Y, Wu T, Jia W, Han Z. Development of a dot blot macroarray and its use in gene expression marker-assisted selection for iron deficiency tolerant apple rootstocks. EUPHYTICA 2015; 202:469-477. [DOI: 10.1007/s10681-015-1354-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 01/09/2015] [Indexed: 08/22/2024]
|
15
|
Li Y, Wang N, Zhao F, Song X, Yin Z, Huang R, Zhang C. Changes in the transcriptomic profiles of maize roots in response to iron-deficiency stress. PLANT MOLECULAR BIOLOGY 2014; 85:349-63. [PMID: 24648157 DOI: 10.1007/s11103-014-0189-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Accepted: 03/06/2014] [Indexed: 05/21/2023]
Abstract
Plants are often subjected to iron (Fe)-deficiency stress because of its low solubility. Plants have evolved two distinct strategies to solubilize and transport Fe to acclimate to this abiotic stress condition. Transcriptomic profiling analysis was performed using Illumina digital gene expression to understand the mechanism underlying resistance responses of roots to Fe starvation in maize, an important Strategy II plant. A total of 3,427, 4,069, 4,881, and 2,610 genes had significantly changed expression levels after Fe-deficiency treatments of 1, 2, 4 or 7 days, respectively. Genes involved in 2'-deoxymugineic acid (DMA) synthesis, secretion, and Fe(III)-DMA uptake were significantly induced. Many genes related to plant hormones, protein kinases, and protein phosphatases responded to Fe-deficiency stress, suggesting their regulatory roles in response to the Fe-deficiency stress. Functional annotation clustering analysis, using the Database for Annotation, Visualization and Integrated Discovery, revealed maize root responses to Fe starvation. This resulted in 38 functional annotation clusters: 25 for up-regulated genes, and 13 for down-regulated ones. These included genes encoding enzymes involved in the metabolism of carboxylic acids, isoprenoids and aromatic compounds, transporters, and stress response proteins. Our work provides integrated information for understanding maize response to Fe-deficiency stress.
Collapse
Affiliation(s)
- Yan Li
- State Key Laboratory of Crop Biology, Shandong Cooperative Innovation Center of Efficient Production with High Annual Yield of Wheat and Corn, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian, 271018, China
| | | | | | | | | | | | | |
Collapse
|
16
|
Metabolomics as a tool to investigate abiotic stress tolerance in plants. Int J Mol Sci 2013; 14:4885-911. [PMID: 23455464 PMCID: PMC3634444 DOI: 10.3390/ijms14034885] [Citation(s) in RCA: 284] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 02/18/2013] [Accepted: 02/20/2013] [Indexed: 12/16/2022] Open
Abstract
Metabolites reflect the integration of gene expression, protein interaction and other different regulatory processes and are therefore closer to the phenotype than mRNA transcripts or proteins alone. Amongst all –omics technologies, metabolomics is the most transversal and can be applied to different organisms with little or no modifications. It has been successfully applied to the study of molecular phenotypes of plants in response to abiotic stress in order to find particular patterns associated to stress tolerance. These studies have highlighted the essential involvement of primary metabolites: sugars, amino acids and Krebs cycle intermediates as direct markers of photosynthetic dysfunction as well as effectors of osmotic readjustment. On the contrary, secondary metabolites are more specific of genera and species and respond to particular stress conditions as antioxidants, Reactive Oxygen Species (ROS) scavengers, coenzymes, UV and excess radiation screen and also as regulatory molecules. In addition, the induction of secondary metabolites by several abiotic stress conditions could also be an effective mechanism of cross-protection against biotic threats, providing a link between abiotic and biotic stress responses. Moreover, the presence/absence and relative accumulation of certain metabolites along with gene expression data provides accurate markers (mQTL or MWAS) for tolerant crop selection in breeding programs.
Collapse
|
17
|
Hopff D, Wienkoop S, Lüthje S. The plasma membrane proteome of maize roots grown under low and high iron conditions. J Proteomics 2013; 91:605-18. [PMID: 23353019 DOI: 10.1016/j.jprot.2013.01.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 12/11/2012] [Accepted: 01/09/2013] [Indexed: 10/27/2022]
Abstract
Iron (Fe) homeostasis is essential for life and has been intensively investigated for dicots, while our knowledge for species in the Poaceae is fragmentary. This study presents the first proteome analysis (LC-MS/MS) of plasma membranes isolated from roots of 18-day old maize (Zea mays L.). Plants were grown under low and high Fe conditions in hydroponic culture. In total, 227 proteins were identified in control plants, whereas 204 proteins were identified in Fe deficient plants and 251 proteins in plants grown under high Fe conditions. Proteins were sorted by functional classes, and most of the identified proteins were classified as signaling proteins. A significant number of PM-bound redox proteins could be identified including quinone reductases, heme and copper-containing proteins. Most of these components were constitutive, and others could hint at an involvement of redox signaling and redox homeostasis by change in abundance. Energy metabolism and translation seem to be crucial in Fe homeostasis. The response to Fe deficiency includes proteins involved in development, whereas membrane remodeling and assembly and/or repair of Fe-S clusters is discussed for Fe toxicity. The general stress response appears to involve proteins related to oxidative stress, growth regulation, an increased rigidity and synthesis of cell walls and adaption of nutrient uptake and/or translocation. This article is part of a Special Issue entitled: Plant Proteomics in Europe.
Collapse
Affiliation(s)
- David Hopff
- University of Hamburg, Biocenter Klein Flottbek and Botanical Garden, Plant Physiology, Ohnhorststraße 18, D-22609 Hamburg, Germany
| | | | | |
Collapse
|
18
|
Muccilli V, Licciardello C, Fontanini D, Cunsolo V, Capocchi A, Saletti R, Torrisi B, Foti S. Root protein profiles of two citrus rootstocks grown under iron sufficiency/deficiency conditions. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2013; 19:305-24. [PMID: 24575629 DOI: 10.1255/ejms.1230] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Two citrus rootstocks, one sensitive to iron deficiency (Swingle Citrumelo (SCO)) and the other tolerant (Carrizo Citrange, (CC)), were studied to characterize variation in their root protein profile induced by iron-deficient conditions. Plants of both rootstocks were grown in two different soils, one volcanic (v) and the other calcareous (c), containing 0% and 10% active Lime, respectively. To evaluate the effects of the calcareous soil on the protein accumulation of both rootstocks, the root protein profiles (SCc vs. SCv and CCc vs. CCv) were characterized by two-dimensional gel electrophoresis, thus obtaining, for the first time, a reference map of this previously uncharacterized proteome. A total of 219 spots, significantly changed in abundance, were analyzed by high-performance Liquid chromatography nano electrospray ionization tandem mass spectrometry. The identified proteins were classified according to their putative function and known biosynthetic pathways. Principal component analysis, comparing the four sets of data, indicated that each group clustered together with low variance and that CCv and CCc data sets were well differentiated, whereas SCv and SCc were similar.
Collapse
Affiliation(s)
- Vera Muccilli
- Dipartimento di Scienze Chimiche, Università di Catania, Viate A. Doria 6, 95125 Catania, Italy.
| | - Concetta Licciardello
- Consiglio per la Ricerca e Sperimentazione in Agricoltura (CRA-ACM), Corso Savoia 190, 95024 Acireale, Catania, Italy
| | - Debora Fontanini
- Dipartimento di Biologia, Università di Pisa, Via L, Ghini 5, 56126 Pisa, Italy
| | - Vincenzo Cunsolo
- Dipartimento di Scienze Chimiche, Università di Catania, Viate A. Doria 6, 95125 Catania, Italy
| | - Antonella Capocchi
- Dipartimento di Biologia, Università di Pisa, Via L, Ghini 5, 56126 Pisa, Italy
| | - Rosaria Saletti
- Dipartimento di Scienze Chimiche, Università di Catania, Viate A. Doria 6, 95125 Catania, Italy
| | - Biagio Torrisi
- Consiglio per la Ricerca e Sperimentazione in Agricoltura (CRA-ACM), Corso Savoia 190, 95024 Acireale, Catania, Italy
| | - Salvatore Foti
- Dipartimento di Scienze Chimiche, Università di Catania, Viate A. Doria 6, 95125 Catania, Italy
| |
Collapse
|
19
|
Zamboni A, Zanin L, Tomasi N, Pezzotti M, Pinton R, Varanini Z, Cesco S. Genome-wide microarray analysis of tomato roots showed defined responses to iron deficiency. BMC Genomics 2012; 13:101. [PMID: 22433273 PMCID: PMC3368770 DOI: 10.1186/1471-2164-13-101] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 03/20/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Plants react to iron deficiency stress adopting different kind of adaptive responses. Tomato, a Strategy I plant, improves iron uptake through acidification of rhizosphere, reduction of Fe3+ to Fe2+ and transport of Fe2+ into the cells. Large-scale transcriptional analyses of roots under iron deficiency are only available for a very limited number of plant species with particular emphasis for Arabidopsis thaliana. Regarding tomato, an interesting model species for Strategy I plants and an economically important crop, physiological responses to Fe-deficiency have been thoroughly described and molecular analyses have provided evidence for genes involved in iron uptake mechanisms and their regulation. However, no detailed transcriptome analysis has been described so far. RESULTS A genome-wide transcriptional analysis, performed with a chip that allows to monitor the expression of more than 25,000 tomato transcripts, identified 97 differentially expressed transcripts by comparing roots of Fe-deficient and Fe-sufficient tomato plants. These transcripts are related to the physiological responses of tomato roots to the nutrient stress resulting in an improved iron uptake, including regulatory aspects, translocation, root morphological modification and adaptation in primary metabolic pathways, such as glycolysis and TCA cycle. Other genes play a role in flavonoid biosynthesis and hormonal metabolism. CONCLUSIONS The transcriptional characterization confirmed the presence of the previously described mechanisms to adapt to iron starvation in tomato, but also allowed to identify other genes potentially playing a role in this process, thus opening new research perspectives to improve the knowledge on the tomato root response to the nutrient deficiency.
Collapse
Affiliation(s)
- Anita Zamboni
- Department of Biotechnology, University of Verona, via delle Grazie 15, 37134 Verona, Italy
| | - Laura Zanin
- Department of Agriculture and Environmental Sciences, University of Udine, via delle Scienze 208, 33100 Udine, Italy
| | - Nicola Tomasi
- Department of Agriculture and Environmental Sciences, University of Udine, via delle Scienze 208, 33100 Udine, Italy
| | - Mario Pezzotti
- Department of Biotechnology, University of Verona, via delle Grazie 15, 37134 Verona, Italy
| | - Roberto Pinton
- Department of Agriculture and Environmental Sciences, University of Udine, via delle Scienze 208, 33100 Udine, Italy
| | - Zeno Varanini
- Department of Biotechnology, University of Verona, via delle Grazie 15, 37134 Verona, Italy
| | - Stefano Cesco
- Faculty of Science and Technology, Free University of Bolzano, piazza Università 5, 39100 Bolzano, Italy
| |
Collapse
|
20
|
Rellán-Álvarez R, El-Jendoubi H, Wohlgemuth G, Abadía A, Fiehn O, Abadía J, Álvarez-Fernández A. Metabolite profile changes in xylem sap and leaf extracts of strategy I plants in response to iron deficiency and resupply. FRONTIERS IN PLANT SCIENCE 2011; 2:66. [PMID: 22645546 PMCID: PMC3355808 DOI: 10.3389/fpls.2011.00066] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 10/04/2011] [Indexed: 05/04/2023]
Abstract
The metabolite profile changes induced by Fe deficiency in leaves and xylem sap of several Strategy I plant species have been characterized. We have confirmed that Fe deficiency causes consistent changes both in the xylem sap and leaf metabolite profiles. The main changes in the xylem sap metabolite profile in response to Fe deficiency include consistent decreases in amino acids, N-related metabolites and carbohydrates, and increases in TCA cycle metabolites. In tomato, Fe resupply causes a transitory flush of xylem sap carboxylates, but within 1 day the metabolite profile of the xylem sap from Fe-deficient plants becomes similar to that of Fe-sufficient controls. The main changes in the metabolite profile of leaf extracts in response to Fe deficiency include consistent increases in amino acids and N-related metabolites, carbohydrates and TCA cycle metabolites. In leaves, selected pairs of amino acids and TCA cycle metabolites show high correlations, with the sign depending of the Fe status. These data suggest that in low photosynthesis, C-starved Fe-deficient plants anaplerotic reactions involving amino acids can be crucial for short-term survival.
Collapse
Affiliation(s)
- Rubén Rellán-Álvarez
- Group of Plant Stress Physiology, Department of Plant Nutrition, Aula Dei Experimental StationZaragoza, Spain
| | - Hamdi El-Jendoubi
- Group of Plant Stress Physiology, Department of Plant Nutrition, Aula Dei Experimental StationZaragoza, Spain
| | - Gert Wohlgemuth
- Metabolomics Fiehn Lab, Genome Center, University of California DavisCA, USA
| | - Anunciación Abadía
- Group of Plant Stress Physiology, Department of Plant Nutrition, Aula Dei Experimental StationZaragoza, Spain
| | - Oliver Fiehn
- Metabolomics Fiehn Lab, Genome Center, University of California DavisCA, USA
| | - Javier Abadía
- Group of Plant Stress Physiology, Department of Plant Nutrition, Aula Dei Experimental StationZaragoza, Spain
- *Correspondence: Javier Abadía, Group of Plant Stress Physiology, Department of Plant Nutrition, Aula Dei Experimental Station, P.O. Box 13034, Zaragoza E-50080, Spain. e-mail:
| | - Ana Álvarez-Fernández
- Group of Plant Stress Physiology, Department of Plant Nutrition, Aula Dei Experimental StationZaragoza, Spain
| |
Collapse
|