1
|
Kandalgaonkar KN, Barvkar VT. Intricate phytohormonal orchestration mediates mycorrhizal symbiosis and stress tolerance. MYCORRHIZA 2025; 35:13. [PMID: 39998668 DOI: 10.1007/s00572-025-01189-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 02/11/2025] [Indexed: 02/27/2025]
Abstract
Arbuscular mycorrhizal fungi (AMF) are an essential symbiotic partner colonizing more than 70% of land plants. In exchange for carbon sources, mycorrhizal association ameliorates plants' growth and yield and enhances stress tolerance and/or resistance. To achieve this symbiosis, plants mediate a series of biomolecular changes, including the regulation of phytohormones. This review focuses on the role of each phytohormone in establishing symbiosis. It encases phytohormone modulation, exogenous application of the hormones, and mutant studies. The review also comments on the plausible phytohormone cross-talk essential for maintaining balanced mycorrhization and preventing fungal parasitism. Finally, we briefly discuss AMF-mediated stress regulation and contribution of phytohormone modulation in plants. We must examine their interplay to understand how phytohormones act species-specific or concentration-dependent manner. The review summarizes the gaps in these studies to improve our understanding of processes underlying plant-AMF symbiosis.
Collapse
Affiliation(s)
| | - Vitthal T Barvkar
- Department of Botany, Savitribai Phule Pune University, Pune - 411007, Maharashtra, India.
| |
Collapse
|
2
|
Radić T, Vuković R, Gaši E, Kujundžić D, Čarija M, Balestrini R, Sillo F, Gambino G, Hančević K. Tripartite interactions between grapevine, viruses, and arbuscular mycorrhizal fungi provide insights into modulation of oxidative stress responses. JOURNAL OF PLANT PHYSIOLOGY 2024; 303:154372. [PMID: 39423687 DOI: 10.1016/j.jplph.2024.154372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/11/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024]
Abstract
Arbuscular mycorrhizal fungi (AMF) can be beneficial for plants exposed to abiotic and biotic stressors. Although widely present in agroecosystems, AMF influence on crop responses to virus infection is underexplored, particularly in woody plant species such as grapevine. Here, a two-year greenhouse experiment was set up to test the hypothesis that AMF alleviate virus-induced oxidative stress in grapevine. The 'Merlot' cultivar was infected with three grapevine-associated viruses and subsequently colonized with two AMF inocula, containing one or three species, respectively. Five and fifteen months after AMF inoculation, lipid peroxidation - LPO as an indicator of oxidative stress and indicators of antioxidative response (proline, ascorbate - AsA, superoxide dismutase - SOD, ascorbate- APX and guaiacol peroxidases - GPOD, polyphenol oxidase - PPO, glutathione reductase - GR) were analysed. Expression of genes coding for a stilbene synthase (STS1), an enhanced disease susceptibility (EDS1) and a lipoxygenase (LOX) were determined in the second harvesting. AMF induced reduction of AsA and SOD over both years, which, combined with not AMF-triggered APX and GR, suggests decreased activation of the ascorbate-glutathione cycle. In the mature phase of the AM symbiosis establishment GPOD emerged as an important mechanism for scavenging H2O2 accumulation. These results, together with reduction in STS1 and increase in EDS1 gene expression, suggest more efficient reactive oxygen species scavenging in plants inoculated with AMF. Composition of AMF inocula was important for proline accumulation. Overall, our study improves the knowledge on ubiquitous grapevine-virus-AMF systems in the field, highlighting that established functional AM symbiosis could reduce virus-induced stress.
Collapse
Affiliation(s)
- Tomislav Radić
- Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, 21 000, Split, Croatia.
| | - Rosemary Vuković
- Josip Juraj Strossmayer University of Osijek, Department of Biology, Ulica cara Hadrijana 8/A, 31000, Osijek, Croatia.
| | - Emanuel Gaši
- Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, 21 000, Split, Croatia.
| | - Daniel Kujundžić
- Josip Juraj Strossmayer University of Osijek, Department of Biology, Ulica cara Hadrijana 8/A, 31000, Osijek, Croatia.
| | - Mate Čarija
- Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, 21 000, Split, Croatia.
| | - Raffaella Balestrini
- Institute of Biosciences and Bioresources, National research Council (IBBR-CNR), via Amendola 165/A, 70126, Bari, Italy.
| | - Fabiano Sillo
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Strada delle Cacce 73, 10135, Torino, Italy.
| | - Giorgio Gambino
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Strada delle Cacce 73, 10135, Torino, Italy.
| | - Katarina Hančević
- Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, 21 000, Split, Croatia.
| |
Collapse
|
3
|
Shahabi I, Goltapeh EM, Amirmijani A, Pedram M, Atighi MR. Funneliformis mosseae potentiates defense mechanisms of citrus rootstocks against citrus nematode, Tylenchulus semipenetrans. TREE PHYSIOLOGY 2024; 44:tpae097. [PMID: 39096511 DOI: 10.1093/treephys/tpae097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/16/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024]
Abstract
Using integrated pest management without relying on chemical pesticides is one of the most attractive approaches to controlling plant pathogens. Among them, using resistant cultivars or rootstocks against diseases in combination with beneficial microorganisms has attracted special attention. The citrus nematode is one of the major constraints of citrus cultivation worldwide. We showed that the mycorrhizal arbuscular fungus, Funneliformis mosseae, increased growth parameters including shoot and root length and biomass of two main rootstocks of citrus, sour orange and Volkamer lemon, in noninfected and infected plants with citrus nematode. It decreased the infection rate by citrus nematode in both rootstocks compared with nonmycorrhizal plants. The rate of decrease in nematode infection was highest when plants were pre-inoculated with F. mosseae and was lowest when nematode was inoculated before F. mosseae. However, when nematode was inoculated before the fungus, the fungus was still able to mitigate the negative effect of infection by nematode compared with plants inoculated with nematode only. This suggests that the timing of inoculation plays a crucial role in the effectiveness of F. mosseae in reducing nematode infection. Moreover, monitoring of the expression of two genes, phenylalanine ammonia-lyase and β-1,3-glucanase, which are involved in systemic-acquired resistance (SAR) showed that although they were significantly upregulated in mycorrhizal plants compared with nonmycorrhizal plants, they showed the highest expression when plants were pretreated with fungus before nematode inoculation, thus, indicating that plants were primed. In summary, F. mosseae primes the defense-related genes involved in SAR, increasing plant defensive capacity and boosting growth parameters in citrus rootstock. This has important implications for the agricultural industry.
Collapse
Affiliation(s)
- Iman Shahabi
- Department of Plant Pathology, Faculty of Agriculture, Tarbiat Modares University, Tehran PO Box 14115-336, Iran
| | - Ebrahim Mohammadi Goltapeh
- Department of Plant Pathology, Faculty of Agriculture, Tarbiat Modares University, Tehran PO Box 14115-336, Iran
| | - Amirreza Amirmijani
- Department of Plant Protection, Faculty of Agriculture, University of Jiroft, Jiroft PO Box 7867161167, Iran
| | - Majid Pedram
- Department of Plant Pathology, Faculty of Agriculture, Tarbiat Modares University, Tehran PO Box 14115-336, Iran
| | - Mohammad Reza Atighi
- Department of Plant Pathology, Faculty of Agriculture, Tarbiat Modares University, Tehran PO Box 14115-336, Iran
| |
Collapse
|
4
|
M'rabet Samaali B, Loulou A, MougouHamdane A, Kallel S. Acquisition and transmission of Grapevine fanleaf virus (GFLV) by Xiphinema index and Xiphinema italiae (Longidoridae). J Helminthol 2024; 98:e26. [PMID: 38509862 DOI: 10.1017/s0022149x24000154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Grapevine fanleaf virus (GFLV) is one of the most severe virus diseases of grapevines, causing fanleaf degeneration that is transmitted by Xiphinema index. This paper aims to isolate Xiphinema species from Tunisian vineyard soil samples and assess their ability to acquire and transmit GFLV under natural and controlled conditions. Based on morphological and morphometric analyses, Tunisian dagger nematodes were identified as X. index and Xiphinema italiae. These results were confirmed with molecular identification tools using species-specific polymerase chain reaction primers. The total RNA of GFLV was extracted from specimens of Xiphinema and amplified based on real-time polymerase chain reaction using virus-specific primers. Our results showed that X. index could acquire and transmit the viral particles of GFLV. This nepovirus was not detected in X. italiae, under natural conditions; however, under controlled conditions, this nematode was able to successfully acquire and transmit the viral particles of GFLV.
Collapse
Affiliation(s)
- B M'rabet Samaali
- Université de Carthage, National Agronomic Institute of Tunisia, LR14AGR02, Laboratoire de Recherche Bioagresseur et Protection Intégrée en Agriculture, 1082Tunis mahrajène, Tunisia
| | - A Loulou
- Université de Carthage, National Agronomic Institute of Tunisia, LR14AGR02, Laboratoire de Recherche Bioagresseur et Protection Intégrée en Agriculture, 1082Tunis mahrajène, Tunisia
| | - A MougouHamdane
- Université de Carthage, National Agronomic Institute of Tunisia, LR14AGR02, Laboratoire de Recherche Bioagresseur et Protection Intégrée en Agriculture, 1082Tunis mahrajène, Tunisia
| | - S Kallel
- Université de Carthage, National Agronomic Institute of Tunisia, LR14AGR02, Laboratoire de Recherche Bioagresseur et Protection Intégrée en Agriculture, 1082Tunis mahrajène, Tunisia
| |
Collapse
|
5
|
Boyno G, Rezaee Danesh Y, Demir S, Teniz N, Mulet JM, Porcel R. The Complex Interplay between Arbuscular Mycorrhizal Fungi and Strigolactone: Mechanisms, Sinergies, Applications and Future Directions. Int J Mol Sci 2023; 24:16774. [PMID: 38069097 PMCID: PMC10706366 DOI: 10.3390/ijms242316774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
Plants, the cornerstone of life on Earth, are constantly struggling with a number of challenges arising from both biotic and abiotic stressors. To overcome these adverse factors, plants have evolved complex defense mechanisms involving both a number of cell signaling pathways and a complex network of interactions with microorganisms. Among these interactions, the relationship between symbiotic arbuscular mycorrhizal fungi (AMF) and strigolactones (SLs) stands as an important interplay that has a significant impact on increased resistance to environmental stresses and improved nutrient uptake and the subsequent enhanced plant growth. AMF establishes mutualistic partnerships with plants by colonizing root systems, and offers a range of benefits, such as increased nutrient absorption, improved water uptake and increased resistance to both biotic and abiotic stresses. SLs play a fundamental role in shaping root architecture, promoting the growth of lateral roots and regulating plant defense responses. AMF can promote the production and release of SLs by plants, which in turn promote symbiotic interactions due to their role as signaling molecules with the ability to attract beneficial microbes. The complete knowledge of this synergy has the potential to develop applications to optimize agricultural practices, improve nutrient use efficiency and ultimately increase crop yields. This review explores the roles played by AMF and SLs in plant development and stress tolerance, highlighting their individual contributions and the synergistic nature of their interaction.
Collapse
Affiliation(s)
- Gökhan Boyno
- Department of Plant Protection, Faculty of Agriculture, Van Yuzuncu Yil University, Van 65090, Türkiye
| | - Younes Rezaee Danesh
- Department of Plant Protection, Faculty of Agriculture, Van Yuzuncu Yil University, Van 65090, Türkiye
- Department of Plant Protection, Faculty of Agriculture, Urmia University, Urmia 5756151818, Iran
| | - Semra Demir
- Department of Plant Protection, Faculty of Agriculture, Van Yuzuncu Yil University, Van 65090, Türkiye
| | - Necmettin Teniz
- Department of Agricultural Biotechnology, Faculty of Agriculture, Van Yuzuncu Yil University, Van 65090, Türkiye
| | - José M. Mulet
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain
| | - Rosa Porcel
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain
| |
Collapse
|
6
|
Gaši E, Radić T, Čarija M, Gambino G, Balestrini R, Hančević K. Arbuscular Mycorrhizal Fungi Induce Changes of Photosynthesis-Related Parameters in Virus Infected Grapevine. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091783. [PMID: 37176841 PMCID: PMC10180532 DOI: 10.3390/plants12091783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/12/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023]
Abstract
The negative effects of viruses and the positive effects of arbuscular mycorrhizal fungi (AMF) on grapevine performance are well reported, in contrast to the knowledge about their interactive effects in perennial plants, e.g., in grapevine. To elucidate the physiological consequences of grapevine-AMF-virus interactions, two different AMF inoculum (Rhizophagus irregularis and 'Mix AMF') were used on grapevine infected with grapevine rupestris stem pitting virus, grapevine leafroll associated virus 3 and/or grapevine pinot gris virus. Net photosynthesis rate (AN), leaf transpiration (E), intercellular CO2 concentration (Ci) and conductance to H2O (gs) were measured at three time points during one growing season. Furthermore, quantum efficiency in light (ΦPSII) and electron transport rate (ETR) were surveyed in leaves of different maturity, old (basal), mature (middle) and young (apical) leaf. Lastly, pigment concentration and growth parameters were analysed. Virus induced changes in grapevine were minimal in this early infection stage. However, the AMF induced changes of grapevine facing biotic stress were most evident in higher net photosynthesis rate, conductance to H2O, chlorophyll a concentration, total carotenoid concentration and dry matter content. The AMF presence in the grapevine roots seem to prevail over virus infection, with Rhizophagus irregularis inducing greater photosynthesis changes in solitary form rather than mixture. This study shows that AMF can be beneficial for grapevine facing viral infection, in the context of functional physiology.
Collapse
Affiliation(s)
- Emanuel Gaši
- Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, 21000 Split, Croatia
| | - Tomislav Radić
- Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, 21000 Split, Croatia
| | - Mate Čarija
- Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, 21000 Split, Croatia
| | - Giorgio Gambino
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Strada delle Cacce 73, 10135 Torino, Italy
| | - Raffaella Balestrini
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Strada delle Cacce 73, 10135 Torino, Italy
| | - Katarina Hančević
- Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, 21000 Split, Croatia
| |
Collapse
|
7
|
Banihashemian SN, Jamali S, Golmohammadi M, Noorizadeh S, Atighi MR. Reaction of Commercial Cultivars of Kiwifruit to Infection by Root-knot Nematode and Its Biocontrol Using Endophytic Bacteria. J Nematol 2023; 55:20230020. [PMID: 37284000 PMCID: PMC10241307 DOI: 10.2478/jofnem-2023-0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Indexed: 06/08/2023] Open
Abstract
Root-knot nematodes (RKN) cause considerable economic losses to kiwifruit production annually. Screening of resistant cultivars has been one of the long-standing methods to manage root-knot nematodes. Here, the reaction of the four most common commercial cultivars of kiwifruit, namely, Actinidia chinensis var. deliciosa cv. Hayward, A. chinensis var. deliciosa cv. Abbott, A. chinensis var. deliciosa cv. Bruno, and A. chinensis var. chinensis cv. Haegeum (commonly known as 'Golden' kiwifruit) to infection by the RKN, Meloidogyne incognita, was evaluated. Among examined cultivars 'Golden' was the most susceptible, having on average 52.8 galls, 56.1 egg masses per gram of root, and 642 J2 population per 200 gram of soil. 'Bruno' showed the highest resistance, with 3.3 galls, 4.1 egg masses per gram of root, and 79 J2 in 200 g of soil. Then, two potential biological control agents, namely Priestia megaterium 31.en and Agrobacterium tumefaciens 19.en were used on 'Hayward' seedlings against M. incognita and showed a significant reduction in the number of galls and egg masses on roots, juvenile population in the soil, and increased the growth parameters of the plants compared to non-treated seedlings. We demonstrated that integrated management using resistant cultivars and biological control can provide a safe and economic method to control RKN, and these resistant cultivars can be used in breeding programs.
Collapse
Affiliation(s)
| | - Salar Jamali
- Plant Protection Department, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| | - Morteza Golmohammadi
- Horticultural Science Research Institute, Citrus and Subtropical Fruits Research Center, Agricultural Research Education and Extension Organization (AREEO), Ramsar, Iran
| | - Sina Noorizadeh
- Plant Protection Department, Agriculture Faculty, Tabriz University, Tabriz, Iran
| | - Mohammad Reza Atighi
- Department of Plant Pathology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
8
|
Is the Arbuscular Mycorrhizal Fungus Funneliformis mosseae a Suitable Agent to Control Criconematid Populations? DIVERSITY 2022. [DOI: 10.3390/d14110898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Several studies have shown the potential of using mycorrhizal fungi in increasing the plant yield by simultaneously reducing damages caused by pathogens. Plant parasitic nematodes (PPNs) are among the most feared pathogens for crops. This study aimed to evaluate the effects of Funneliformis mosseae as a mycorrhizal fungus on the population abundance of three world widespread species of nematodes from the family Criconematidae: Mesocriconema xenoplax, Mesocriconema antipolitanum, and Criconemides informis. Pure and highly abundant populations of each species were collected from Urmia city in Northwestern Iran, after the identification morphological and morphometric characteristics. The experiments were carried out in greenhouse conditions on three different rhizospheres of alfalfa, sugar beet, and wheat. After five months, the final population of nematodes and fungus, and the root surface on host plants inoculated and non-inoculated with the fungus F. mosseae, were evaluated. The results showed that the population of nematodes was increased in the presence of the fungus. It could be assumed that the extension of the host surface level of roots by the fungus resulted in more feeding sites for nematode activity and, consequently, higher population densities. In this study, the fungus did not seem to play a suitable role in controlling ectoparasitic nematode growth. However, since there are still many open questions about mycorrhizal fungi’s role in agriculture, more research should be conducted.
Collapse
|
9
|
Root Colonization by Fungal Entomopathogen Systemically Primes Belowground Plant Defense against Cabbage Root Fly. J Fungi (Basel) 2022; 8:jof8090969. [PMID: 36135694 PMCID: PMC9505207 DOI: 10.3390/jof8090969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/06/2022] [Accepted: 09/12/2022] [Indexed: 11/30/2022] Open
Abstract
Entomopathogenic fungi infect insects via spores but also live inside plant tissues as endophytes. Frequently, colonization by entomopathogens provides plants with increased resistance against insects, but the mechanisms are little understood. This study investigated direct, local, and systemic root-mediated interactions between isolates of the fungus Metarhizium brunneum and larvae of the cabbage root fly (CRF) Delia radicum attacking Brassica napus plants. All fungal isolates infected CRF when conidia were present in the soil, leading to 43–93% mortality. Locally, root-associated M. brunneum isolates reduced herbivore damage by 10–20% and in three out of five isolates caused significant insect mortality due to plant-mediated and/or direct effects. A split-root experiment with isolate Gd12 also demonstrated systemic plant resistance with significantly reduced root collar damage by CRF. LC-MS analyses showed that fungal root colonization did not induce changes in phytohormones, while herbivory increased jasmonic acid (JA) and glucosinolate concentrations. Proteinase inhibitor gene expression was also increased. Fungal colonization, however, primed herbivore-induced JA and the expression of the JA-responsive plant defensin 1.2 (PDF1.2) gene. We conclude that root-associated M. brunneum benefits plant health through multiple mechanisms, such as the direct infection of insects, as well as the local and systemic priming of the JA pathway.
Collapse
|
10
|
Arbuscular Mycorrhizal Symbiosis Leads to Differential Regulation of Genes and miRNAs Associated with the Cell Wall in Tomato Leaves. BIOLOGY 2022; 11:biology11060854. [PMID: 35741375 PMCID: PMC9219611 DOI: 10.3390/biology11060854] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/24/2022] [Accepted: 05/24/2022] [Indexed: 11/16/2022]
Abstract
Arbuscular mycorrhizal symbiosis is an association that provides nutritional benefits to plants. Importantly, it induces a physiological state allowing plants to respond to a subsequent pathogen attack in a more rapid and intense manner. Consequently, mycorrhiza-colonized plants become less susceptible to root and shoot pathogens. This study aimed to identify some of the molecular players and potential mechanisms related to the onset of defense priming by mycorrhiza colonization, as well as miRNAs that may act as regulators of priming genes. The upregulation of cellulose synthases, pectinesterase inhibitors, and xyloglucan endotransglucosylase/hydrolase, as well as the downregulation of a pectinesterase, suggest that the modification and reinforcement of the cell wall may prime the leaves of mycorrhizal plants to react faster and stronger to subsequent pathogen attack. This was confirmed by the findings of miR164a-3p, miR164a-5p, miR171e-5p, and miR397, which target genes and are also related to the biosynthesis or modification of cell wall components. Our findings support the hypothesis that the reinforcement or remodeling of the cell wall and cuticle could participate in the priming mechanism triggered by mycorrhiza colonization, by strengthening the first physical barriers upstream of the pathogen encounter.
Collapse
|
11
|
Arbuscular Mycorrhizal Fungi Induced Plant Resistance against Fusarium Wilt in Jasmonate Biosynthesis Defective Mutant and Wild Type of Tomato. J Fungi (Basel) 2022; 8:jof8050422. [PMID: 35628678 PMCID: PMC9146357 DOI: 10.3390/jof8050422] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/14/2022] [Accepted: 04/18/2022] [Indexed: 12/04/2022] Open
Abstract
Arbuscular mycorrhizal (AM) fungi can form mutual symbiotic associations with most terrestrial plants and improve the resistance of host plants against pathogens. However, the bioprotection provided by AM fungi can depend on the host–fungus combinations. In this study, we unraveled the effects of pre-inoculation with AM fungus Rhizophagus irregularis on plant resistance against the hemibiotrophic fungal pathogen Fusarium oxysporum in jasmonate (JA) biosynthesis mutant tomato, suppressor of prosystemin-mediated responses8 (spr8) and the wild type Castlemart (CM). Results showed that R. irregularis colonization in CM plants significantly decreased the disease index, which was not observed in spr8 plants, suggesting that the disease protection of AM fungi was a plant-genotype-specific trait. Inoculation with R. irregularis significantly increased the shoot dry weight of CM plants when infected with F. oxysporum, with increased plant P content and net photosynthetic rate. Induced expression of the JA synthesis genes, including allene oxide cyclase gene (AOC) and lipoxygenase D gene (LOXD), and increased activities of polyphenol oxidase (PPO) and phenylalanine ammonia lyase (PAL) were recorded in mycorrhizal CM plants infected with F. oxysporum, but not in spr8 plants. Thus, mycorrhiza-induced resistance (MIR) to fungal pathogen in tomato was highly relevant to the JA signaling pathway.
Collapse
|
12
|
Aguilera P, Ortiz N, Becerra N, Turrini A, Gaínza-Cortés F, Silva-Flores P, Aguilar-Paredes A, Romero JK, Jorquera-Fontena E, Mora MDLL, Borie F. Application of Arbuscular Mycorrhizal Fungi in Vineyards: Water and Biotic Stress Under a Climate Change Scenario: New Challenge for Chilean Grapevine Crop. Front Microbiol 2022; 13:826571. [PMID: 35317261 PMCID: PMC8934398 DOI: 10.3389/fmicb.2022.826571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/25/2022] [Indexed: 12/17/2022] Open
Abstract
The crop Vitis vinifera (L.) is of great economic importance as Chile is one of the main wine-producing countries, reaching a vineyard area of 145,000 ha. This vine crop is usually very sensitive to local condition changes and agronomic practices; therefore, strategies to counteract the expected future decrease in water level for agricultural irrigation, temperature increase, extreme water stress (abiotic stress), as well as increase in pathogenic diseases (biotic stress) related to climate change will be of vital importance for this crop. Studies carried out in recent years have suggested that arbuscular mycorrhizal fungi (AMF) can provide key ecosystem services to host plants, such as water uptake implementation and enhanced absorption of nutrients such as P and N, which are key factors for improving the nutritional status of the vine. AMF use in viticulture will contribute also to sustainable agronomic management and bioprotection against pathogens. Here we will present (1) the current status of grapevines in Chile, (2) the main problems in grapevines related to water stress and associated with climate change, (3) the importance of AMF to face water stress and pathogens, and (4) the application of AMF as a biotechnological and sustainable tool in vineyards.
Collapse
Affiliation(s)
- Paula Aguilera
- Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile
| | - Nancy Ortiz
- Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile
| | - Ninozhka Becerra
- Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile
| | - Alessandra Turrini
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | | | - Patricia Silva-Flores
- Centro de Investigación de Estudios Avanzados del Maule, Vicerrectoría de Investigación y Postgrado, Talca, Chile
- Centro del Secano, Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Talca, Chile
| | - Ana Aguilar-Paredes
- Programa de Restauración Biológica de Suelos, Centro Regional de Investigación e Innovación para la Sostenibilidad de la Agricultura y los Territorios Rurales (CERES), Quillota, Chile
- Vicerrectoría de Investigación y Estudios Avanzados, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Juan Karlo Romero
- Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile
| | - Emilio Jorquera-Fontena
- Departamento de Ciencias Agropecuarias y Acuícolas, Universidad Católica de Temuco, Temuco, Chile
| | - María de La Luz Mora
- Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile
| | - Fernando Borie
- Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile
- Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco, Chile
| |
Collapse
|
13
|
Kafle A, Frank HER, Rose BD, Garcia K. Split down the middle: studying arbuscular mycorrhizal and ectomycorrhizal symbioses using split-root assays. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1288-1300. [PMID: 34791191 DOI: 10.1093/jxb/erab489] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
Most land plants symbiotically interact with soil-borne fungi to ensure nutrient acquisition and tolerance to various environmental stressors. Among these symbioses, arbuscular mycorrhizal and ectomycorrhizal associations can be found in a large proportion of plants, including many crops. Split-root assays are widely used in plant research to study local and systemic signaling responses triggered by local treatments, including nutrient availability, interaction with soil microbes, or abiotic stresses. However, split-root approaches have only been occasionally used to tackle these questions with regard to mycorrhizal symbioses. This review compiles and discusses split-root assays developed to study arbuscular mycorrhizal and ectomycorrhizal symbioses, with a particular emphasis on colonization by multiple beneficial symbionts, systemic resistance induced by mycorrhizal fungi, water and nutrient transport from fungi to colonized plants, and host photosynthate allocation from the host to fungal symbionts. In addition, we highlight how the use of split-root assays could result in a better understanding of mycorrhizal symbioses, particularly for a broader range of essential nutrients, and for multipartite interactions.
Collapse
Affiliation(s)
- Arjun Kafle
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Hannah E R Frank
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Benjamin D Rose
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Kevin Garcia
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
14
|
Deans C. Biological Prescience: The Role of Anticipation in Organismal Processes. Front Physiol 2021; 12:672457. [PMID: 34975512 PMCID: PMC8719636 DOI: 10.3389/fphys.2021.672457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 11/18/2021] [Indexed: 11/13/2022] Open
Abstract
Anticipation is the act of using information about the past and present to make predictions about future scenarios. As a concept, it is predominantly associated with the psychology of the human mind; however, there is accumulating evidence that diverse taxa without complex neural systems, and even biochemical networks themselves, can respond to perceived future conditions. Although anticipatory processes, such as circadian rhythms, stress priming, and cephalic responses, have been extensively studied over the last three centuries, newer research on anticipatory genetic networks in microbial species shows that anticipatory processes are widespread, evolutionarily old, and not simply reserved for neurological complex organisms. Overall, data suggest that anticipatory responses represent a unique type of biological processes that can be distinguished based on their organizational properties and mechanisms. Unfortunately, an empirically based biologically explicit framework for describing anticipatory processes does not currently exist. This review attempts to fill this void by discussing the existing examples of anticipatory processes in non-cognitive organisms, providing potential criteria for defining anticipatory processes, as well as their putative mechanisms, and drawing attention to the often-overlooked role of anticipation in the evolution of physiological systems. Ultimately, a case is made for incorporating an anticipatory framework into the existing physiological paradigm to advance our understanding of complex biological processes.
Collapse
Affiliation(s)
- Carrie Deans
- Entomology Department, University of Minnesota, St. Paul, MN, United States
| |
Collapse
|
15
|
Bettenfeld P, Cadena i Canals J, Jacquens L, Fernandez O, Fontaine F, van Schaik E, Courty PE, Trouvelot S. The microbiota of the grapevine holobiont: A key component of plant health. J Adv Res 2021; 40:1-15. [PMID: 36100319 PMCID: PMC9481934 DOI: 10.1016/j.jare.2021.12.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 12/08/2021] [Accepted: 12/17/2021] [Indexed: 02/07/2023] Open
Abstract
Grapevine interacts different microbiota living around and within its tissues Addition of microbial genes to plant genome gives supplementary functions to the holobiont The composition of grapevine microbiota varies according to endogenous and exogenous factors Microbiota variations can lead to perturbations of grapevine metabolism The link between symptom emergence of dieback and microbial imbalance is currently studied
Background Grapevine is a woody, perennial plant of high economic importance worldwide. Like other plants, it lives in close association with large numbers of microorganisms. Bacteria, fungi and viruses are structured in communities, and each individual can be beneficial, neutral or harmful to the plant. In this sense, microorganisms can interact with each other and regulate plant functions (including immunity) and even provide new ones. Thus, the grapevine associated with its microbial communities constitutes a supra-organism, also called a holobiont, whose functioning is linked to established plant-microorganism interactions. Aim of review The overall health of the plant may be conditioned by the diversity and structure of microbial communities. Consequently, an optimal microbial composition will consist of a microbial balance allowing the plant to be healthy. Conversely, an imbalance of microbial populations could lead to (or be generated by) a decline of the plant. The microbiome is an active component of the host also responsive to biotic and abiotic changes; in that respect, a better understanding of the most important drivers of the composition of plant microbiomes is needed. Key scientific concepts of review This article presents the current state of the art about the grapevine microbiota and its composition according to the plant compartments and the influencing factors. We also focus on situations of imbalance, in particular during plant disease or decline. Finally, we discuss the possible interest of microbial engineering in an agrosystem such as viticulture.
Collapse
|
16
|
Influence of Silicon on Biocontrol Strategies to Manage Biotic Stress for Crop Protection, Performance, and Improvement. PLANTS 2021; 10:plants10102163. [PMID: 34685972 PMCID: PMC8537781 DOI: 10.3390/plants10102163] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/03/2021] [Accepted: 10/08/2021] [Indexed: 11/17/2022]
Abstract
Silicon (Si) has never been acknowledged as a vital nutrient though it confers a crucial role in a variety of plants. Si may usually be expressed more clearly in Si-accumulating plants subjected to biotic stress. It safeguards several plant species from disease. It is considered as a common element in the lithosphere of up to 30% of soils, with most minerals and rocks containing silicon, and is classified as a "significant non-essential" element for plants. Plant roots absorb Si, which is subsequently transferred to the aboveground parts through transpiration stream. The soluble Si in cytosol activates metabolic processes that create jasmonic acid and herbivore-induced organic compounds in plants to extend their defense against biotic stressors. The soluble Si in the plant tissues also attracts natural predators and parasitoids during pest infestation to boost biological control, and it acts as a natural insect repellent. However, so far scientists, policymakers, and farmers have paid little attention to its usage as a pesticide. The recent developments in the era of genomics and metabolomics have opened a new window of knowledge in designing molecular strategies integrated with the role of Si in stress mitigation in plants. Accordingly, the present review summarizes the current status of Si-mediated plant defense against insect, fungal, and bacterial attacks. It was noted that the Si-application quenches biotic stress on a long-term basis, which could be beneficial for ecologically integrated strategy instead of using pesticides in the near future for crop improvement and to enhance productivity.
Collapse
|
17
|
Rodrigues E Silva MT, Calandrelli A, Miamoto A, Rinaldi LK, Pereira Moreno B, da Silva C, Dias-Arieira CR. Pre-inoculation with arbuscular mycorrhizal fungi affects essential oil quality and the reproduction of root lesion nematode in Cymbopogon citratus. MYCORRHIZA 2021; 31:613-623. [PMID: 34510260 DOI: 10.1007/s00572-021-01045-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 07/29/2021] [Indexed: 06/13/2023]
Abstract
Cymbopogon citratus (lemongrass) is an important medicinal and aromatic plant containing citral-rich essential oil, of which the quality and quantity may be affected by nematode infection. Research has shown that arbuscular mycorrhizal fungi (AMF) may act as nematode biocontrol agents and improve the chemical composition of plants. Three experiments were conducted to assess the effects of AMF inoculation on vegetative growth, essential oil composition, induction of defense-related proteins, and control of Pratylenchus brachyurus in C. citratus. Seedlings were transplanted into pots inoculated with one of two AMF species (Rhizophagus clarus or Claroideoglomus etunicatum). At 30 days after AMF inoculation, plants were inoculated with P. brachyurus. Evaluations were performed at 75 days after nematode inoculation. Although both AMF treatments led to effective root colonization (> 84%), fungus inoculation was not effective in reducing P. brachyurus population density. Nevertheless, C. etunicatum promoted an increase in shoot weight, and AMF treatments contributed to preserving essential oil composition in nematode-infected plants. In addition, both AMF treatments enhanced polyphenol oxidase activity and R. clarus increased peroxidase activity after nematode inoculation.
Collapse
Affiliation(s)
| | | | - Angélica Miamoto
- Department of Agronomy, State University of Maringá, Maringa, Parana, Brazil
| | | | | | - Camila da Silva
- Department of Technology, State University of Maringá, Umuarama, Parana, Brazil
| | | |
Collapse
|
18
|
Goddard ML, Belval L, Martin IR, Roth L, Laloue H, Deglène-Benbrahim L, Valat L, Bertsch C, Chong J. Arbuscular Mycorrhizal Symbiosis Triggers Major Changes in Primary Metabolism Together With Modification of Defense Responses and Signaling in Both Roots and Leaves of Vitis vinifera. FRONTIERS IN PLANT SCIENCE 2021; 12:721614. [PMID: 34512700 PMCID: PMC8424087 DOI: 10.3389/fpls.2021.721614] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/19/2021] [Indexed: 06/01/2023]
Abstract
Grapevine (Vitis vinifera L.) is one of the most important crops worldwide but is subjected to multiple biotic and abiotic stresses, especially related to climate change. In this context, the grapevine culture could take advantage of symbiosis through association with arbuscular mycorrhizal fungi (AMF), which are able to establish symbiosis with most terrestrial plants. Indeed, it is well established that mycorrhization improves grapevine nutrition and resistance to stresses, especially water stress and resistance to root pathogens. Thus, it appears essential to understand the effect of mycorrhization on grapevine metabolism and defense responses. In this study, we combined a non-targeted metabolomic approach and a targeted transcriptomic study to analyze changes induced in both the roots and leaves of V. vinifera cv. Gewurztraminer by colonization with Rhizophagus irregularis (Ri). We showed that colonization of grapevine with AMF triggers major reprogramming of primary metabolism in the roots, especially sugar and fatty acid metabolism. On the other hand, mycorrhizal roots had decreased contents of most sugars and sugar acids. A significant increase in several fatty acids (C16:1, linoleic and linolenic acids and the C20 arachidonic and eicosapentaenoic acids) was also detected. However, a downregulation of the JA biosynthesis pathway was evidenced. We also found strong induction of the expression of PR proteins from the proteinase inhibitor (PR6) and subtilase (PR7) families in roots, suggesting that these proteins are involved in the mycorrhiza development but could also confer higher resistance to root pathogens. Metabolic changes induced by mycorrhization were less marked in leaves but involved higher levels of linoleic and linolenic acids and decreased sucrose, quinic, and shikimic acid contents. In addition, Ri colonization resulted in enhanced JA and SA levels in leaves. Overall, this study provides a detailed picture of metabolic changes induced by AMF colonization in a woody, economically important species. Moreover, stimulation of fatty acid biosynthesis and PR protein expression in roots and enhanced defense hormone contents in leaves establish first insight in favor of better resistance of grapevine to various pathogens provided by AMF colonization.
Collapse
Affiliation(s)
- Mary-Lorène Goddard
- Laboratoire Vigne, Biotechnologies et Environnement (LVBE, UPR 3991), Université de Haute Alsace, Colmar, France
- Laboratoire d'Innovation Moléculaire et Applications, Université de Haute-Alsace, Université de Strasbourg, CNRS, LIMA, UMR 7042, Mulhouse, France
| | - Lorène Belval
- Laboratoire Vigne, Biotechnologies et Environnement (LVBE, UPR 3991), Université de Haute Alsace, Colmar, France
| | - Isabelle R. Martin
- Laboratoire Vigne, Biotechnologies et Environnement (LVBE, UPR 3991), Université de Haute Alsace, Colmar, France
| | - Lucie Roth
- Laboratoire Vigne, Biotechnologies et Environnement (LVBE, UPR 3991), Université de Haute Alsace, Colmar, France
- Laboratoire d'Innovation Moléculaire et Applications, Université de Haute-Alsace, Université de Strasbourg, CNRS, LIMA, UMR 7042, Mulhouse, France
| | - Hélène Laloue
- Laboratoire Vigne, Biotechnologies et Environnement (LVBE, UPR 3991), Université de Haute Alsace, Colmar, France
| | - Laurence Deglène-Benbrahim
- Laboratoire Vigne, Biotechnologies et Environnement (LVBE, UPR 3991), Université de Haute Alsace, Colmar, France
| | - Laure Valat
- Laboratoire Vigne, Biotechnologies et Environnement (LVBE, UPR 3991), Université de Haute Alsace, Colmar, France
| | - Christophe Bertsch
- Laboratoire Vigne, Biotechnologies et Environnement (LVBE, UPR 3991), Université de Haute Alsace, Colmar, France
| | - Julie Chong
- Laboratoire Vigne, Biotechnologies et Environnement (LVBE, UPR 3991), Université de Haute Alsace, Colmar, France
| |
Collapse
|
19
|
First Insights into the Effect of Mycorrhizae on the Expression of Pathogen Effectors during the Infection of Grapevine with Plasmopara viticola. SUSTAINABILITY 2021. [DOI: 10.3390/su13031226] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Grapevine (Vitis vinifera L.), widely used for berry and wine production, is highly susceptible to the pathogenic oomycete Plasmopara viticola, the etiological agent of grapevine downy mildew disease. The method commonly used to prevent and control P. viticola infection relies on multiple applications of chemical fungicides. However, with European Union goals to lower the usage of such chemicals in viticulture there is a need to develop new and more sustainable strategies. The use of beneficial microorganisms with biocontrol capabilities, such as the arbuscular mycorrhizal fungi (AMF), has been pointed out as a viable alternative. With this study, we intended to investigate the effect of AMF colonization on the expression of P. viticola effectors during infection of grapevine. Grapevine plants were inoculated with the AMF Rhizophagus irregularis and, after mycorrhizae development, plants were infected with P. viticola. The expression of P. viticola RxLR effectors was analyzed by real-time PCR (qPCR) during the first hours of interaction. Results show that pre-mycorrhizal inoculation of grapevine alters the expression of several P. viticola effectors; namely, PvRxLR28, which presented decreased expression in mycorrhizal plants at the two time points post-infection tested. These results suggest that the pre-inoculation of grapevine with AMF could interfere with the pathogen’s ability to infect grapevine by modulation of pathogenicity effectors expression, supporting the hypothesis that AMF can be used to increase plant resistance to pathogens and promote more sustainable agriculture practices, particularly in viticulture.
Collapse
|
20
|
Dreischhoff S, Das IS, Jakobi M, Kasper K, Polle A. Local Responses and Systemic Induced Resistance Mediated by Ectomycorrhizal Fungi. FRONTIERS IN PLANT SCIENCE 2020; 11:590063. [PMID: 33381131 PMCID: PMC7767828 DOI: 10.3389/fpls.2020.590063] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/10/2020] [Indexed: 05/13/2023]
Abstract
Ectomycorrhizal fungi (EMF) grow as saprotrophs in soil and interact with plants, forming mutualistic associations with roots of many economically and ecologically important forest tree genera. EMF ensheath the root tips and produce an extensive extramatrical mycelium for nutrient uptake from the soil. In contrast to other mycorrhizal fungal symbioses, EMF do not invade plant cells but form an interface for nutrient exchange adjacent to the cortex cells. The interaction of roots and EMF affects host stress resistance but uncovering the underlying molecular mechanisms is an emerging topic. Here, we focused on local and systemic effects of EMF modulating defenses against insects or pathogens in aboveground tissues in comparison with arbuscular mycorrhizal induced systemic resistance. Molecular studies indicate a role of chitin in defense activation by EMF in local tissues and an immune response that is induced by yet unknown signals in aboveground tissues. Volatile organic compounds may be involved in long-distance communication between below- and aboveground tissues, in addition to metabolite signals in the xylem or phloem. In leaves of EMF-colonized plants, jasmonate signaling is involved in transcriptional re-wiring, leading to metabolic shifts in the secondary and nitrogen-based defense metabolism but cross talk with salicylate-related signaling is likely. Ectomycorrhizal-induced plant immunity shares commonalities with systemic acquired resistance and induced systemic resistance. We highlight novel developments and provide a guide to future research directions in EMF-induced resistance.
Collapse
Affiliation(s)
| | | | | | | | - Andrea Polle
- Forest Botany and Tree Physiology, University of Göttingen, Göttingen, Germany
| |
Collapse
|
21
|
Kadam SB, Pable AA, Barvkar VT. Mycorrhiza induced resistance (MIR): a defence developed through synergistic engagement of phytohormones, metabolites and rhizosphere. FUNCTIONAL PLANT BIOLOGY : FPB 2020; 47:880-890. [PMID: 32586416 DOI: 10.1071/fp20035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 05/08/2020] [Indexed: 06/11/2023]
Abstract
Plants get phosphorus, water and other soil nutrients at the cost of sugar through mycorrhizal symbiotic association. A common mycorrhizal network (CMN) - a dense network of mycorrhizal hyphae - provides a passage for exchange of chemicals and signals between the plants sharing CMN. Mycorrhisation impact plants at hormonal, physiological and metabolic level and successful symbiosis also regulates ecology of the plant rhizosphere. Apart from nutritional benefits, mycorrhisation provides an induced resistance to the plants known as mycorrhiza induced resistance (MIR). MIR is effective against soil as well as foliar pathogens and pest insects. In this review, molecular mechanisms underlying MIR such as role of phytohormones, their cross talk and priming effect are discussed. Evidence of MIR against economically important pathogens and pest insects in different plants is summarised. Mycorrhiza induces many plant secondary metabolites, many of which have a role in plant defence. Involvement of these secondary metabolites in mycorrhisation and their putative role in MIR are further reviewed. Controversies about MIR are also briefly discussed in order to provide insights on the scope for research about MIR. We have further extended our review with an open ended discussion about the possibilities for transgenerational MIR.
Collapse
Affiliation(s)
- Swapnil B Kadam
- Department of Botany, Savitribai Phule Pune University, Pune-411007, India
| | - Anupama A Pable
- Department of Microbiology, Savitribai Phule Pune University, Pune-411007, India
| | - Vitthal T Barvkar
- Department of Botany, Savitribai Phule Pune University, Pune-411007, India; and Corresponding authors. ;
| |
Collapse
|
22
|
Forghani F, Hajihassani A. Recent Advances in the Development of Environmentally Benign Treatments to Control Root-Knot Nematodes. FRONTIERS IN PLANT SCIENCE 2020; 11:1125. [PMID: 32793271 PMCID: PMC7387703 DOI: 10.3389/fpls.2020.01125] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/08/2020] [Indexed: 05/17/2023]
Abstract
Root-knot nematodes (RKNs), Meloidogyne spp., are sedentary endoparasites that negatively affect almost every crop in the world. Current management practices are not enough to completely control RKN. Application of certain chemicals is also being further limited in recent years. It is therefore crucial to develop additional control strategies through the application of environmentally benign methods. There has been much research performed around the world on the topic, leading to useful outcomes and interesting findings capable of improving farmers' income. It is important to have dependable resources gathering the data produced to facilitate future research. This review discusses recent findings on the application of environmentally benign treatments to control RKN between 2015 and April 2020. A variety of biological control strategies, natural compounds, soil amendments and other emerging strategies have been included, among which, many showed promising results in RKN control in vitro and/or in vivo. Development of these methods continues to be an area of active research, and new information on their efficacy will continuously become available. We have discussed some of the control mechanisms involved and suggestions were given on maximizing the outcome of the future efforts.
Collapse
|
23
|
Khan MR, Sharma RK. Fusarium-nematode wilt disease complexes, etiology and mechanism of development. ACTA ACUST UNITED AC 2020. [DOI: 10.1007/s42360-020-00240-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
24
|
Tkacz A, Pini F, Turner TR, Bestion E, Simmonds J, Howell P, Greenland A, Cheema J, Emms DM, Uauy C, Poole PS. Agricultural Selection of Wheat Has Been Shaped by Plant-Microbe Interactions. Front Microbiol 2020; 11:132. [PMID: 32117153 PMCID: PMC7015950 DOI: 10.3389/fmicb.2020.00132] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 01/21/2020] [Indexed: 12/26/2022] Open
Abstract
The influence of wheat (modern wheat, both bread and pasta, their wild ancestors and synthetic hybrids) on the microbiota of their roots and surrounding soil is characterized. We isolated lines of bread wheat by hybridizing diploid (Aegilops tauschii) with tetraploid Triticum durum and crossed it with a modern cultivar of Triticum aestivum. The newly created, synthetic hybrid wheat, which recapitulate the breeding history of wheat through artificial selection, is found to support a microbiome enriched in beneficial Glomeromycetes fungi, but also in, potentially detrimental, Nematoda. We hypothesize that during wheat domestication this plant-microbe interaction diminished, suggesting an evolutionary tradeoff; sacrificing advantageous nutrient acquisition through fungal interactions to minimize interaction with pathogenic fungi. Increased plant selection for Glomeromycetes and Nematoda is correlated with the D genome derived from A. tauschii. Despite differences in their soil microbiota communities, overall wheat plants consistently show a low ratio of eukaryotes to prokaryotes. We propose that this is a mechanism for protection against soil-borne fungal disease and appears to be deeply rooted in the wheat genome. We suggest that the influence of plants on the composition of their associated microbiota is an integral factor, hitherto overlooked, but intrinsic to selection during wheat domestication.
Collapse
Affiliation(s)
- Andrzej Tkacz
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Francesco Pini
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| | - Thomas R Turner
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Eloïne Bestion
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| | - James Simmonds
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Phil Howell
- National Institute of Agricultural Botany, Cambridge, United Kingdom
| | - Andy Greenland
- National Institute of Agricultural Botany, Cambridge, United Kingdom
| | - Jitender Cheema
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - David M Emms
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| | - Cristobal Uauy
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
- National Institute of Agricultural Botany, Cambridge, United Kingdom
| | - Philip S Poole
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
25
|
Tobar M, Fiore N, Pérez-Donoso AG, León R, Rosales IM, Gambardella M. Divergent molecular and growth responses of young "Cabernet Sauvignon" ( Vitis vinifera) plants to simple and mixed infections with Grapevine rupestris stem pitting-associated virus. HORTICULTURE RESEARCH 2020; 7:2. [PMID: 31908805 PMCID: PMC6938478 DOI: 10.1038/s41438-019-0224-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 11/13/2019] [Indexed: 05/21/2023]
Abstract
Grapevine rupestris stem pitting associated virus (GRSPaV) is one of the most widely distributed viruses; even so, little is known about its effect on Vitis vinifera. To provide new insights, the effects of single and mixed GRSPaV infections on the V. vinifera cultivar "Cabernet Sauvignon" were studied by evaluating growth parameters, such as measurements of the total plant length, the number and distance of internodes and the number of leaves per shoot. In addition, parameters relating to gas exchange, i.e., the stomatal conductance, net photosynthetic rate, internal CO2 concentration and leaf transpiration, were also assessed. All the measurements were performed in one- and two-year-old plants with a single GRSPaV infection or mixed infections of GRSPaV and Grapevine fanleaf virus (GFLV). The results show that the plant phytosanitary status did not significantly alter the growth and gas exchange parameters in one-year-old plants. However, in two-year-old plants, single GRSPaV infections increased shoot elongation, which was accompanied by the overexpression of genes associated with the gibberellic acid response pathway. The gas exchange parameters of these plants were negatively affected, despite exhibiting higher LHCII gene expression. Plants with mixed infections did not have modified growth parameters, although they presented a greater reduction in the primary photosynthetic parameters evaluated with no change in LHCII expression. The results presented here confirm the co-evolution hypothesis for V. vinifera and GRSPaV during the early stages of plant development, and they provide new evidence about the effects of GRSPaV and GFLV co-infections on the "Cabernet Sauvignon" cultivar.
Collapse
Affiliation(s)
- M. Tobar
- Pontificia Universidad Católica de Chile, Facultad de Agronomía e Ingeniería Forestal, Vicuña Mackena 4860, Macul, Santiago, 7820436 Chile
| | - N. Fiore
- Universidad de Chile, Facultad de Ciencias Agronómicas, Avenida Santa Rosa 11315, La Pintana, Santiago, 8820808 Chile
| | - A. G. Pérez-Donoso
- Pontificia Universidad Católica de Chile, Facultad de Agronomía e Ingeniería Forestal, Vicuña Mackena 4860, Macul, Santiago, 7820436 Chile
| | - R. León
- Pontificia Universidad Católica de Chile, Facultad de Agronomía e Ingeniería Forestal, Vicuña Mackena 4860, Macul, Santiago, 7820436 Chile
| | - I. M. Rosales
- Pontificia Universidad Católica de Chile, Facultad de Agronomía e Ingeniería Forestal, Vicuña Mackena 4860, Macul, Santiago, 7820436 Chile
| | - M. Gambardella
- Pontificia Universidad Católica de Chile, Facultad de Agronomía e Ingeniería Forestal, Vicuña Mackena 4860, Macul, Santiago, 7820436 Chile
| |
Collapse
|
26
|
Arbuscular Mycorrhizal Fungi Can Compensate for the Loss of Indigenous Microbial Communities to Support the Growth of Liquorice ( Glycyrrhiza uralensis Fisch.). PLANTS 2019; 9:plants9010007. [PMID: 31861523 PMCID: PMC7020511 DOI: 10.3390/plants9010007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/09/2019] [Accepted: 12/17/2019] [Indexed: 01/01/2023]
Abstract
Soil microorganisms play important roles in nutrient mobilization and uptake of mineral nutrition in plants. Agricultural management, such as soil sterilization, can have adverse effects on plant growth because of the elimination of indigenous microorganisms. Arbuscular mycorrhizal (AM) fungi are one of the most important beneficial soil microorganisms for plant growth. However, whether AM fungi can compensate for the loss of indigenous microbial communities to support plant growth and metabolism is largely unknown. In this study, a pot experiment was conducted to investigate the effects of AM fungi on plant growth and secondary metabolism in sterilized and unsterilized soil. We used liquorice (Glycyrrhiza uralensis Fisch.), an important medicinal plant as the host, which was inoculated with the AM fungus Rhizophagus irregularis or not and grown in unsterilized or sterilized soil. Plant photosynthesis traits, plant growth and nutrition level, concentrations of the secondary metabolites, and expression levels of biosynthesis genes were determined. The results showed that soil sterilization decreased plant growth, photosynthesis, and glycyrrhizin and liquiritin accumulation, and moreover, downregulated the expression of related biosynthesis genes. Inoculation with R. irregularis in sterilized soil offset the loss of indigenous microbial communities, resulting in plant growth and glycyrrhizin and liquiritin concentrations similar to those of plants grown in unsterilized soil. Thus, AM fungi could compensate for the loss of indigenous microbial communities by soil sterilization to support plant growth and secondary metabolism.
Collapse
|
27
|
Zhang YC, Zou YN, Liu LP, Wu QS. Common mycorrhizal networks activate salicylic acid defense responses of trifoliate orange (Poncirus trifoliata). JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2019; 61:1099-1111. [PMID: 30450833 DOI: 10.1111/jipb.12743] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 11/12/2018] [Indexed: 05/27/2023]
Abstract
Citrus canker, caused by Xanthomonas axonopodis pv. citri ('Xac'), is an important quarantine disease in citrus crops. Arbuscular mycorrhizal fungi (AMF) form symbiotic interactions with host plants and further affect their disease resistance, possibly by modulating the activity of salicylic acid (SA), a key phytohormone in disease resistance. Common mycorrhizal networks (CMNs) can interconnect plants, but it is not yet clear whether CMNs promote resistance to citrus canker and, if so, whether SA signaling is involved in this process. To test this possibility, we used a two-chambered rootbox to establish CMNs between trifoliate orange (Poncirus trifoliata) seedlings in chambers inoculated (treated) or not (neighboring) with the AMF, Paraglomus occultum. A subset of the AMF-inoculated seedlings were also inoculated with Xac (+AMF+Xac). At 2 d post-inoculation (dpi), compared with the +AMF-Xac treatment, neighboring seedlings in +AMF+Xac treatment had lower expression levels of the SA biosynthetic genes, PtPAL, PtEPS1, and PtPBS3, but higher SA levels, which attributed to the upregulation of PtPAL and PtPBS3 in treated seedlings and the transfer of SA, via CMNs, to the neighboring seedlings. At 4 dpi, the pathogenesis-related (PR) protein genes, PtPR1, PtPR4, and PtPR5, and the transcriptional regulatory factor gene, PtNPR1, were activated in neighboring seedlings of +AMF+Xac treatment. At 9 dpi, root phenylalanine ammonia-lyase activity and total soluble phenol and lignin concentrations increased in neighboring seedlings of +AMF+Xac treatment, likely due to the linkage and signal transfer, via CMNs. These findings support the hypothesis that CMNs transfer the SA signal from infected to neighboring healthy seedlings, to activate defense responses and affording protection to neighboring plants against citrus canker infection.
Collapse
Affiliation(s)
- Yi-Can Zhang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, China
- Institute of Root Biology, Yangtze University, Jingzhou, 434025, China
| | - Ying-Ning Zou
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, China
- Institute of Root Biology, Yangtze University, Jingzhou, 434025, China
| | - Li-Ping Liu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, China
- Institute of Root Biology, Yangtze University, Jingzhou, 434025, China
| | - Qiang-Sheng Wu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, China
- Institute of Root Biology, Yangtze University, Jingzhou, 434025, China
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove 50003, Czech Republic
| |
Collapse
|
28
|
Balestrini R, Rosso LC, Veronico P, Melillo MT, De Luca F, Fanelli E, Colagiero M, di Fossalunga AS, Ciancio A, Pentimone I. Transcriptomic Responses to Water Deficit and Nematode Infection in Mycorrhizal Tomato Roots. Front Microbiol 2019; 10:1807. [PMID: 31456765 PMCID: PMC6700261 DOI: 10.3389/fmicb.2019.01807] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 07/22/2019] [Indexed: 11/13/2022] Open
Abstract
Climate changes include the intensification of drought in many parts of the world, increasing its frequency, severity and duration. However, under natural conditions, environmental stresses do not occur alone, and, in addition, more stressed plants may become more susceptible to attacks by pests and pathogens. Studies on the impact of the arbuscular mycorrhizal (AM) symbiosis on tomato response to water deficit showed that several drought-responsive genes are differentially regulated in AM-colonized tomato plants (roots and leaves) during water deficit. To date, global changes in mycorrhizal tomato root transcripts under water stress conditions have not been yet investigated. Here, changes in root transcriptome in the presence of an AM fungus, with or without water stress (WS) application, have been evaluated in a commercial tomato cultivar already investigated for the water stress response during AM symbiosis. Since root-knot nematodes (RKNs, Meloidogyne incognita) are obligate endoparasites and cause severe yield losses in tomato, the impact of the AM fungal colonization on RKN infection at 7 days post-inoculation was also evaluated. Results offer new information about the response to AM symbiosis, highlighting a functional redundancy for several tomato gene families, as well as on the tomato and fungal genes involved in WS response during symbiosis, underlying the role of the AM fungus. Changes in the expression of tomato genes related to nematode infection during AM symbiosis highlight a role of AM colonization in triggering defense responses against RKN in tomato. Overall, new datasets on the tomato response to an abiotic and biotic stress during AM symbiosis have been obtained, providing useful data for further researches.
Collapse
Affiliation(s)
- Raffaella Balestrini
- Consiglio Nazionale delle Ricerche, Istituto per la Protezione Sostenibile delle Piante, Turin, Italy
| | - Laura C Rosso
- Consiglio Nazionale delle Ricerche, Istituto per la Protezione Sostenibile delle Piante, Turin, Italy
| | - Pasqua Veronico
- Consiglio Nazionale delle Ricerche, Istituto per la Protezione Sostenibile delle Piante, Turin, Italy
| | - Maria Teresa Melillo
- Consiglio Nazionale delle Ricerche, Istituto per la Protezione Sostenibile delle Piante, Turin, Italy
| | - Francesca De Luca
- Consiglio Nazionale delle Ricerche, Istituto per la Protezione Sostenibile delle Piante, Turin, Italy
| | - Elena Fanelli
- Consiglio Nazionale delle Ricerche, Istituto per la Protezione Sostenibile delle Piante, Turin, Italy
| | - Mariantonietta Colagiero
- Consiglio Nazionale delle Ricerche, Istituto per la Protezione Sostenibile delle Piante, Turin, Italy
| | | | - Aurelio Ciancio
- Consiglio Nazionale delle Ricerche, Istituto per la Protezione Sostenibile delle Piante, Turin, Italy
| | - Isabella Pentimone
- Consiglio Nazionale delle Ricerche, Istituto per la Protezione Sostenibile delle Piante, Turin, Italy
| |
Collapse
|
29
|
Hao Z, Xie W, Chen B. Arbuscular Mycorrhizal Symbiosis Affects Plant Immunity to Viral Infection and Accumulation. Viruses 2019; 11:E534. [PMID: 31181739 PMCID: PMC6630321 DOI: 10.3390/v11060534] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 06/04/2019] [Accepted: 06/06/2019] [Indexed: 11/22/2022] Open
Abstract
Arbuscular mycorrhizal (AM) fungi, as root symbionts of most terrestrial plants, improve plant growth and fitness. In addition to the improved plant nutritional status, the physiological changes that trigger metabolic changes in the root via AM fungi can also increase the host ability to overcome biotic and abiotic stresses. Plant viruses are one of the important limiting factors for the commercial cultivation of various crops. The effect of AM fungi on viral infection is variable, and considerable attention is focused on shoot virus infection. This review provides an overview of the potential of AM fungi as bioprotection agents against viral diseases and emphasizes the complex nature of plant-fungus-virus interactions. Several mechanisms, including modulated plant tolerance, manipulation of induced systemic resistance (ISR), and altered vector pressure are involved in such interactions. We propose that using "omics" tools will provide detailed insights into the complex mechanisms underlying mycorrhizal-mediated plant immunity.
Collapse
Affiliation(s)
- Zhipeng Hao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Wei Xie
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Baodong Chen
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
30
|
Berdeni D, Cotton TEA, Daniell TJ, Bidartondo MI, Cameron DD, Evans KL. The Effects of Arbuscular Mycorrhizal Fungal Colonisation on Nutrient Status, Growth, Productivity, and Canker Resistance of Apple ( Malus pumila). Front Microbiol 2018; 9:1461. [PMID: 30018611 PMCID: PMC6037770 DOI: 10.3389/fmicb.2018.01461] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 06/12/2018] [Indexed: 11/24/2022] Open
Abstract
We assess whether arbuscular mycorrhizal fungi (AMF) improve growth, nutritional status, phenology, flower and fruit production, and disease resistance in woody perennial crops using apple (Malus pumila) as a study system. In a fully factorial experiment, young trees were grown for 3 years with or without AMF (Funneliformis mosseae and Rhizophagus irregularis), and with industrial standard fertiliser applications or restricted fertiliser (10% of standard). We use two commercial scions (Dabinett and Michelin) and rootstocks (MM111 and MM106). Industrial standard fertiliser applications reduced AMF colonisation and root biomass, potentially increasing drought sensitivity. Mycorrhizal status was influenced by above ground genotypes (scion type) but not rootstocks, indicating strong interactions between above and below ground plant tissue. The AMF inoculation significantly increased resistance to Neonectria ditissima, a globally economically significant fungal pathogen of apple orchards, but did not consistently alter leaf nutrients, growth, phenology or fruit and flower production. This study significantly advances understanding of AMF benefits to woody perennial crops, especially increased disease resistance which we show is not due to improved tree nutrition or drought alleviation. Breeding programmes and standard management practises can limit the potential for these benefits.
Collapse
Affiliation(s)
- Despina Berdeni
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | - T. E. A. Cotton
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Tim J. Daniell
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
- Ecological Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Martin I. Bidartondo
- Department of Life Sciences, Imperial College London, London, United Kingdom
- Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Richmond, United Kingdom
| | - Duncan D. Cameron
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Karl L. Evans
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
31
|
Torres N, Antolín MC, Goicoechea N. Arbuscular Mycorrhizal Symbiosis as a Promising Resource for Improving Berry Quality in Grapevines Under Changing Environments. FRONTIERS IN PLANT SCIENCE 2018; 9:897. [PMID: 30008729 PMCID: PMC6034061 DOI: 10.3389/fpls.2018.00897] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 06/07/2018] [Indexed: 05/13/2023]
Abstract
Climate change and their resulting impacts are becoming a concern for winegrowers due to the high socioeconomic relevance of the winemaking sector worldwide. In fact, the projected climate change is expected to have detrimental impacts on the yield of grapevines, as well as on the quality and properties of grapes and wine. It is well known that arbuscular mycorrhizal fungi (AMF) can improve the nutritional quality of edible parts of crops and play essential roles in the maintenance of host plant fitness under stressed environments, including grapevines. The future scenarios of climate change may also modify the diversity and the growth of AMF in soils as well as the functionality of the mycorrhizal symbiosis. In this review, we summarize recent research progress on the effects of climate change on grapevine metabolism, paying special attention to the secondary compounds involved in the organoleptic properties of grapes and wines and to the levels of the phytohormones implied in the control of berry development and fruit ripening. In this context, the potential role of AMF for maintaining fruit quality in future climate change scenarios is discussed.
Collapse
Affiliation(s)
| | | | - Nieves Goicoechea
- Unidad Asociada al CSIC (EEAD, Zaragoza, ICVV, Logroño), Grupo de Fisiología del Estrés en Plantas (Departamento de Biología Ambiental), Facultades de Ciencias y Farmacia y Nutrición, Universidad de Navarra, Pamplona, Spain
| |
Collapse
|
32
|
|
33
|
Trade-Offs in Arbuscular Mycorrhizal Symbiosis: Disease Resistance, Growth Responses and Perspectives for Crop Breeding. AGRONOMY-BASEL 2017. [DOI: 10.3390/agronomy7040075] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
34
|
Biofertilizers and sustainable agriculture: exploring arbuscular mycorrhizal fungi. Appl Microbiol Biotechnol 2017; 101:4871-4881. [DOI: 10.1007/s00253-017-8344-z] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/10/2017] [Accepted: 05/10/2017] [Indexed: 11/26/2022]
|
35
|
Martínez-Medina A, Fernandez I, Lok GB, Pozo MJ, Pieterse CMJ, Van Wees SCM. Shifting from priming of salicylic acid- to jasmonic acid-regulated defences by Trichoderma protects tomato against the root knot nematode Meloidogyne incognita. THE NEW PHYTOLOGIST 2017; 213:1363-1377. [PMID: 27801946 DOI: 10.1111/nph.14251] [Citation(s) in RCA: 164] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 09/02/2016] [Indexed: 05/18/2023]
Abstract
Beneficial root endophytes such as Trichoderma spp. can reduce infections by parasitic nematodes through triggering host defences. Little is currently known about the complex hormone signalling underlying the induction of resistance. In this study, we investigated whether Trichoderma modulates the hormone signalling network in the host to induce resistance to nematodes. We investigated the role and the timing of the jasmonic acid (JA)- and salicylic acid (SA)-regulated defensive pathways in Trichoderma-induced resistance to the root knot nematode Meloidogyne incognita. A split-root system of tomato (Solanum lycopersicum) was used to study local and systemic induced defences by analysing nematode performance, defence gene expression, responsiveness to exogenous hormone application, and dependence on SA and JA signalling of Trichoderma-induced resistance. Root colonization by Trichoderma impeded nematode performance both locally and systemically at multiple stages of the parasitism, that is, invasion, galling and reproduction. First, Trichoderma primed SA-regulated defences, which limited nematode root invasion. Then, Trichoderma enhanced JA-regulated defences, thereby antagonizing the deregulation of JA-dependent immunity by the nematodes, which compromised galling and fecundity. Our results show that Trichoderma primes SA- and JA-dependent defences in roots, and that the priming of responsiveness to these hormones upon nematode attack is plastic and adaptive to the parasitism stage.
Collapse
Affiliation(s)
- Ainhoa Martínez-Medina
- Plant-Microbe Interactions, Department of Biology, Utrecht University, Padualaan 8, Utrecht, 3584 CH, the Netherlands
| | - Ivan Fernandez
- Plant-Microbe Interactions, Department of Biology, Utrecht University, Padualaan 8, Utrecht, 3584 CH, the Netherlands
| | - Gerrit B Lok
- Plant-Microbe Interactions, Department of Biology, Utrecht University, Padualaan 8, Utrecht, 3584 CH, the Netherlands
| | - María J Pozo
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, Granada, 18008, Spain
| | - Corné M J Pieterse
- Plant-Microbe Interactions, Department of Biology, Utrecht University, Padualaan 8, Utrecht, 3584 CH, the Netherlands
| | - Saskia C M Van Wees
- Plant-Microbe Interactions, Department of Biology, Utrecht University, Padualaan 8, Utrecht, 3584 CH, the Netherlands
| |
Collapse
|
36
|
Medeiros HAD, Araújo Filho JVD, Freitas LGD, Castillo P, Rubio MB, Hermosa R, Monte E. Tomato progeny inherit resistance to the nematode Meloidogyne javanica linked to plant growth induced by the biocontrol fungus Trichoderma atroviride. Sci Rep 2017; 7:40216. [PMID: 28071749 PMCID: PMC5223212 DOI: 10.1038/srep40216] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 12/05/2016] [Indexed: 12/19/2022] Open
Abstract
Root-knot nematodes (RKN) are major crop pathogens worldwide. Trichoderma genus fungi are recognized biocontrol agents and a direct activity of Trichoderma atroviride (Ta) against the RKN Meloidogyne javanica (Mj), in terms of 42% reduction of number of galls (NG), 60% of number of egg masses and 90% of number of adult nematodes inside the roots, has been observed in tomato grown under greenhouse conditions. An in vivo split-root designed experiment served to demonstrate that Ta induces systemic resistance towards Mj, without the need for the organisms to be in direct contact, and significantly reduces NG (20%) and adult nematodes inside tomato roots (87%). The first generation (F1) of Ta-primed tomato plants inherited resistance to RKN; although, the induction of defenses occurred through different mechanisms, and in varying degrees, depending on the Ta-Mj interaction. Plant growth promotion induced by Ta was inherited without compromising the level of resistance to Mj, as the progeny of Ta-primed plants displayed increased size and resistance to Mj without fitness costs. Gene expression results from the defense inductions in the offspring of Ta-primed plants, suggested that an auxin-induced reactive oxygen species production promoted by Ta may act as a major defense strategy during plant growth.
Collapse
Affiliation(s)
- Hugo Agripino de Medeiros
- Department of Microbiology and Genetics, Spanish-Portuguese Institute for Agricultural Research (CIALE), University of Salamanca, Salamanca, Spain
- Department of Phytopathology, Federal University of Viçosa, Viçosa Minas Gerais, Brazil
| | | | | | - Pablo Castillo
- Institute for Sustainable Agriculture, Spanish National Research Council (CSIC), Córdoba, Spain
| | - María Belén Rubio
- Department of Microbiology and Genetics, Spanish-Portuguese Institute for Agricultural Research (CIALE), University of Salamanca, Salamanca, Spain
| | - Rosa Hermosa
- Department of Microbiology and Genetics, Spanish-Portuguese Institute for Agricultural Research (CIALE), University of Salamanca, Salamanca, Spain
| | - Enrique Monte
- Department of Microbiology and Genetics, Spanish-Portuguese Institute for Agricultural Research (CIALE), University of Salamanca, Salamanca, Spain
| |
Collapse
|
37
|
Séry DJM, Kouadjo ZGC, Voko BRR, Zézé A. Selecting Native Arbuscular Mycorrhizal Fungi to Promote Cassava Growth and Increase Yield under Field Conditions. Front Microbiol 2016; 7:2063. [PMID: 28066381 PMCID: PMC5177653 DOI: 10.3389/fmicb.2016.02063] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 12/07/2016] [Indexed: 12/20/2022] Open
Abstract
The use of arbuscular mycorrhizal fungal (AMF) inoculation in sustainable agriculture is now widespread worldwide. Although the use of inoculants consisting of native AMF is highly recommended as an alternative to commercial ones, there is no strategy to allow the selection of efficient fungal species from natural communities. The objective of this study was (i) to select efficient native AMF species (ii) evaluate their impact on nematode and water stresses, and (iii) evaluate their impact on cassava yield, an important food security crop in tropical and subtropical regions. Firstly, native AMF communities associated with cassava rhizospheres in fields were collected from different areas and 7 AMF species were selected, based upon their ubiquity and abundance. Using these criteria, two morphotypes (LBVM01 and LBVM02) out of the seven AMF species selected were persistently dominant when cassava was used as a trap plant. LBVM01 and LBVM02 were identified as Acaulospora colombiana (most abundant) and Ambispora appendicula, respectively, after phylogenetic analyses of LSU-ITS-SSU PCR amplified products. Secondly, the potential of these two native AMF species to promote growth and enhance tolerance to root-knot nematode and water stresses of cassava (Yavo variety) was evaluated using single and dual inoculation in greenhouse conditions. Of the two AMF species, it was shown that A. colombiana significantly improved the growth of the cassava and enhanced tolerance to water stress. However, both A. colombiana and A. appendicula conferred bioprotective effects to cassava plants against the nematode Meloidogyne spp., ranging from resistance (suppression or reduction of the nematode reproduction) or tolerance (low or no suppression in cassava growth). Thirdly, the potential of these selected native AMF to improve cassava growth and yield was evaluated under field conditions, compared to a commercial inoculant. In these conditions, the A. colombiana single inoculation and the dual inoculation significantly improved cassava yield compared to the commercial inoculant. This is the first report on native AMF species exhibiting multiple benefits for cassava crop productivity, namely improved plant growth and yield, water stress tolerance and nematode resistance.
Collapse
Affiliation(s)
- D Jean-Marc Séry
- Laboratoire de Biotechnologies Végétale et Microbienne, Unité Mixte de Recherche et d'Innovation en Sciences Agronomiques et Génie Rural, Institut National Polytechnique Felix Houphouët-Boigny Yamoussoukro, Côte d'Ivoire
| | - Z G Claude Kouadjo
- Laboratoire Central de Biotechnologies, Centre National de la Recherche Agronomique Abidjan, Côte d'Ivoire
| | - B R Rodrigue Voko
- Unité de Formation et de Recherche en Agroforesterie, Université Jean Lorougnon Guédé Daloa, Côte d'Ivoire
| | - Adolphe Zézé
- Laboratoire de Biotechnologies Végétale et Microbienne, Unité Mixte de Recherche et d'Innovation en Sciences Agronomiques et Génie Rural, Institut National Polytechnique Felix Houphouët-Boigny Yamoussoukro, Côte d'Ivoire
| |
Collapse
|
38
|
Bruisson S, Maillot P, Schellenbaum P, Walter B, Gindro K, Deglène-Benbrahim L. Arbuscular mycorrhizal symbiosis stimulates key genes of the phenylpropanoid biosynthesis and stilbenoid production in grapevine leaves in response to downy mildew and grey mould infection. PHYTOCHEMISTRY 2016; 131:92-99. [PMID: 27623505 DOI: 10.1016/j.phytochem.2016.09.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 07/22/2016] [Accepted: 09/01/2016] [Indexed: 05/08/2023]
Abstract
Grapevine (Vitis spp) is susceptible to serious fungal diseases usually controlled by chemical treatments. Arbuscular mycorrhizal fungi (AMF) are obligate plant symbionts which can stimulate plant defences. We investigated the effect of mycorrhization on grapevine stilbenoid defences. Vitis vinifera cvs Chasselas, Pinot noir and the interspecific hybrid Divico, on the rootstock 41B, were mycorrhized with Rhizophagus irregularis before leaf infection by Plasmopara viticola or Botrytis cinerea. Gene expression analysis showed an up-regulation of PAL, STS, and ROMT, involved in the stilbenoid biosynthesis pathway, in plant leaves, 48 h after pathogen inoculation. This defense response could be potentiated under AMF colonization, with an intensity level depending on the gene, the plant cultivar and/or the pathogen. We also showed that higher amounts of active forms of stilbenoids (i.e trans-form of resveratrol, ε- and δ-viniferins and pterostilbene) were produced in mycorrhized plants of the three genotypes in comparison with non-mycorrhized ones, 10 days post-inoculation with either pathogen. These results support the hypothesis that AMF root colonization enhances defence reactions against a biotrophic and a necrotrophic pathogen, in the aerial parts of grapevine.
Collapse
Affiliation(s)
- Sébastien Bruisson
- Laboratoire Vigne, Biotechnologies & Environnement, Université de Haute Alsace, 33 rue de Herrlisheim, F-68008 Colmar Cedex, France
| | - Pascale Maillot
- Laboratoire Vigne, Biotechnologies & Environnement, Université de Haute Alsace, 33 rue de Herrlisheim, F-68008 Colmar Cedex, France
| | - Paul Schellenbaum
- Laboratoire Vigne, Biotechnologies & Environnement, Université de Haute Alsace, 33 rue de Herrlisheim, F-68008 Colmar Cedex, France
| | - Bernard Walter
- Laboratoire Vigne, Biotechnologies & Environnement, Université de Haute Alsace, 33 rue de Herrlisheim, F-68008 Colmar Cedex, France
| | - Katia Gindro
- Agroscope, Institute for Plant Production Sciences IPS, Mycology and Biotechnology, Route de Duillier 50, P.O. Box 1012, 1260 Nyon, Switzerland
| | - Laurence Deglène-Benbrahim
- Laboratoire Vigne, Biotechnologies & Environnement, Université de Haute Alsace, 33 rue de Herrlisheim, F-68008 Colmar Cedex, France.
| |
Collapse
|
39
|
Mustafa G, Randoux B, Tisserant B, Fontaine J, Magnin-Robert M, Lounès-Hadj Sahraoui A, Reignault P. Phosphorus supply, arbuscular mycorrhizal fungal species, and plant genotype impact on the protective efficacy of mycorrhizal inoculation against wheat powdery mildew. MYCORRHIZA 2016; 26:685-697. [PMID: 27130314 DOI: 10.1007/s00572-016-0698-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 04/06/2016] [Indexed: 06/05/2023]
Abstract
A potential alternative strategy to chemical control of plant diseases could be the stimulation of plant defense by arbuscular mycorrhizal fungi (AMF). In the present study, the influence of three parameters (phosphorus supply, mycorrhizal inoculation, and wheat cultivar) on AMF protective efficiency against Blumeria graminis f. sp. tritici, responsible for powdery mildew, was investigated under controlled conditions. A 5-fold reduction (P/5) in the level of phosphorus supply commonly recommended for wheat in France improved Funneliformis mosseae colonization and promoted protection against B. graminis f. sp. tritici in a more susceptible wheat cultivar. However, a further decrease in P affected plant growth, even under mycorrhizal conditions. Two commercially available AMF inocula (F. mosseae, Solrize®) and one laboratory inoculum (Rhizophagus irregularis) were tested for mycorrhizal development and protection against B. graminis f. sp. tritici of two moderately susceptible and resistant wheat cultivars at P/5. Mycorrhizal levels were the highest with F. mosseae (38 %), followed by R. irregularis (19 %) and Solrize® (SZE, 8 %). On the other hand, the highest protection level against B. graminis f. sp. tritici was obtained with F. mosseae (74 %), followed by SZE (58 %) and R. irregularis (34 %), suggesting that inoculum type rather than mycorrhizal levels determines the protection level of wheat against B. graminis f. sp. tritici. The mycorrhizal protective effect was associated with a reduction in the number of conidia with haustorium and with an accumulation of polyphenolic compounds at B. graminis f. sp. tritici infection sites. Both the moderately susceptible and the most resistant wheat cultivar were protected against B. graminis f. sp. tritici infection by F. mosseae inoculation at P/5, although the underlying mechanisms appear rather different between the two cultivars. This study emphasizes the importance of taking into account the considered parameters when considering the use of AMF as biocontrol agents.
Collapse
Affiliation(s)
- G Mustafa
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), Université du Littoral Côte d'Opale, SFR Condorcet FR CNRS 3417, 50, Rue Ferdinand Buisson, 62228, Calais Cedex, France
| | - B Randoux
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), Université du Littoral Côte d'Opale, SFR Condorcet FR CNRS 3417, 50, Rue Ferdinand Buisson, 62228, Calais Cedex, France
| | - B Tisserant
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), Université du Littoral Côte d'Opale, SFR Condorcet FR CNRS 3417, 50, Rue Ferdinand Buisson, 62228, Calais Cedex, France
| | - J Fontaine
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), Université du Littoral Côte d'Opale, SFR Condorcet FR CNRS 3417, 50, Rue Ferdinand Buisson, 62228, Calais Cedex, France
| | - M Magnin-Robert
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), Université du Littoral Côte d'Opale, SFR Condorcet FR CNRS 3417, 50, Rue Ferdinand Buisson, 62228, Calais Cedex, France
| | - A Lounès-Hadj Sahraoui
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), Université du Littoral Côte d'Opale, SFR Condorcet FR CNRS 3417, 50, Rue Ferdinand Buisson, 62228, Calais Cedex, France.
| | - Ph Reignault
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), Université du Littoral Côte d'Opale, SFR Condorcet FR CNRS 3417, 50, Rue Ferdinand Buisson, 62228, Calais Cedex, France
| |
Collapse
|
40
|
Reynolds OL, Padula MP, Zeng R, Gurr GM. Silicon: Potential to Promote Direct and Indirect Effects on Plant Defense Against Arthropod Pests in Agriculture. FRONTIERS IN PLANT SCIENCE 2016; 7:744. [PMID: 27379104 PMCID: PMC4904004 DOI: 10.3389/fpls.2016.00744] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 05/17/2016] [Indexed: 05/18/2023]
Abstract
Silicon has generally not been considered essential for plant growth, although it is well recognized that many plants, particularly Poaceae, have substantial plant tissue concentrations of this element. Recently, however, the International Plant Nutrition Institute [IPNI] (2015), Georgia, USA has listed it as a "beneficial substance". This reflects that numerous studies have now established that silicon may alleviate both biotic and abiotic stress. This paper explores the existing knowledge and recent advances in elucidating the role of silicon in plant defense against biotic stress, particularly against arthropod pests in agriculture and attraction of beneficial insects. Silicon confers resistance to herbivores via two described mechanisms: physical and biochemical/molecular. Until recently, studies have mainly centered on two trophic levels; the herbivore and plant. However, several studies now describe tri-trophic effects involving silicon that operate by attracting predators or parasitoids to plants under herbivore attack. Indeed, it has been demonstrated that silicon-treated, arthropod-attacked plants display increased attractiveness to natural enemies, an effect that was reflected in elevated biological control in the field. The reported relationships between soluble silicon and the jasmonic acid (JA) defense pathway, and JA and herbivore-induced plant volatiles (HIPVs) suggest that soluble silicon may enhance the production of HIPVs. Further, it is feasible that silicon uptake may affect protein expression (or modify proteins structurally) so that they can produce additional, or modify, the HIPV profile of plants. Ultimately, understanding silicon under plant ecological, physiological, biochemical, and molecular contexts will assist in fully elucidating the mechanisms behind silicon and plant response to biotic stress at both the bi- and tri-trophic levels.
Collapse
Affiliation(s)
- Olivia L. Reynolds
- Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, FujianChina
- Graham Centre for Agricultural Innovation, New South Wales Department of Primary Industries, Menangle, NSWAustralia
- *Correspondence: Geoff M. Gurr, ; Olivia L. Reynolds,
| | - Matthew P. Padula
- Proteomics Core Facility, School of Life Sciences, University of Technology Sydney, Sydney, NSWAustralia
| | - Rensen Zeng
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, FujianChina
| | - Geoff M. Gurr
- Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, FujianChina
- Graham Centre for Agricultural Innovation, Charles Sturt University, Orange, NSWAustralia
- *Correspondence: Geoff M. Gurr, ; Olivia L. Reynolds,
| |
Collapse
|
41
|
Schouteden N, De Waele D, Panis B, Vos CM. Arbuscular Mycorrhizal Fungi for the Biocontrol of Plant-Parasitic Nematodes: A Review of the Mechanisms Involved. Front Microbiol 2015; 6:1280. [PMID: 26635750 PMCID: PMC4646980 DOI: 10.3389/fmicb.2015.01280] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 10/31/2015] [Indexed: 11/26/2022] Open
Abstract
Arbuscular mycorrhizal fungi (AMF) are obligate root symbionts that can protect their host plant against biotic stress factors such as plant-parasitic nematode (PPN) infection. PPN consist of a wide range of species with different life styles that can cause major damage in many important crops worldwide. Various mechanisms have been proposed to play a role in the biocontrol effect of AMF against PPN. This review presents an overview of the different mechanisms that have been proposed, and discusses into more detail the plausibility of their involvement in the biocontrol against PPN specifically. The proposed mechanisms include enhanced plant tolerance, direct competition for nutrients and space, induced systemic resistance (ISR) and altered rhizosphere interactions. Recent studies have emphasized the importance of ISR in biocontrol and are increasingly placing rhizosphere effects on the foreground as well, both of which will be the focal point of this review. Though AMF are not yet widely used in conventional agriculture, recent data help to develop a better insight into the modes of action, which will eventually lead toward future field applications of AMF against PPN. The scientific community has entered an exciting era that provides the tools to actually unravel the underlying molecular mechanisms, making this a timely opportunity for a review of our current knowledge and the challenges ahead.
Collapse
Affiliation(s)
- Nele Schouteden
- Laboratory of Tropical Crop Improvement, Department of Biosystems, KU Leuven, Heverlee, Belgium
| | - Dirk De Waele
- Laboratory of Tropical Crop Improvement, Department of Biosystems, KU Leuven, Heverlee, Belgium
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Bart Panis
- Bioversity International, Heverlee, Belgium
| | - Christine M. Vos
- Centre of Microbial and Plant Genetics, KU Leuven, Heverlee, Belgium
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, Gent, Belgium
- Commonwealth Scientific and Industrial Research Organisation Agriculture, Queensland Bioscience Precinct, Brisbane, QLD, Australia
| |
Collapse
|
42
|
Song Y, Chen D, Lu K, Sun Z, Zeng R. Enhanced tomato disease resistance primed by arbuscular mycorrhizal fungus. FRONTIERS IN PLANT SCIENCE 2015; 6:786. [PMID: 26442091 PMCID: PMC4585261 DOI: 10.3389/fpls.2015.00786] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 09/11/2015] [Indexed: 05/18/2023]
Abstract
Roots of most terrestrial plants form symbiotic associations (mycorrhiza) with soil- borne arbuscular mycorrhizal fungi (AMF). Many studies show that mycorrhizal colonization enhances plant resistance against pathogenic fungi. However, the mechanism of mycorrhiza-induced disease resistance remains equivocal. In this study, we found that mycorrhizal inoculation with AMF Funneliformis mosseae significantly alleviated tomato (Solanum lycopersicum Mill.) early blight disease caused by Alternaria solani Sorauer. AMF pre-inoculation led to significant increases in activities of β-1,3-glucanase, chitinase, phenylalanine ammonia-lyase (PAL) and lipoxygenase (LOX) in tomato leaves upon pathogen inoculation. Mycorrhizal inoculation alone did not influence the transcripts of most genes tested. However, pathogen attack on AMF-inoculated plants provoked strong defense responses of three genes encoding pathogenesis-related proteins, PR1, PR2, and PR3, as well as defense-related genes LOX, AOC, and PAL, in tomato leaves. The induction of defense responses in AMF pre-inoculated plants was much higher and more rapid than that in un-inoculated plants in present of pathogen infection. Three tomato genotypes: a Castlemart wild-type (WT) plant, a jasmonate (JA) biosynthesis mutant (spr2), and a prosystemin-overexpressing 35S::PS plant were used to examine the role of the JA signaling pathway in AMF-primed disease defense. Pathogen infection on mycorrhizal 35S::PS plants led to higher induction of defense-related genes and enzymes relative to WT plants. However, pathogen infection did not induce these genes and enzymes in mycorrhizal spr2 mutant plants. Bioassays showed that 35S::PS plants were more resistant and spr2 plants were more susceptible to early blight compared with WT plants. Our finding indicates that mycorrhizal colonization enhances tomato resistance to early blight by priming systemic defense response, and the JA signaling pathway is essential for mycorrhiza-primed disease resistance.
Collapse
Affiliation(s)
- Yuanyuan Song
- College of Life Sciences, Fujian Agriculture and Forestry University, FuzhouChina
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, GuangzhouChina
| | - Dongmei Chen
- College of Life Sciences, Fujian Agriculture and Forestry University, FuzhouChina
| | - Kai Lu
- College of Life Sciences, Fujian Agriculture and Forestry University, FuzhouChina
| | - Zhongxiang Sun
- College of Life Sciences, Fujian Agriculture and Forestry University, FuzhouChina
| | - Rensen Zeng
- College of Life Sciences, Fujian Agriculture and Forestry University, FuzhouChina
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, GuangzhouChina
| |
Collapse
|
43
|
Wu Z, Hao Z, Zeng Y, Guo L, Huang L, Chen B. Molecular characterization of microbial communities in the rhizosphere soils and roots of diseased and healthy Panax notoginseng. Antonie van Leeuwenhoek 2015; 108:1059-74. [PMID: 26296378 DOI: 10.1007/s10482-015-0560-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 08/17/2015] [Indexed: 01/26/2023]
Abstract
Rhizosphere and root-associated microbial communities are known to be related to soil-borne disease and plant health. In the present study, the microbial communities in rhizosphere soils and roots of both healthy and diseased Panax notoginseng were analyzed by high-throughput sequencing of 16S rRNA for bacteria and 18S rRNA internal transcribed spacer for fungi, to reveal the relationship of microbial community structure with plant health status. In total, 5593 bacterial operational taxonomic units (OTUs) and 963 fungal OTUs were identified in rhizosphere soils, while 1794 bacterial and 314 fungal OTUs were identified from root samples respectively. Principal coordinate analysis separated the microbial communities both in the rhizosphere soils and roots of diseased P. notoginseng from healthy plants. Compared to those of healthy P. notoginseng, microbial communities in rhizosphere soils and roots of diseased plants showed a decrease in alpha diversity. By contrast, bacterial community dissimilarity increased and fungal community dissimilarity decreased in rhizosphere soils of diseased plants, while both bacterial and fungal community dissimilarity in roots showed no significant difference between healthy and diseased plants. Redundancy analysis at the phylum level showed that mycorrhizal colonization and soil texture significantly affected microbial community composition in rhizosphere soils, whereas shoot nutrition status had a significant effect on microbial community composition in root samples. Our study provided strong evidence for the hypothesis that microbial diversity could potentially serve as an indicator for disease outbreak of medicinal plants, and supported the ecological significance of microbial communities in maintaining plant healthy and soil fertility.
Collapse
Affiliation(s)
- Zhaoxiang Wu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhipeng Hao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yan Zeng
- China National Group Corporation of Traditional and Herbal Medicine, Beijing, 100097, China
| | - Lanping Guo
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Luqi Huang
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Baodong Chen
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| |
Collapse
|
44
|
Mycorrhiza-induced protection against pathogens is both genotype-specific and graft-transmissible. Symbiosis 2015. [DOI: 10.1007/s13199-015-0334-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
45
|
Balmer A, Pastor V, Gamir J, Flors V, Mauch-Mani B. The 'prime-ome': towards a holistic approach to priming. TRENDS IN PLANT SCIENCE 2015; 20:443-52. [PMID: 25921921 DOI: 10.1016/j.tplants.2015.04.002] [Citation(s) in RCA: 157] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 03/27/2015] [Accepted: 04/01/2015] [Indexed: 05/21/2023]
Abstract
Plants can be primed to respond faster and more strongly to stress and multiple pathways, specific for the encountered challenge, are involved in priming. This adaptability of priming makes it difficult to pinpoint an exact mechanism: the same phenotypic observation might be the consequence of unrelated underlying events. Recently, details of the molecular aspects of establishing a primed state and its transfer to offspring have come to light. Advances in techniques for detection and quantification of elements spanning the fields of transcriptomics, proteomics, and metabolomics, together with adequate bioinformatics tools, will soon allow us to take a holistic approach to plant defence. This review highlights the state of the art of new strategies to study defence priming in plants and provides perspectives towards 'prime-omics'.
Collapse
Affiliation(s)
- Andrea Balmer
- Université de Neuchâtel, Science Faculty, Department of Biology, Rue Emile Argand 11, CH 2000 Neuchâtel, Switzerland
| | - Victoria Pastor
- Université de Neuchâtel, Science Faculty, Department of Biology, Rue Emile Argand 11, CH 2000 Neuchâtel, Switzerland
| | - Jordi Gamir
- Área de Fisiología Vegetal, Departamento de Ciencias Agrarias y del Medio Natural, Universitat Jaume I, Castellón, Spain
| | - Victor Flors
- Área de Fisiología Vegetal, Departamento de Ciencias Agrarias y del Medio Natural, Universitat Jaume I, Castellón, Spain
| | - Brigitte Mauch-Mani
- Université de Neuchâtel, Science Faculty, Department of Biology, Rue Emile Argand 11, CH 2000 Neuchâtel, Switzerland.
| |
Collapse
|
46
|
Colonization and molecular diversity of arbuscular mycorrhizal fungi associated with the rhizosphere of cowpea (Vigna unguiculata (L.) Walp.) in Benin (West Africa): an exploratory study. ANN MICROBIOL 2015. [DOI: 10.1007/s13213-015-1097-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
47
|
Giovannetti M, Mari A, Novero M, Bonfante P. Early Lotus japonicus root transcriptomic responses to symbiotic and pathogenic fungal exudates. FRONTIERS IN PLANT SCIENCE 2015; 6:480. [PMID: 26175746 PMCID: PMC4483521 DOI: 10.3389/fpls.2015.00480] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 06/15/2015] [Indexed: 05/03/2023]
Abstract
The objective of this study is to evaluate Lotus japonicus transcriptomic responses to arbuscular mycorrhizal (AM) germinated spore exudates (GSEs), responsible for activating nuclear Ca(2+) spiking in plant root epidermis. A microarray experiment was performed comparing gene expression in Lotus rootlets treated with GSE or water after 24 and 48 h. The transcriptional pattern of selected genes that resulted to be regulated in the array was further evaluated upon different treatments and timings. In particular, Lotus rootlets were treated with: GSE from the pathogenic fungus Colletotrichum trifolii; short chitin oligomers (COs; acknowledged AM fungal signals) and long COs (as activators of pathogenic responses). This experimental set up has revealed that AM GSE generates a strong transcriptomic response in Lotus roots with an extensive defense-related response after 24 h and a subsequent down-regulation after 48 h. A similar subset of defense-related genes resulted to be up-regulated also upon treatment with C. trifolii GSE, although with an opposite trend. Surprisingly, long COs activated both defense-like and symbiosis-related genes. Among the genes regulated in the microarray, promoter-GUS assay showed that LjMATE1 activates in epidermal cells and root hairs.
Collapse
Affiliation(s)
- Marco Giovannetti
- Department of Life Science and Systems Biology, Università degli Studi di TorinoTorino, Italy
| | - Alfredo Mari
- Department of Life Science and Systems Biology, Università degli Studi di TorinoTorino, Italy
- Scuola Superiore Sant’Anna di Studi Universitari e PerfezionamentoPisa, Italy
| | - Mara Novero
- Department of Life Science and Systems Biology, Università degli Studi di TorinoTorino, Italy
| | - Paola Bonfante
- Department of Life Science and Systems Biology, Università degli Studi di TorinoTorino, Italy
- *Correspondence: Paola Bonfante, Department of Life Science and Systems Biology, Università degli Studi di Torino, Viale Mattioli 25, I-10125 Torino, Italy,
| |
Collapse
|
48
|
Charpentier M, Sun J, Wen J, Mysore KS, Oldroyd GED. Abscisic acid promotion of arbuscular mycorrhizal colonization requires a component of the PROTEIN PHOSPHATASE 2A complex. PLANT PHYSIOLOGY 2014; 166:2077-90. [PMID: 25293963 PMCID: PMC4256847 DOI: 10.1104/pp.114.246371] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 10/02/2014] [Indexed: 05/20/2023]
Abstract
Legumes can establish intracellular interactions with symbiotic microbes to enhance their fitness, including the interaction with arbuscular mycorrhizal (AM) fungi. AM fungi colonize root epidermal cells to gain access to the root cortex, and this requires the recognition by the host plant of fungus-made mycorrhizal factors. Genetic dissection has revealed the symbiosis signaling pathway that allows the recognition of AM fungi, but the downstream processes that are required to promote fungal infection are poorly understood. Abscisic acid (ABA) has been shown to promote arbuscule formation in tomato (Solanum lycopersicum). Here, we show that ABA modulates the establishment of the AM symbiosis in Medicago truncatula by promoting fungal colonization at low concentrations and impairing it at high concentrations. We show that the positive regulation of AM colonization via ABA requires a PROTEIN PHOSPHATASE 2A (PP2A) holoenzyme subunit, PP2AB'1. Mutations in PP2AB'1 cause reduced levels of AM colonization that cannot be rescued with permissive ABA application. The action of PP2AB'1 in response to ABA is unlinked to the generation of calcium oscillations, as the pp2aB'1 mutant displays a normal calcium response. This contrasts with the application of high concentrations of ABA that impairs mycorrhizal factor-induced calcium oscillations, suggesting different modes of action of ABA on the AM symbiosis. Our work reveals that ABA functions at multiple levels to regulate the AM symbiosis and that a PP2A phosphatase is required for the ABA promotion of AM colonization.
Collapse
Affiliation(s)
- Myriam Charpentier
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom (M.C., J.S., G.E.D.O.); andSamuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (J.W., K.S.M.)
| | - Jongho Sun
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom (M.C., J.S., G.E.D.O.); andSamuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (J.W., K.S.M.)
| | - Jiangqi Wen
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom (M.C., J.S., G.E.D.O.); andSamuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (J.W., K.S.M.)
| | - Kirankumar S Mysore
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom (M.C., J.S., G.E.D.O.); andSamuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (J.W., K.S.M.)
| | - Giles E D Oldroyd
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom (M.C., J.S., G.E.D.O.); andSamuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (J.W., K.S.M.)
| |
Collapse
|
49
|
Zhang H, Franken P. Comparison of systemic and local interactions between the arbuscular mycorrhizal fungus Funneliformis mosseae and the root pathogen Aphanomyces euteiches in Medicago truncatula. MYCORRHIZA 2014; 24:419-430. [PMID: 24419810 DOI: 10.1007/s00572-013-0553-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 12/19/2013] [Indexed: 06/03/2023]
Abstract
It has been shown in a number of pathosystems that arbuscular mycorrhizal (AM) fungi confer resistance against root pathogens, including in interactions between Medicago truncatula and the root rot-causing oomycete Aphanomyces euteiches. For the current study of these interactions, a split root system was established for plant marker gene analysis in order to study systemic defense responses and to compare them with local interactions in conventional pot cultures. It turned out, however, that split root systems and pot cultures were in different physiological stages. Genes for pathogenesis-related proteins and for enzymes involved in flavonoid biosynthesis were generally more highly expressed in split root systems, accompanied by changes in RNA accumulation for genes encoding enzymes involved in phytohormone biosynthesis. Against expectations, the pathogen showed increased activity in these split root systems when the AM fungus Funneliformis mosseae was present separately in the distal part of the roots. Gene expression analysis revealed that this is associated in the pathogen-infected compartment with a systemic down-regulation of a gene coding for isochorismate synthase (ICS), a key enzyme of salicylic acid biosynthesis. At the same time, transcripts of genes encoding pathogenesis-related proteins and for enzymes involved in the biosynthesis of flavonoids accumulated to lower levels. In conventional pot cultures showing decreased A. euteiches activity in the presence of the AM fungus, the ICS gene was down regulated only if both the AM fungus and the pathogen were present in the root system. Such negative priming of salicylic acid biosynthesis could result in increased activities of jasmonate-regulated defense responses and could explain mycorrhiza-induced resistance. Altogether, this study shows that the split root system does not reflect a systemic interaction between F. mosseae and A. euteiches in M. truncatula and indicates the importance of testing such systems prior to the analysis of mycorrhiza-induced resistance.
Collapse
Affiliation(s)
- Haoqiang Zhang
- Leibniz-Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, 14979, Grossbeeren, Germany
| | | |
Collapse
|
50
|
Timper P. Conserving and enhancing biological control of nematodes. J Nematol 2014; 46:75-89. [PMID: 24987159 PMCID: PMC4077175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Indexed: 06/03/2023] Open
Abstract
Conservation biological control is the modification of the environment or existing practices to protect and enhance antagonistic organisms to reduce damage from pests. This approach to biological control has received insufficient attention compared with inundative applications of microbial antagonists to control nematodes. This review provides examples of how production practices can enhance or diminish biological control of plant-parasitic nematodes and other soilborne pests. Antagonists of nematodes can be enhanced by providing supplementary food sources such as occurs when organic amendments are applied to soil. However, some organic amendments (e.g., manures and plants containing allelopathic compounds) can also be detrimental to nematode antagonists. Plant species and genotype can strongly influence the outcome of biological control. For instance, the susceptibility of the plant to the nematode can determine the effectiveness of control; good hosts will require greater levels of suppression than poor hosts. Plant genotype can also influence the degree of rhizosphere colonization and antibiotic production by antagonists, as well the expression of induced resistance by plants. Production practices such as crop rotation, fallow periods, tillage, and pesticide applications can directly disrupt populations of antagonistic organisms. These practices can also indirectly affect antagonists by reducing their primary nematode host. One of the challenges of conservation biological control is that practices intended to protect or enhance suppression of nematodes may not be effective in all field sites because they are dependent on indigenous antagonists. Ultimately, indicators will need to be identified, such as the presence of particular antagonists, which can guide decisions on where it is practical to use conservation biological control. Antagonists can also be applied to field sites in conjunction with conservation practices to improve the consistency, efficacy, and duration of biological control. In future research, greater use should be made of bioassays that measure nematode suppression because changes in abundance of particular antagonists may not affect biological control of plant parasites.
Collapse
Affiliation(s)
- Patricia Timper
- Crop Protection and Management Research Unit, USDA ARS, P. O. Box 748, Tifton, GA 31793
| |
Collapse
|