1
|
Khator K, Parihar S, Jasik J, Shekhawat GS. Nitric oxide in plants: an insight on redox activity and responses toward abiotic stress signaling. PLANT SIGNALING & BEHAVIOR 2024; 19:2298053. [PMID: 38190763 DOI: 10.1080/15592324.2023.2298053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/16/2023] [Indexed: 01/10/2024]
Abstract
Plants, as sessile organisms, are subjected to diverse abiotic stresses, including salinity, desiccation, metal toxicity, thermal fluctuations, and hypoxia at different phases of plant growth. Plants can activate messenger molecules to initiate a signaling cascade of response toward environmental stresses that results in either cell death or plant acclimation. Nitric oxide (NO) is a small gaseous redox-active molecule that exhibits a plethora of physiological functions in growth, development, flowering, senescence, stomata closure and responses to environmental stresses. It can also facilitate alteration in protein function and reprogram the gene profiling by direct or indirect interaction with different target molecules. The bioactivity of NO can be manifested through different redox-based protein modifications including S-nitrosylation, protein nitration, and metal nitrosylation in plants. Although there has been considerable progress in the role of NO in regulating stress signaling, still the physiological mechanisms regarding the abiotic stress tolerance in plants remain unclear. This review summarizes recent advances in understanding the emerging knowledge regarding NO function in plant tolerance against abiotic stresses. The manuscript also highlighted the importance of NO as an abiotic stress modulator and developed a rational design for crop cultivation under a stress environment.
Collapse
Affiliation(s)
- Khushboo Khator
- Plant Biotechnology and Molecular Biology Laboratory, Department of Botany (UGC-CAS) Jai Narain Vyas University, Jodhpur, India
| | - Suman Parihar
- Plant Biotechnology and Molecular Biology Laboratory, Department of Botany (UGC-CAS) Jai Narain Vyas University, Jodhpur, India
| | - Jan Jasik
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Gyan Singh Shekhawat
- Plant Biotechnology and Molecular Biology Laboratory, Department of Botany (UGC-CAS) Jai Narain Vyas University, Jodhpur, India
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
2
|
Giulietti S, Bigini V, Savatin DV. ROS and RNS production, subcellular localization, and signaling triggered by immunogenic danger signals. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4512-4534. [PMID: 37950493 DOI: 10.1093/jxb/erad449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/08/2023] [Indexed: 11/12/2023]
Abstract
Plants continuously monitor the environment to detect changing conditions and to properly respond, avoiding deleterious effects on their fitness and survival. An enormous number of cell surface and intracellular immune receptors are deployed to perceive danger signals associated with microbial infections. Ligand binding by cognate receptors represents the first essential event in triggering plant immunity and determining the outcome of the tissue invasion attempt. Reactive oxygen and nitrogen species (ROS/RNS) are secondary messengers rapidly produced in different subcellular localizations upon the perception of immunogenic signals. Danger signal transduction inside the plant cells involves cytoskeletal rearrangements as well as several organelles and interactions between them to activate key immune signaling modules. Such immune processes depend on ROS and RNS accumulation, highlighting their role as key regulators in the execution of the immune cellular program. In fact, ROS and RNS are synergic and interdependent intracellular signals required for decoding danger signals and for the modulation of defense-related responses. Here we summarize current knowledge on ROS/RNS production, compartmentalization, and signaling in plant cells that have perceived immunogenic danger signals.
Collapse
Affiliation(s)
- Sarah Giulietti
- Department of Agriculture and Forest Sciences, University of Tuscia, Via S. Camillo de Lellis, 01100 Viterbo, Italy
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy
| | - Valentina Bigini
- Department of Agriculture and Forest Sciences, University of Tuscia, Via S. Camillo de Lellis, 01100 Viterbo, Italy
| | - Daniel V Savatin
- Department of Agriculture and Forest Sciences, University of Tuscia, Via S. Camillo de Lellis, 01100 Viterbo, Italy
| |
Collapse
|
3
|
Shi L, Lin K, Su T, Shi F. Abscisic Acid Inhibits Cortical Microtubules Reorganization and Enhances Ultraviolet-B Tolerance in Arabidopsis thaliana. Genes (Basel) 2023; 14:genes14040892. [PMID: 37107650 PMCID: PMC10137628 DOI: 10.3390/genes14040892] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Ultraviolet-B (UV-B) radiation is one of the important environmental factors limiting plant growth. Both abscisic acid (ABA) and microtubules have been previously reported to be involved in plant response to UV-B. However, whether there is a potential link between ABA and microtubules and the consequent signal transduction mechanism underlying plant response to UV-B radiation remains largely unclear. Here, by using sad2-2 mutant plants (sensitive to ABA and drought) and exogenous application of ABA, we saw that ABA strengthens the adaptive response to UV-B stress in Arabidopsis thaliana (A. thaliana). The abnormal swelling root tips of ABA-deficient aba3 mutants demonstrated that ABA deficiency aggravated the growth retardation imposed by UV-B radiation. In addition, the cortical microtubule arrays of the transition zones of the roots were examined in the aba3 and sad2-2 mutants with or without UV-B radiation. The observation revealed that UV-B remodels cortical microtubules, and high endogenous ABA can stabilize the microtubules and reduce their UV-B-induced reorganization. To further confirm the role of ABA on microtubule arrays, root growth and cortical microtubules were evaluated after exogenous ABA, taxol, and oryzalin feeding. The results suggested that ABA can promote root elongation by stabilizing the transverse cortical microtubules under UV-B stress conditions. We thus uncovered an important role of ABA, which bridges UV-B and plants' adaptive response by remodeling the rearrangement of the cortical microtubules.
Collapse
Affiliation(s)
- Lichun Shi
- School of Life Science, Liaocheng University, Liaocheng 252059, China
| | - Kun Lin
- School of Life Science, Liaocheng University, Liaocheng 252059, China
| | - Tongbing Su
- National Engineering Research Center for Vegetables, Beijing 100097, China
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing 100097, China
- Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing 100097, China
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing 100097, China
| | - Fumei Shi
- School of Life Science, Liaocheng University, Liaocheng 252059, China
| |
Collapse
|
4
|
Kolupaev YE, Yastreb TO, Ryabchun NI, Yemets AI, Dmitriev OP, Blume YB. Cellular Mechanisms of the Formation of Plant Adaptive Responses to High Temperatures. CYTOL GENET+ 2023. [DOI: 10.3103/s0095452723010048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
5
|
Jedelská T, Luhová L, Petřivalský M. Nitric oxide signalling in plant interactions with pathogenic fungi and oomycetes. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:848-863. [PMID: 33367760 DOI: 10.1093/jxb/eraa596] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 12/18/2020] [Indexed: 05/11/2023]
Abstract
Nitric oxide (NO) and reactive nitrogen species have emerged as crucial signalling and regulatory molecules across all organisms. In plants, fungi, and fungi-like oomycetes, NO is involved in the regulation of multiple processes during their growth, development, reproduction, responses to the external environment, and biotic interactions. It has become evident that NO is produced and used as a signalling and defence cue by both partners in multiple forms of plant interactions with their microbial counterparts, ranging from symbiotic to pathogenic modes. This review summarizes current knowledge on the role of NO in plant-pathogen interactions, focused on biotrophic, necrotrophic, and hemibiotrophic fungi and oomycetes. Actual advances and gaps in the identification of NO sources and fate in plant and pathogen cells are discussed. We review the decisive role of time- and site-specific NO production in germination, oriented growth, and active penetration by filamentous pathogens of the host tissues, as well in pathogen recognition, and defence activation in plants. Distinct functions of NO in diverse interactions of host plants with fungal and oomycete pathogens of different lifestyles are highlighted, where NO in interplay with reactive oxygen species governs successful plant colonization, cell death, and establishment of resistance.
Collapse
Affiliation(s)
- Tereza Jedelská
- Department of Biochemistry, Faculty of Science, Palacký University in Olomouc, Olomouc, Czech Republic
| | - Lenka Luhová
- Department of Biochemistry, Faculty of Science, Palacký University in Olomouc, Olomouc, Czech Republic
| | - Marek Petřivalský
- Department of Biochemistry, Faculty of Science, Palacký University in Olomouc, Olomouc, Czech Republic
| |
Collapse
|
6
|
Mukherjee S, Corpas FJ. Crosstalk among hydrogen sulfide (H 2S), nitric oxide (NO) and carbon monoxide (CO) in root-system development and its rhizosphere interactions: A gaseous interactome. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 155:800-814. [PMID: 32882618 DOI: 10.1016/j.plaphy.2020.08.020] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 05/08/2023]
Abstract
Root development in higher plants is achieved by a precise intercellular communication which determines cell fate in the primary embryonic meristem where the gasotransmitters H2S, NO and CO participate dynamically. Furthermore, the rhizosphere interaction of these molecules with microbial and soil metabolism also affects root development. NO regulates root growth and architecture in association with several other biomolecules like auxin indole-3-acetic acid (IAA), ethylene, jasmonic acid (JA), strigolactones, alkamides and melatonin. The CO-mediated signal transduction pathway in roots is closely linked to the NO-mediated signal cascades. Interestingly, H2S acts also as an upstream component in IAA and NO-mediated crosstalk during root development. Heme oxygenase (HO) 1 generates CO and functions as a downstream component in H2S-mediated adventitious rooting and H2S-CO crosstalk. Likewise, reactive oxygen species (ROS), H2S and NO crosstalk are important components in the regulation of root architecture. Deciphering these interactions will be a potential biotechnological tool which could provide benefits in crop management in soils, especially under adverse environmental conditions. This review aims to provide a comprehensive update of the complex networks of these gasotransmitters during the development of roots.
Collapse
Affiliation(s)
- Soumya Mukherjee
- Department of Botany, Jangipur College, University of Kalyani, West Bengal, 742213, India.
| | - Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Apartado 419, E-18080, Granada, Spain
| |
Collapse
|
7
|
Touchell DH, Palmer IE, Ranney TG. In vitro Ploidy Manipulation for Crop Improvement. FRONTIERS IN PLANT SCIENCE 2020; 11:722. [PMID: 32582252 PMCID: PMC7284393 DOI: 10.3389/fpls.2020.00722] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 05/06/2020] [Indexed: 05/19/2023]
Abstract
In vitro regeneration systems provide a powerful tool for manipulating ploidy to facilitate breeding and development of new crops. Polyploid induction can expand breeding opportunities, assist with the development of seedless triploid cultivars, enhance ornamental characteristics and environmental tolerances, increase biomass and restore fertility in wide hybrids. In vitro ploidy manipulation is commonly induced using antimitotic agents such as colchicine, oryzalin and trifluralin, while many other antimitotic agents have been relatively unexplored. Successful induction requires a synergistic pairing of efficient penetration of the antimitotic agent and may be dependent the length of exposure and concentrations of antimitotic agents, tissue types, and interactions with basal media and plant growth regulators. In vitro conditions vary among taxa and individual genera, species, and cultivars, often requiring unique treatments to maximize polyploid induction. In some taxa, the induction of polyploidy influences in vitro growth, development, and root formation. Here we provide an overview of mitotic inhibitors and their application for in vitro ploidy manipulation for plant breeding and crop improvement.
Collapse
Affiliation(s)
- Darren H. Touchell
- Mountain Crop Improvement Lab, Department of Horticultural Science, Mountain Horticultural Crops Research and Extension Center, North Carolina State University, Mills River, NC, United States
| | | | | |
Collapse
|
8
|
Lombardo MC, Lamattina L. Abscisic acid and nitric oxide modulate cytoskeleton organization, root hair growth and ectopic hair formation in Arabidopsis. Nitric Oxide 2018; 80:89-97. [PMID: 30236618 DOI: 10.1016/j.niox.2018.09.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 07/26/2018] [Accepted: 09/15/2018] [Indexed: 12/13/2022]
Abstract
Abscisic acid (ABA) and nitric oxide (NO) are two plant growth regulators that participate in many signaling cascades in different organs all along the plant life. Here, we were interested in deciphering the effects of ABA and NO on the cytoskeleton organization in a model of polarized cell growth like root hairs. Arabidopsis roots were exposed to different concentrations of ABA, and the length of primary root, epidermal cells and root hairs were measured. The NO concentration was detected with the NO-specific fluorescent probe DAF-FM DA. To quantify the effects of ABA and NO on cytoskeleton, Arabidopsis seedlings expressing GFP-MAP4 were used to analyze microtubules (MTs) orientation. Changes in cytoplasmic streaming were quantified through fluorescence recovery after photobleaching (FRAP) experiments using confocal laser scanning microscopy (CLSM) and the probe fluorescein diacetate (FDA). Results indicate that ABA decreases root hair length and induces the differentiation of atrichoblasts into trichoblasts, increasing root hair density. ABA also triggers an increase of NO level in root hairs. Both, ABA and NO affect MT organization in root hairs. While root hairs show MT orientation close to the longitudinal axis in control roots, ABA and NO treatments induce the oblique orientation of MTs. In parallel, cytoplasmic flow, executed by actin cytoskeleton, is enhanced by NO, in an ABA-independent manner. For all experimental conditions assayed, basal levels of NO are required to keep MT organization and cytoplasmic streaming. Our findings support ABA and NO as key modulators of growth and ectopic formation of root hairs through actions on cytoskeleton functions.
Collapse
Affiliation(s)
- María Cristina Lombardo
- Departamento de Biología, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata and Consejo Nacional de Investigaciones Científicas y Técnicas, Mar del Plata, Argentina
| | - Lorenzo Lamattina
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata and Consejo Nacional de Investigaciones Científicas y Técnicas, CC 1245, 7600, Mar del Plata, Argentina.
| |
Collapse
|
9
|
Mira MM, Huang S, Hill RD, Stasolla C. Protection of root apex meristem during stress responses. PLANT SIGNALING & BEHAVIOR 2018; 13:e1428517. [PMID: 29341848 PMCID: PMC5846546 DOI: 10.1080/15592324.2018.1428517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 01/02/2018] [Accepted: 01/06/2018] [Indexed: 05/26/2023]
Abstract
By regulating the levels of nitric oxide (NO) in a cell and tissue specific fashion, Phytoglobins (Pgbs), plant hemoglobin-like proteins, interfere with many NO-mediated pathways participating in developmental and stress-related responses. Recent evidence reveals that one of the functions of Pgbs is to protect the root apical meristem (RAM) from stress conditions by retaining the viability and function of the quiescent center (QC), required to maintain the stem cells in an undifferentiated state and ensure proper tissue patterning and root viability. Based on this and other evidence, it is suggested that Pgbs regulate cell fate by modulating NO homeostasis.
Collapse
Affiliation(s)
- Mohamed M. Mira
- Permanent address: Department of Botany, Faculty of Science, Tanta University, Tanta, Egypt
| | - Shuanglong Huang
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Robert D. Hill
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Claudio Stasolla
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
10
|
Axonal transport deficits in multiple sclerosis: spiraling into the abyss. Acta Neuropathol 2017; 134:1-14. [PMID: 28315956 PMCID: PMC5486629 DOI: 10.1007/s00401-017-1697-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 03/13/2017] [Accepted: 03/14/2017] [Indexed: 12/16/2022]
Abstract
The transport of mitochondria and other cellular components along the axonal microtubule cytoskeleton plays an essential role in neuronal survival. Defects in this system have been linked to a large number of neurological disorders. In multiple sclerosis (MS) and associated models such as experimental autoimmune encephalomyelitis (EAE), alterations in axonal transport have been shown to exist before neurodegeneration occurs. Genome-wide association (GWA) studies have linked several motor proteins to MS susceptibility, while neuropathological studies have shown accumulations of proteins and organelles suggestive for transport deficits. A reduced effectiveness of axonal transport can lead to neurodegeneration through inhibition of mitochondrial motility, disruption of axoglial interaction or prevention of remyelination. In MS, demyelination leads to dysregulation of axonal transport, aggravated by the effects of TNF-alpha, nitric oxide and glutamate on the cytoskeleton. The combined effect of all these pathways is a vicious cycle in which a defective axonal transport system leads to an increase in ATP consumption through loss of membrane organization and a reduction in available ATP through inhibition of mitochondrial transport, resulting in even further inhibition of transport. The persistent activity of this positive feedback loop contributes to neurodegeneration in MS.
Collapse
|
11
|
Biotechnological aspects of cytoskeletal regulation in plants. Biotechnol Adv 2015; 33:1043-62. [DOI: 10.1016/j.biotechadv.2015.03.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Revised: 03/03/2015] [Accepted: 03/09/2015] [Indexed: 11/23/2022]
|
12
|
Kohoutová L, Kourová H, Nagy SK, Volc J, Halada P, Mészáros T, Meskiene I, Bögre L, Binarová P. The Arabidopsis mitogen-activated protein kinase 6 is associated with γ-tubulin on microtubules, phosphorylates EB1c and maintains spindle orientation under nitrosative stress. THE NEW PHYTOLOGIST 2015; 207:1061-74. [PMID: 26061286 DOI: 10.1111/nph.13501] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 05/05/2015] [Indexed: 05/07/2023]
Abstract
Stress-activated plant mitogen-activated protein (MAP) kinase pathways play roles in growth adaptation to the environment by modulating cell division through cytoskeletal regulation, but the mechanisms are poorly understood. We performed protein interaction and phosphorylation experiments with cytoskeletal proteins, mass spectrometric identification of MPK6 complexes and immunofluorescence analyses of the microtubular cytoskeleton of mitotic cells using wild-type, mpk6-2 mutant and plants overexpressing the MAP kinase-inactivating phosphatase, AP2C3. We showed that MPK6 interacted with γ-tubulin and co-sedimented with plant microtubules polymerized in vitro. It was the active form of MAP kinase that was enriched with microtubules and followed similar dynamics to γ-tubulin, moving from poles to midzone during the anaphase-to-telophase transition. We found a novel substrate for MPK6, the microtubule plus end protein, EB1c. The mpk6-2 mutant was sensitive to 3-nitro-l-tyrosine (NO2 -Tyr) treatment with respect to mitotic abnormalities, and root cells overexpressing AP2C3 showed defects in chromosome segregation and spindle orientation. Our data suggest that the active form of MAP kinase interacts with γ-tubulin on specific subsets of mitotic microtubules during late mitosis. MPK6 phosphorylates EB1c, but not EB1a, and has a role in maintaining regular planes of cell division under stress conditions.
Collapse
Affiliation(s)
- Lucie Kohoutová
- Institute of Microbiology AS CR, v.v.i., Vídeňská 1083, 142 20, Prague 4, Czech Republic
| | - Hana Kourová
- Institute of Microbiology AS CR, v.v.i., Vídeňská 1083, 142 20, Prague 4, Czech Republic
| | - Szilvia K Nagy
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Tűzoltó u. 37-47, H-1094, Budapest, Hungary
| | - Jindřich Volc
- Institute of Microbiology AS CR, v.v.i., Vídeňská 1083, 142 20, Prague 4, Czech Republic
| | - Petr Halada
- Institute of Microbiology AS CR, v.v.i., Vídeňská 1083, 142 20, Prague 4, Czech Republic
| | - Tamás Mészáros
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Tűzoltó u. 37-47, H-1094, Budapest, Hungary
- Technical Analytical Research Group of HAS, Szent Gellért tér 4, H-1111, Budapest, Hungary
| | - Irute Meskiene
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
- Institute of Biotechnology, University of Vilnius, Vilnius, Lithuania
| | - László Bögre
- School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK
| | - Pavla Binarová
- Institute of Microbiology AS CR, v.v.i., Vídeňská 1083, 142 20, Prague 4, Czech Republic
| |
Collapse
|
13
|
Chen HW, Shao KH, Wang SJ. Light-modulated seminal wavy roots in rice mediated by nitric oxide-dependent signaling. PROTOPLASMA 2015; 252:1291-1304. [PMID: 25619895 DOI: 10.1007/s00709-015-0762-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 01/12/2015] [Indexed: 06/04/2023]
Abstract
Rice (Oryza sativa L.) seminal roots from germinated seeds help establish seedlings, but the seminal root growth and morphology are sensitive to environmental factors. Our previous research showed that several indica-type rice varieties such as Taichung native 1 (TCN1) showed light-induced wavy roots. Also, auxin and oxylipins are two signaling factors regulating the wavy root photomorphology. To investigate the signaling pathway, here, we found that nitric oxide (NO) was a second messenger triggering the signal transduction of light stimuli to induce the wavy morphology of seminal roots in rice. Moreover, interactions between oxylipins and phytohormones such as ethylene and auxin participating in the NO-dependent regulatory pathway of light-induced wavy roots were examined. The order of action of signaling components in the pathway was NO, oxylipins, ethylene, and auxin.
Collapse
Affiliation(s)
- Hsiang-Wen Chen
- Department of Agronomy, National Taiwan University, No. 1, Section 4, Roosevelt Rd., Taipei, 10617, Taiwan
| | | | | |
Collapse
|
14
|
Corpas FJ, Barroso JB. Functions of Nitric Oxide (NO) in Roots during Development and under Adverse Stress Conditions. PLANTS 2015; 4:240-52. [PMID: 27135326 PMCID: PMC4844326 DOI: 10.3390/plants4020240] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 05/14/2015] [Indexed: 02/04/2023]
Abstract
The free radical molecule, nitric oxide (NO), is present in the principal organs of plants, where it plays an important role in a wide range of physiological functions. Root growth and development are highly regulated by both internal and external factors such as nutrient availability, hormones, pattern formation, cell polarity and cell cycle control. The presence of NO in roots has opened up new areas of research on the role of NO, including root architecture, nutrient acquisition, microorganism interactions and the response mechanisms to adverse environmental conditions, among others. Additionally, the exogenous application of NO throughout the roots has the potential to counteract specific damages caused by certain stresses. This review aims to provide an up-to-date perspective on NO functions in the roots of higher plants.
Collapse
Affiliation(s)
- Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Apartado 419, E-18080 Granada, Spain.
| | - Juan B Barroso
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Biochemistry and Molecular Biology, University of Jaén, Campus "Las Lagunillas", E-23071 Jaén, Spain.
- Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, University of Jaén, E-23071 Jaén, Spain.
| |
Collapse
|
15
|
Szuba A, Kasprowicz-Maluśki A, Wojtaszek P. Nitration of plant apoplastic proteins from cell suspension cultures. J Proteomics 2015; 120:158-68. [PMID: 25805245 DOI: 10.1016/j.jprot.2015.03.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 02/20/2015] [Accepted: 03/03/2015] [Indexed: 12/27/2022]
Abstract
Nitric oxide causes numerous protein modifications including nitration of tyrosine residues. This modification, though one of the greatest biological importance, is poorly recognized in plants and is usually associated with stress conditions. In this study we analyzed nitrotyrosines from suspension cultures of Arabidopsis thaliana and Nicotiana tabacum, treated with NO modulators and exposed to osmotic stress, as well as of BY2 cells long-term adapted to osmotic stress conditions. Using confocal microscopy, we showed that the cell wall area is one of the compartments most enriched in nitrotyrosines within a plant cell. Subsequently, we analyzed nitration of ionically-bound cell-wall proteins and identified selected proteins with MALDI-TOF spectrometry. Proteomic analysis indicated that there was no significant increase in the amount of nitrated proteins under the influence of NO modulators, among them 3-morpholinosydnonimine (SIN-1), considered a donor of nitrating agent, peroxynitrite. Moreover, osmotic stress conditions did not increase the level of nitration in cell wall proteins isolated from suspension cells, and in cultures long-term adapted to stress conditions; that level was even reduced in comparison with control samples. Among identified nitrotyrosine-containing proteins dominated the ones associated with carbon circulation as well as the numerous proteins responding to stress conditions, mainly peroxidases. BIOLOGICAL SIGNIFICANCE High concentrations of nitric oxide found in the cell wall and the ability to produce large amounts of ROS make the apoplast a site highly enriched in nitrotyrosines, as presented in this paper. Analysis of ionically bound fraction of the cell wall proteins indicating generally unchanged amounts of nitrotyrosines under influence of NO modulators and osmotic stress, is noticeably different from literature data concerning, however, the total plant proteins analysis. This observation is supplemented by further nitroproteome analysis, for cells long-term adapted to stressful conditions, and results showing that such conditions did not always cause an increase in nitrotyrosine content. These findings may be interpreted as characteristic features of apoplastic protein nitration.
Collapse
Affiliation(s)
- Agnieszka Szuba
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland; Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik Poland.
| | - Anna Kasprowicz-Maluśki
- Department of Molecular and Cellular Biology, Adam Mickiewicz University, Umultowska 89, 61-613 Poznań, Poland
| | - Przemysław Wojtaszek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland; Department of Molecular and Cellular Biology, Adam Mickiewicz University, Umultowska 89, 61-613 Poznań, Poland
| |
Collapse
|