1
|
Tang Q, Wei S, Zheng X, Tu P, Tao F. APETALA2/ethylene-responsive factors in higher plant and their roles in regulation of plant stress response. Crit Rev Biotechnol 2024; 44:1533-1551. [PMID: 38267262 DOI: 10.1080/07388551.2023.2299769] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/16/2023] [Accepted: 11/30/2023] [Indexed: 01/26/2024]
Abstract
Plants, anchored throughout their life cycles, face a unique set of challenges from fluctuating environments and pathogenic assaults. Central to their adaptative mechanisms are transcription factors (TFs), particularly the AP2/ERF superfamily-one of the most extensive TF families unique to plants. This family plays instrumental roles in orchestrating diverse biological processes ranging from growth and development to secondary metabolism, and notably, responses to both biotic and abiotic stresses. Distinguished by the presence of the signature AP2 domain or its responsiveness to ethylene signals, the AP2/ERF superfamily has become a nexus of research focus, with increasing literature elucidating its multifaceted roles. This review provides a synoptic overview of the latest research advancements on the AP2/ERF family, spanning its taxonomy, structural nuances, prevalence in higher plants, transcriptional and post-transcriptional dynamics, and the intricate interplay in DNA-binding and target gene regulation. Special attention is accorded to the ethylene response factor B3 subgroup protein Pti5 and its role in stress response, with speculative insights into its functionalities and interaction matrix in tomatoes. The overarching goal is to pave the way for harnessing these TFs in the realms of plant genetic enhancement and novel germplasm development.
Collapse
Affiliation(s)
- Qiong Tang
- College of Standardization, China Jiliang University, Hangzhou, China
| | - Sishan Wei
- College of Standardization, China Jiliang University, Hangzhou, China
| | - Xiaodong Zheng
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - Pengcheng Tu
- Department of Environmental Health, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Fei Tao
- College of Standardization, China Jiliang University, Hangzhou, China
| |
Collapse
|
2
|
Coll A, Lukan T, Stare K, Zagorščak M, Mahkovec Povalej T, Baebler Š, Prat S, Coll NS, Valls M, Petek M, Gruden K. The StPti5 ethylene response factor acts as a susceptibility factor by negatively regulating the potato immune response to pathogens. THE NEW PHYTOLOGIST 2024; 244:202-218. [PMID: 39129060 DOI: 10.1111/nph.20004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/02/2024] [Indexed: 08/13/2024]
Abstract
Ethylene response factors (ERFs) have been associated with biotic stress in Arabidopsis, while their function in non-model plants is still poorly understood. Here we investigated the role of potato ERF StPti5 in plant immunity. We show that StPti5 acts as a susceptibility factor. It negatively regulates potato immunity against potato virus Y and Ralstonia solanacearum, pathogens with completely different modes of action, and thereby has a different role than its orthologue in tomato. Remarkably, StPti5 is destabilised in healthy plants via the autophagy pathway and accumulates exclusively in the nucleus upon infection. We demonstrate that StEIN3 and StEIL1 directly bind the StPti5 promoter and activate its expression, while synergistic activity of the ethylene and salicylic acid pathways is required for regulated StPti expression. To gain further insight into the mode of StPti5 action in attenuating potato defence responses, we investigated transcriptional changes in salicylic acid deficient potato lines with silenced StPti5 expression. We show that StPti5 regulates the expression of other ERFs and downregulates the ubiquitin-proteasome pathway as well as several proteases involved in directed proteolysis. This study adds a novel element to the complex puzzle of immune regulation, by deciphering a two-level regulation of ERF transcription factor activity in response to pathogens.
Collapse
Affiliation(s)
- Anna Coll
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, 1000, Slovenia
| | - Tjaša Lukan
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, 1000, Slovenia
| | - Katja Stare
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, 1000, Slovenia
| | - Maja Zagorščak
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, 1000, Slovenia
| | - Tjaša Mahkovec Povalej
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, 1000, Slovenia
| | - Špela Baebler
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, 1000, Slovenia
| | - Salomé Prat
- Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Bellaterra, 08193, Catalonia, Spain
| | - Núria Sánchez Coll
- Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Bellaterra, 08193, Catalonia, Spain
| | - Marc Valls
- Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Bellaterra, 08193, Catalonia, Spain
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Barcelona, 08028, Catalonia, Spain
| | - Marko Petek
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, 1000, Slovenia
| | - Kristina Gruden
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, 1000, Slovenia
| |
Collapse
|
3
|
Xing B, Li S, Qi J, Yang L, Yin D, Sun S. Integrated transcriptomic and metabolic analyses reveal the early response mechanism of Pinus tabulaeformis to pine wood nematodes. BMC Genomics 2024; 25:865. [PMID: 39285339 PMCID: PMC11403912 DOI: 10.1186/s12864-024-10707-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/13/2024] [Indexed: 09/22/2024] Open
Abstract
Pine wilt disease (PWD) is a devastating disease of pine trees caused by the pine wood nematode (Bursapherenchus xylophilus, PWN). To study how Pinus tabulaeformis responds to PWD infection, we collected 3-year-old P. tabulaeformis seedlings at 2 days, 5 days, and 8 days after being infected with B. xylophilus. We identified genes and metabolites early responding to infection using transcriptome and metabolomic data obtained by high-throughput mRNA sequencing (RNA-seq) and liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based assays, respectively. The following results were obtained: (1) After inoculation with PWN, the average number of days taken for 3-year-old P. tabulaeformis seedlings to develop symptoms was 8 days. (2) Combined transcriptome and metabolome analysis revealed that phenylpropanoid biosynthesis and flavonoid biosynthesis are critically important pathways for P. tabulaeformis to respond to PWD. (3) The response of P. tabulaeformis to stress was mainly through positive regulation of gene expression, including some key genes related to plant hormones or transcription factors that have been widely studied. Genes related to pathways such as photosynthesis, plant-pathogen interactions, and DNA replication were downregulated. (4) Terpenoid biosynthesis genes involved during the development of pine wilt disease. This study demonstrated the defence and pathogenic mechanisms of P. tabulaeformis against PWD, providing a reference for the early diagnosis of PWD.
Collapse
Affiliation(s)
- Baoyue Xing
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, China
| | - Shuo Li
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, China
| | - Jinyu Qi
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, China
| | - Liyuan Yang
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, China
| | - Dachuan Yin
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, China
| | - Shouhui Sun
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
4
|
Wang Y, Zhang W, Hong C, Zhai L, Wang X, Zhou L, Song A, Jiang J, Wang L, Chen F, Chen S. Chrysanthemum (Chrysanthemum morifolium) CmHRE2-like negatively regulates the resistance of chrysanthemum to the aphid (Macrosiphoniella sanborni). BMC PLANT BIOLOGY 2024; 24:76. [PMID: 38281936 PMCID: PMC10823704 DOI: 10.1186/s12870-024-04758-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 01/21/2024] [Indexed: 01/30/2024]
Abstract
BACKGROUND The growth and ornamental value of chrysanthemums are frequently hindered by aphid attacks. The ethylene-responsive factor (ERF) gene family is pivotal in responding to biotic stress, including insect stress. However, to date, little is known regarding the involvement of ERF transcription factors (TFs) in the response of chrysanthemum to aphids. RESULTS In the present study, CmHRE2-like from chrysanthemum (Chrysanthemum morifolium), a transcription activator that localizes mainly to the nucleus, was cloned. Expression is induced by aphid infestation. Overexpression of CmHRE2-like in chrysanthemum mediated its susceptibility to aphids, whereas CmHRE2-like-SRDX dominant repressor transgenic plants enhanced the resistance of chrysanthemum to aphids, suggesting that CmHRE2-like contributes to the susceptibility of chrysanthemum to aphids. The flavonoids in CmHRE2-like-overexpression plants were decreased by 29% and 28% in two different lines, whereas they were increased by 42% and 29% in CmHRE2-like-SRDX dominant repressor transgenic plants. The expression of Chrysanthemum-chalcone-synthase gene(CmCHS), chalcone isomerase gene (CmCHI), and flavonoid 3'-hydroxylase gene(CmF3'H) was downregulated in CmHRE2-like overexpression plants and upregulated in CmHRE2-like-SRDX dominant repressor transgenic plants, suggesting that CmHRE2-like regulates the resistance of chrysanthemum to aphids partially through the regulation of flavonoid biosynthesis. CONCLUSION CmHRE2-like was a key gene regulating the vulnerability of chrysanthemum to aphids. This study offers fresh perspectives on the molecular mechanisms of chrysanthemum-aphid interactions and may bear practical significance for developing new strategies to manage aphid infestation in chrysanthemums.
Collapse
Affiliation(s)
- You Wang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, P. R. China
- Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Beijing, P. R. China
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wanwan Zhang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, P. R. China
- Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Beijing, P. R. China
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chaojun Hong
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, P. R. China
- Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Beijing, P. R. China
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lisheng Zhai
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, P. R. China
- Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Beijing, P. R. China
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xinhui Wang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, P. R. China
- Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Beijing, P. R. China
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lijie Zhou
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, P. R. China
- Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Beijing, P. R. China
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Aiping Song
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, P. R. China
- Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Beijing, P. R. China
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiafu Jiang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, P. R. China
- Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Beijing, P. R. China
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Likai Wang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, P. R. China
- Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Beijing, P. R. China
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fadi Chen
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, P. R. China
- Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Beijing, P. R. China
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Sumei Chen
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, P. R. China.
- Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Beijing, P. R. China.
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
5
|
Lin HH, Lin KH, Tsai YL, Chen RJ, Lin YC, Chen YC. Influences of Ipomoea batatas Anti-Cancer Peptide on Tomato Defense Genes. Curr Protein Pept Sci 2024; 25:651-665. [PMID: 38698748 DOI: 10.2174/0113892037299818240408053000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/12/2024] [Accepted: 03/27/2024] [Indexed: 05/05/2024]
Abstract
AIMS This study investigates the impact of IbACP (Ipomoea batatas anti-cancer peptide) on defense-related gene expression in tomato leaves, focusing on its role in plant defense mechanisms. BACKGROUND Previously, IbACP was isolated from sweet potato leaves, and it was identified as a peptide capable of inducing an alkalinization response in tomato suspension culture media. Additionally, IbACP was found to regulate the proliferation of human pancreatic adenocarcinoma cells. OBJECTIVE Elucidate IbACP's molecular influence on defense-related gene expression in tomato leaves using next-generation sequencing analysis. METHODS To assess the impact of IbACP on defense-related gene expression, transcriptome data were analyzed, encompassing various functional categories such as photosynthesis, metabolic processes, and plant defense. Semi-quantitative reverse-transcription polymerase chain reaction analysis was employed to verify transcription levels of defense-related genes in tomato leaves treated with IbACP for durations ranging from 0 h (control) to 24 h. RESULTS IbACP induced jasmonic acid-related genes (LoxD and AOS) at 2 h, with a significant up-regulation of salicylic acid-dependent gene NPR1 at 24 h. This suggested a temporal antagonistic effect between jasmonic acid and salicylic acid during the early hours of IbACP treatment. Downstream ethylene-responsive regulator genes (ACO1, ETR4, and ERF1) were consistently down-regulated by IbACP at all times. Additionally, IbACP significantly up-regulated the gene expressions of suberization-associated anionic peroxidases (TMP1 and TAP2) at all time points, indicating enhanced suberization of the plant cell wall to prevent pathogen invasion. CONCLUSION IbACP enhances the synthesis of defense hormones and up-regulates downstream defense genes, improving the plant's resistance to biotic stresses.
Collapse
Affiliation(s)
- Hsin-Hung Lin
- Department of Agronomy, National Chung Hsing University, Taichung City 40227, Taiwan
| | - Kuan-Hung Lin
- Department of Horticulture and Biotechnology, Chinese Culture University, Taipei 11114, Taiwan
| | - Yung-Lin Tsai
- Department of Biotechnology, National Kaohsiung Normal University, Kaohsiung 82444, Taiwan
| | - Rong-Jane Chen
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Yen-Chang Lin
- Graduate Institute of Biotechnology, Chinese Culture University, Taipei 11114, Taiwan
| | - Yu-Chi Chen
- Department of Biotechnology, National Kaohsiung Normal University, Kaohsiung 82444, Taiwan
| |
Collapse
|
6
|
Rumyantsev SD, Alekseev VY, Sorokan AV, Burkhanova GF, Cherepanova EA, Garafutdinov RR, Maksimov IV, Veselova SV. Additive Effect of the Composition of Endophytic Bacteria Bacillus subtilis on Systemic Resistance of Wheat against Greenbug Aphid Schizaphis graminum Due to Lipopeptides. LIFE (BASEL, SWITZERLAND) 2023; 13:life13010214. [PMID: 36676163 PMCID: PMC9860984 DOI: 10.3390/life13010214] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/31/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023]
Abstract
The use of biocontrol agents based on endophytic bacteria against phloem-feeding insects is limited by a lack of knowledge and understanding of the mechanism of action of the endophyte community that makes up the plant microbiome. In this work, the mechanisms of the additive action of endophytic strains B. subtilis 26D and B. subtilis 11VM on the resistance of bread spring wheat against greenbug aphid Schizaphis graminum, was studied. It was shown that B. subtilis 26D secreted lipopeptide surfactin and phytohormones cytokinins, and B. subtilis 11VM produced iturin and auxins into the cultivation medium. Both strains and their lipopeptide-rich fractions showed direct aphicidal activity against greenbug aphid. For the first time, it was shown that B. subtilis 26D and B. subtilis 11VM in the same manner, as well as their lipopeptide-rich fractions, activated the expression of salicylate- and ethylene-dependent PR genes, and influenced plant redox metabolism, which led to an increase in plant endurance against aphids. The composition of endophytic strains B. subtilis 26D + B. subtilis 11VM had an additive effect on plant resistance to aphids due to an increase in the number of endophytic bacterial cells, and, as well as due to the synergistic effect of their mixture of lipopeptides - surfactin + iturin, both on the aphid mortality and on the expression of PR1 and PR3 genes. All these factors can be the reason for the observed increase in the growth of plants affected by aphids under the influence of B. subtilis 26D and B. subtilis 11VM, individually and in composition. The study demonstrates the possibility of creating in the future an artificial composition to enhance plant microbiome with endophytic bacteria, which combines growth-promoting and plant immunity stimulating properties against phloem-feeding insects. This direction is one of the most promising approaches to green pesticide discovery in the future.
Collapse
|
7
|
Gong X, Xu Y, Li H, Chen X, Song Z. Antioxidant activation, cell wall reinforcement, and reactive oxygen species regulation promote resistance to waterlogging stress in hot pepper (Capsicum annuum L.). BMC PLANT BIOLOGY 2022; 22:425. [PMID: 36050651 PMCID: PMC9434832 DOI: 10.1186/s12870-022-03807-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Hot pepper (Capsicum annuum L.) is one of the world's oldest domesticated crops. It has poor waterlogging tolerance, and flooding frequently results in plant death and yield reduction. Therefore, understanding the molecular mechanisms associated with pepper waterlogging tolerance is essential to grow new varieties with stronger tolerance. RESULTS In this study, we discovered that after 5 days of flooding, the growth rate of waterlogging-tolerant pepper cultivars did not reduce to a large extent. Physiological data revealed that chlorophyll concentration was not significantly affected by flooding; however, stomatal conductance was altered considerably 0-5 days after flooding, and the net photosynthesis rate changed substantially 5-10 days after flooding. In addition, the root activity of waterlogging-tolerant varieties was substantially higher after flooding for 10 days than that of the control. This implies that the effect of flooding is associated with changes in the root environment, which ultimately affects photosynthesis. We evaluated changes in gene expression levels between two pepper types at the same time point and the same pepper variety at different time points after flooding stress treatment and performed a screening for multiple potential genes. These differentially expressed genes (DEGs) were further analyzed for functional enrichment, and the results revealed that antioxidase genes, cell wall synthesis pathway genes, and calcium ion regulation pathway genes might be associated with waterlogging tolerance. Other genes identified in peppers with waterlogging tolerance included those associated with lignin synthesis regulation, reactive oxygen species (ROS) regulation pathways, and others associated with stress resistance. Considerable changes in the expression levels of these genes were recorded 5 days after waterlogging, which was consistent with a considerable increase in oxidase content that was also noted on the fifth day after flooding. The quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) findings revealed that among the 20 selected DEGs, including genes such as mitogen-activated protein kinase 3 (MPK3) and calcium-binding protein 4 (CML4), approximately 80% of the gene expression patterns were consistent with our RNA-seq dataset. CONCLUSIONS The findings of this study suggest that ROS modulation, increased antioxidase activity, lignin formation, and the expression of stress resistance genes help peppers with waterlogging tolerance resist flooding stress in the early stages. These findings provide a basis for further investigation of the molecular mechanisms responsible for waterlogging tolerance in pepper and may be a critical reference for the breeding of hot pepper.
Collapse
Affiliation(s)
- Xuefeng Gong
- Horticulture Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
- Vegetable Germplasm Innovation and Variety Improvement Key Laboratory of Sichuan Province, Chengdu, 610066, China
- Key Laboratory of Horticultural Crops Biology and Germplasm Enhancement in Southwest Regions, Ministry of Agriculture in Rural Affairs of the P.R. China, Chengdu, 610066, China
| | - Yi Xu
- Horticulture Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
- Vegetable Germplasm Innovation and Variety Improvement Key Laboratory of Sichuan Province, Chengdu, 610066, China
- Key Laboratory of Horticultural Crops Biology and Germplasm Enhancement in Southwest Regions, Ministry of Agriculture in Rural Affairs of the P.R. China, Chengdu, 610066, China
| | - Hong Li
- Horticulture Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
- Vegetable Germplasm Innovation and Variety Improvement Key Laboratory of Sichuan Province, Chengdu, 610066, China
- Key Laboratory of Horticultural Crops Biology and Germplasm Enhancement in Southwest Regions, Ministry of Agriculture in Rural Affairs of the P.R. China, Chengdu, 610066, China
| | - Xin Chen
- Horticulture Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
- Vegetable Germplasm Innovation and Variety Improvement Key Laboratory of Sichuan Province, Chengdu, 610066, China
- Key Laboratory of Horticultural Crops Biology and Germplasm Enhancement in Southwest Regions, Ministry of Agriculture in Rural Affairs of the P.R. China, Chengdu, 610066, China
| | - Zhanfeng Song
- Horticulture Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China.
- Vegetable Germplasm Innovation and Variety Improvement Key Laboratory of Sichuan Province, Chengdu, 610066, China.
- Key Laboratory of Horticultural Crops Biology and Germplasm Enhancement in Southwest Regions, Ministry of Agriculture in Rural Affairs of the P.R. China, Chengdu, 610066, China.
| |
Collapse
|
8
|
Ogata T, Tsukahara Y, Ito T, Iimura M, Yamazaki K, Sasaki N, Matsushita Y. Cell death signalling is competitively but coordinately regulated by repressor-type and activator-type ethylene response factors in tobacco (Nicotiana tabacum) plants. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:897-909. [PMID: 35301790 DOI: 10.1111/plb.13411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Ethylene response factors (ERFs) comprise one of the largest transcription factor families in many plant species. Tobacco (Nicotiana tabacum) ERF3 (NtERF3) and other ERF-associated amphiphilic repression (EAR) motif-containing ERFs are known to function as transcriptional repressors. NtERF3 and several repressor-type ERFs induce cell death in tobacco leaves and are also associated with a defence response against tobacco mosaic virus (TMV). We investigated whether transcriptional activator-type NtERFs function together with NtERF3 in the defence response against TMV infection by performing transient ectopic expression, together with gene expression, chromatin immunoprecipitation (ChIP) and promoter analyses. Transient overexpression of NtERF2 and NtERF4 induced cell death in tobacco leaves, albeit later than that induced by NtERF3. Fusion of the EAR motif to the C-terminal end of NtERF2 and NtERF4 abolished their cell death-inducing ability. The expression of NtERF2 and NtERF4 was upregulated at the early phase of N gene-triggered hypersensitive response (HR) against TMV infection. The cell death phenotype induced by overexpression of wild-type NtERF2 and NtERF4 was suppressed by co-expression of an EAR motif-deficient form of NtERF3. Furthermore, ChIP and promoter analyses suggested that NtERF2, NtERF3 and NtERF4 positively or negatively regulate the expression of NtERF3 by binding to its promoter region. Overall, our results revealed the cell death-inducing abilities of genes encoding activator-type NtERFs, including NtERF2 and NtERF4, suggesting that the HR-cell death signalling via the repressor-type NtERF3 is competitively but coordinately regulated by these NtERFs.
Collapse
Affiliation(s)
- T Ogata
- Gene Research Center, Tokyo University of Agriculture and Technology (TUAT), Fuchu, Tokyo, Japan
| | - Y Tsukahara
- Gene Research Center, Tokyo University of Agriculture and Technology (TUAT), Fuchu, Tokyo, Japan
| | - T Ito
- Gene Research Center, Tokyo University of Agriculture and Technology (TUAT), Fuchu, Tokyo, Japan
| | - M Iimura
- Gene Research Center, Tokyo University of Agriculture and Technology (TUAT), Fuchu, Tokyo, Japan
| | - K Yamazaki
- Graduate School of Environmental Earth Science, Hokkaido University, Sapporo, Japan
| | - N Sasaki
- Gene Research Center, Tokyo University of Agriculture and Technology (TUAT), Fuchu, Tokyo, Japan
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology (TUAT), Fuchu, Tokyo, Japan
- Institute of Global Innovation Research (GIR), Tokyo University of Agriculture and Technology (TUAT), Fuchu, Tokyo, Japan
| | - Y Matsushita
- Gene Research Center, Tokyo University of Agriculture and Technology (TUAT), Fuchu, Tokyo, Japan
| |
Collapse
|
9
|
Sun M, Qiu L, Liu Y, Zhang H, Zhang Y, Qin Y, Mao Y, Zhou M, Du X, Qin Z, Dai S. Pto Interaction Proteins: Critical Regulators in Plant Development and Stress Response. FRONTIERS IN PLANT SCIENCE 2022; 13:774229. [PMID: 35360329 PMCID: PMC8960991 DOI: 10.3389/fpls.2022.774229] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
Pto interaction (Pti) proteins are a group of proteins that can be phosphorylated by serine/threonine protein kinase Pto, which have diverse functions in plant development and stress response. In this study, we analyzed the phylogenetic relationship, gene structure, and conserved motifs of Pti1s and predicted the potential cis-elements in the promoters of Pti1 genes using bioinformatics methods. Importantly, we systematically summarized the diverse functions of Pti1s in tomato, rice, Arabidopsis, potato, apple, and cucumber. The potential cis-elements in promoters of Pti1s decide their functional diversity in response to various biotic and abiotic stresses. The protein kinase Pti1 was phosphorylated by Pto and then modulated the downstream signaling pathways for PTI and ETI in the disease insistence process. In addition, some transcription factors have been defined as Ptis (e.g., Pti4, Pti5, and Pti6) originally, which actually were ethylene-response factors (ERFs). Pti4, Pti5, and Pti6 were modulated by salicylic acid (SA), jasmonate (JA), and ethylene signaling pathways and regulated diverse defense-related gene expression to cope with Pst infection and insect wounding.
Collapse
|
10
|
Silva CJ, van den Abeele C, Ortega-Salazar I, Papin V, Adaskaveg JA, Wang D, Casteel CL, Seymour GB, Blanco-Ulate B. Host susceptibility factors render ripe tomato fruit vulnerable to fungal disease despite active immune responses. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2696-2709. [PMID: 33462583 PMCID: PMC8006553 DOI: 10.1093/jxb/eraa601] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 12/19/2020] [Indexed: 05/03/2023]
Abstract
The increased susceptibility of ripe fruit to fungal pathogens poses a substantial threat to crop production and marketability. Here, we coupled transcriptomic analyses with mutant studies to uncover critical processes associated with defense and susceptibility in tomato (Solanum lycopersicum) fruit. Using unripe and ripe fruit inoculated with three fungal pathogens, we identified common pathogen responses reliant on chitinases, WRKY transcription factors, and reactive oxygen species detoxification. We established that the magnitude and diversity of defense responses do not significantly impact the interaction outcome, as susceptible ripe fruit mounted a strong immune response to pathogen infection. Then, to distinguish features of ripening that may be responsible for susceptibility, we utilized non-ripening tomato mutants that displayed different susceptibility patterns to fungal infection. Based on transcriptional and hormone profiling, susceptible tomato genotypes had losses in the maintenance of cellular redox homeostasis, while jasmonic acid accumulation and signaling coincided with defense activation in resistant fruit. We identified and validated a susceptibility factor, pectate lyase (PL). CRISPR-based knockouts of PL, but not polygalacturonase (PG2a), reduced susceptibility of ripe fruit by >50%. This study suggests that targeting specific genes that promote susceptibility is a viable strategy to improve the resistance of tomato fruit against fungal disease.
Collapse
Affiliation(s)
- Christian J Silva
- Department of Plant Sciences, University of California, Davis, Davis, CA, USA
| | - Casper van den Abeele
- Department of Plant Sciences, University of California, Davis, Davis, CA, USA
- Laboratory of Plant Physiology, Wageningen University, Wageningen, The Netherlands
| | | | - Victor Papin
- Department of Plant Sciences, University of California, Davis, Davis, CA, USA
- Ecole Nationale Supérieure Agronomique de Toulouse, Toulouse, France
| | - Jaclyn A Adaskaveg
- Department of Plant Sciences, University of California, Davis, Davis, CA, USA
| | - Duoduo Wang
- School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
- School of Biosciences, Plant and Crop Science Division, University of Nottingham, Sutton Bonington, Loughborough, UK
| | - Clare L Casteel
- School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Graham B Seymour
- School of Biosciences, Plant and Crop Science Division, University of Nottingham, Sutton Bonington, Loughborough, UK
| | | |
Collapse
|
11
|
Wang Y, Feng G, Zhang Z, Liu Y, Ma Y, Wang Y, Ma F, Zhou Y, Gross R, Xu H, Wang R, Xiao F, Liu Y, Niu X. Overexpression of Pti4, Pti5, and Pti6 in tomato promote plant defense and fruit ripening. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 302:110702. [PMID: 33288015 DOI: 10.1016/j.plantsci.2020.110702] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/19/2020] [Accepted: 09/29/2020] [Indexed: 06/12/2023]
Abstract
Pseudomonas syringae pv. tomato (Pst) is a pathogenic microorganism that causes bacterial speck disease and affects tomato yield and quality. Pto is a disease resistant gene for plant to recognize and defense against Pst. Pto interacts with Pti (Pto interacting) proteins, which include three transcription factors, Pti4, Pti5, Pti6, and they were thought to be downstream of Pto-mediated pathway to promote the expression of disease-related genes. In the present work, the overexpression plants of Pti4, Pti5 or Pti6 were obtained by Agrobacterium-mediated transformation in tomato. The Pti4/5/6-overexpressed lines indicated enhanced expression of pathogenesis-related genes and resistance to pathogenic bacteria Pst DC3000. Meanwhile, the transgenic plants showed that Pti4/5/6 function in ripening but performed no obvious adverse influence on flowering time, seed-setting rate, weight and soluble solids content of fruits. Furthermore, Pti-overexpressed fruits exhibited increased enzymatic activities of phenylalnine ammonialyase, catalase, peroxidase and decreased content of malondialdehyde. Additionally, cell-free and in vivo ubiquitination assay indicated that Pti4, Pti5 and Pti6 degraded by 26S proteasome which suggested that these Pti transcription regulators' functions could be regulated by ubiquitin-mediated post translational regulation in tomato.
Collapse
Affiliation(s)
- Yang Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Guodong Feng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Zheng Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Ying Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Yilong Ma
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Yingying Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Fei Ma
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Yu Zhou
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Rachel Gross
- Department of Plant Sciences, University of Idaho, Moscow, ID, 83844, USA
| | - Huanhuan Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Ruipeng Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Fangming Xiao
- Department of Plant Sciences, University of Idaho, Moscow, ID, 83844, USA
| | - Yongsheng Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China; School of Horticulture, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Xiangli Niu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China.
| |
Collapse
|
12
|
Rastogi S, Shah S, Kumar R, Kumar A, Shasany AK. Comparative temporal metabolomics studies to investigate interspecies variation in three Ocimum species. Sci Rep 2020; 10:5234. [PMID: 32251340 PMCID: PMC7089951 DOI: 10.1038/s41598-020-61957-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 02/20/2020] [Indexed: 11/08/2022] Open
Abstract
Ocimum is one of the most revered medicinally useful plants which have various species. Each of the species is distinct in terms of metabolite composition as well as the medicinal property. Some basil types are used more often as an aromatic and flavoring ingredient. It would be informative to know relatedness among the species which though belong to the same genera while exclusively different in terms of metabolic composition and the operating pathways. In the present investigation the similar effort has been made in order to differentiate three commonly occurring Ocimum species having the high medicinal value, these are Ocimum sanctum, O. gratissimum and O. kilimandscharicum. The parameters for the comparative analysis of these three Ocimum species comprised of temporal changes in number leaf trichomes, essential oil composition, phenylpropanoid pathway genes expression and the activity of important enzymes. O. gratissimum was found to be richest in phenylpropanoid accumulation as well as their gene expression when compared to O. sanctum while O. kilimandscharicum was found to be accumulating terpenoid. In order to get an overview of this qualitative and quantitative regulation of terpenes and phenylpropenes, the expression pattern of some important transcription factors involved in secondary metabolism were also studied.
Collapse
Affiliation(s)
- Shubhra Rastogi
- Centre for Biotechnology, Shiksha 'O' Anusandhan University, Bhubaneswar, 751003, Odisha, India
| | - Saumya Shah
- Biotechnology Division, CSIR- Central Institute of Medicinal and Aromatic Plants, PO CIMAP, Lucknow, 226015, UP, India
| | - Ritesh Kumar
- Biotechnology Division, CSIR- Central Institute of Medicinal and Aromatic Plants, PO CIMAP, Lucknow, 226015, UP, India
| | - Ajay Kumar
- Biotechnology Division, CSIR- Central Institute of Medicinal and Aromatic Plants, PO CIMAP, Lucknow, 226015, UP, India
| | - Ajit Kumar Shasany
- Biotechnology Division, CSIR- Central Institute of Medicinal and Aromatic Plants, PO CIMAP, Lucknow, 226015, UP, India.
| |
Collapse
|
13
|
Wu J, Gao H, Zhu X, Li D. An ERF transcription factor enhances plant resistance to Myzus persicae and Spodoptera litura. BIOTECHNOL BIOTEC EQ 2020. [DOI: 10.1080/13102818.2020.1813051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Affiliation(s)
- Juan Wu
- Department of Plant Protection, Institute of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, Hunan, PR China
- Department of Genetics and Breeding of Annual Bast Fiber Crops, Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, Hunan, PR China
| | - Hao Gao
- Department of Plant Protection, Institute of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, Hunan, PR China
| | - Xiwu Zhu
- Department of Plant Protection, Institute of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, Hunan, PR China
| | - Defang Li
- Department of Genetics and Breeding of Annual Bast Fiber Crops, Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, Hunan, PR China
| |
Collapse
|
14
|
Zhuang H, Li J, Song J, Hettenhausen C, Schuman MC, Sun G, Zhang C, Li J, Song D, Wu J. Aphid (Myzus persicae) feeding on the parasitic plant dodder (Cuscuta australis) activates defense responses in both the parasite and soybean host. THE NEW PHYTOLOGIST 2018; 218:1586-1596. [PMID: 29575001 DOI: 10.1111/nph.15083] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 02/05/2018] [Indexed: 05/20/2023]
Abstract
Dodders (Cuscuta spp.) are shoot holoparasites, whose haustoria penetrate host tissues to enable fusion between the parasite and host vascular systems, allowing Cuscuta to extract water, nutrients and other molecules from hosts. Aphids are piercing-sucking herbivores that use specialized stylets to feed on phloem sap. Aphids are known to feed on Cuscuta, but how Cuscuta and its host plant respond to aphids attacking the parasite was unknown. Phytohormone quantification, transcriptomic analysis and bioassays were performed to determine the responses of Cuscuta australis and its soybean (Glycine max) hosts to the feeding of green peach aphid (GPA; Myzus persicae) on C. australis. Decreased salicylic acid levels and 172 differentially expressed genes (DEGs) were found in GPA-attacked C. australis, and the soybean hosts exhibited increased jasmonic acid contents and 1015 DEGs, including > 100 transcription factor genes. Importantly, GPA feeding on C. australis increased the resistance of the soybean host to subsequent feeding by the leafworm Spodoptera litura and soybean aphid Aphis glycines, resulting in 21% decreased leafworm mass and 41% reduced aphid survival rate. These data strongly suggest that GPA feeding on Cuscuta induces a systemic signal, which is translocated to hosts and activates defense against herbivores.
Collapse
Affiliation(s)
- Huifu Zhuang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Juan Li
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Juan Song
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Christian Hettenhausen
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Meredith C Schuman
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Jena, 07745, Germany
| | - Guiling Sun
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Cuiping Zhang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Jing Li
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Dunlun Song
- Department of Entomology, China Agricultural University, Beijing, 100193, China
| | - Jianqiang Wu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| |
Collapse
|
15
|
Abdullah HM, Chhikara S, Akbari P, Schnell DJ, Pareek A, Dhankher OP. Comparative transcriptome and metabolome analysis suggests bottlenecks that limit seed and oil yields in transgenic Camelina sativa expressing diacylglycerol acyltransferase 1 and glycerol-3-phosphate dehydrogenase. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:335. [PMID: 30574188 PMCID: PMC6299664 DOI: 10.1186/s13068-018-1326-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 11/30/2018] [Indexed: 05/14/2023]
Abstract
BACKGROUND Camelina sativa has attracted much interest as alternative renewable resources for biodiesel, other oil-based industrial products and a source for edible oils. Its unique oil attributes attract research to engineering new varieties of improved oil quantity and quality. The overexpression of enzymes catalyzing the synthesis of the glycerol backbone and the sequential conjugation of fatty acids into this backbone is a promising approach for increasing the levels of triacylglycerol (TAG). In a previous study, we co-expressed the diacylglycerol acyltransferase (DGAT1) and glycerol-3-phosphate dehydrogenase (GPD1), involved in TAG metabolism, in Camelina seeds. Transgenic plants exhibited a higher-percentage seed oil content, a greater seed mass, and overall improved seed and oil yields relative to wild-type plants. To further increase seed oil content in Camelina, we utilized metabolite profiling, in conjunction with transcriptome profiling during seed development to examine potential rate-limiting step(s) in the production of building blocks for TAG biosynthesis. RESULTS Transcriptomic analysis revealed approximately 2518 and 3136 transcripts differentially regulated at significant levels in DGAT1 and GPD1 transgenics, respectively. These transcripts were found to be involved in various functional categories, including alternative metabolic routes in fatty acid synthesis, TAG assembly, and TAG degradation. We quantified the relative contents of over 240 metabolites. Our results indicate major metabolic switches in transgenic seeds associated with significant changes in the levels of glycerolipids, amino acids, sugars, and organic acids, especially the TCA cycle and glycolysis intermediates. CONCLUSIONS From the transcriptomic and metabolomic analysis of DGAT1, GPD1 and DGAT1 + GPD1 expressing lines of C. sativa, we conclude that TAG production is limited by (1) utilization of fixed carbon from the source tissues supported by the increase in glycolysis pathway metabolites and decreased transcripts levels of transcription factors controlling fatty acids synthesis; (2) TAG accumulation is limited by the activity of lipases/hydrolases that hydrolyze TAG pool supported by the increase in free fatty acids and monoacylglycerols. This comparative transcriptomics and metabolomics approach is useful in understanding the regulation of TAG biosynthesis, identifying bottlenecks, and the corresponding genes controlling these pathways identified as limitations, for generating Camelina varieties with improved seed and oil yields.
Collapse
Affiliation(s)
- Hesham M. Abdullah
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003 USA
- Biotechnology Department, Faculty of Agriculture, Al-Azhar University, Cairo, 11651 Egypt
- Present Address: Department of Plant Biology, Michigan State University, East Lansing, MI 48824 USA
| | - Sudesh Chhikara
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003 USA
- Present Address: Centre for Biotechnology, Maharshi Dayanand University, Rohtak, 124001 India
| | - Parisa Akbari
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003 USA
| | - Danny J. Schnell
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824 USA
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 100067 India
| | - Om Parkash Dhankher
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003 USA
| |
Collapse
|
16
|
Ru L, Osorio S, Wang L, Fernie AR, Patrick JW, Ruan YL. Transcriptomic and metabolomics responses to elevated cell wall invertase activity during tomato fruit set. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:4263-4279. [PMID: 28922759 PMCID: PMC5853505 DOI: 10.1093/jxb/erx219] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Fruit set is a developmental transition from ovaries to fruitlets that determines yield potential. Cell wall invertase (CWIN) is essential for fruit and seed set, but the underlying molecular basis remains elusive. We addressed this issue by using CWIN-elevated transgenic tomato, focusing on ovaries and fruitlets at 2 d before and after anthesis, respectively. RNAseq analyses revealed that ovaries and fruitlets exhibited remarkable differences in their transcriptomic responses to elevated CWIN activity. Ovaries 2 d before anthesis were far more responsive to elevated CWIN activity compared with the fruitlets. We identified several previously unknown pathways that were up-regulated by elevated CWIN activity during fruit set. The most notable of these were expression of genes for defence, ethylene synthesis and the cell cycle along with a large number of cell wall-related genes. By contrast, expression of photosynthetic, protein degradation and some receptor-like kinase genes were generally decreased as compared with the wild type ovaries. GC-MS analyses revealed that 22 out of 24 amino acids exhibited reduced levels in the RNAi ovaries as compared with that in the wild type, probably owing to a down-regulated expression of protein degradation genes. Overall, the data indicate that (i) ovaries are much more sensitive to metabolic intervention than fruitlets; (ii) high CWIN activity could promote fruit set by improving resistance against pathogens and altering cell cycle and cell wall synthesis.
Collapse
Affiliation(s)
- Lei Ru
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
- Australia-China Research Centre for Crop Improvement, University of Newcastle, Callaghan, NSW, Australia
| | - Sonia Osorio
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Lu Wang
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
- Australia-China Research Centre for Crop Improvement, University of Newcastle, Callaghan, NSW, Australia
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - John W Patrick
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
- Australia-China Research Centre for Crop Improvement, University of Newcastle, Callaghan, NSW, Australia
| | - Yong-Ling Ruan
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
- Australia-China Research Centre for Crop Improvement, University of Newcastle, Callaghan, NSW, Australia
- Correspondence:
| |
Collapse
|
17
|
Pierella Karlusich JJ, Zurbriggen MD, Shahinnia F, Sonnewald S, Sonnewald U, Hosseini SA, Hajirezaei MR, Carrillo N. Chloroplast Redox Status Modulates Genome-Wide Plant Responses during the Non-host Interaction of Tobacco with the Hemibiotrophic Bacterium Xanthomonas campestris pv. vesicatoria. FRONTIERS IN PLANT SCIENCE 2017; 8:1158. [PMID: 28725231 PMCID: PMC5495832 DOI: 10.3389/fpls.2017.01158] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 06/16/2017] [Indexed: 05/05/2023]
Abstract
Non-host resistance is the most ample and durable form of plant resistance against pathogen infection. It includes induction of defense-associated genes, massive metabolic reprogramming, and in many instances, a form of localized cell death (LCD) at the site of infection, purportedly designed to limit the spread of biotrophic and hemibiotrophic microorganisms. Reactive oxygen species (ROS) have been proposed to act as signals for LCD orchestration. They are produced in various cellular compartments including chloroplasts, mitochondria and apoplast. We have previously reported that down-regulation of ROS build-up in chloroplasts by expression of a plastid-targeted flavodoxin (Fld) suppressed LCD in tobacco leaves inoculated with the non-host bacterium Xanthomonas campestris pv. vesicatoria (Xcv), while other defensive responses were unaffected, suggesting that chloroplast ROS and/or redox status play a major role in the progress of LCD. To better understand these effects, we compare here the transcriptomic alterations caused by Xcv inoculation on leaves of Fld-expressing tobacco plants and their wild-type siblings. About 29% of leaf-expressed genes were affected by Xcv and/or Fld. Surprisingly, 5.8% of them (1,111 genes) were regulated by Fld in the absence of infection, presumably representing pathways responsive to chloroplast ROS production and/or redox status during normal growth conditions. While the majority (∼75%) of pathogen-responsive genes were not affected by Fld, many Xcv responses were exacerbated, attenuated, or regulated in opposite direction by expression of this protein. Particularly interesting was a group of 384 genes displaying Xcv responses that were already triggered by Fld in the absence of infection, suggesting that the transgenic plants had a larger and more diversified suite of constitutive defenses against the attacking microorganism compared to the wild type. Fld modulated many genes involved in pathogenesis, signal transduction, transcriptional regulation and hormone-based pathways. Remarkable interactions with proteasomal protein degradation were observed. The results provide the first genome-wide, comprehensive picture illustrating the relevance of chloroplast redox status in biotic stress responses.
Collapse
Affiliation(s)
- Juan J. Pierella Karlusich
- Instituto de Biología Molecular y Celular de Rosario (Consejo Nacional de Investigaciones Científicas y Técnicas), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de RosarioRosario, Argentina
| | - Matias D. Zurbriggen
- Instituto de Biología Molecular y Celular de Rosario (Consejo Nacional de Investigaciones Científicas y Técnicas), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de RosarioRosario, Argentina
| | - Fahimeh Shahinnia
- Leibniz Institute of Plant Genetics and Crop Plant ResearchGatersleben, Germany
| | - Sophia Sonnewald
- Department of Biology, Division of Biochemistry, Friedrich-Alexander-University Erlangen-NurembergErlangen, Germany
| | - Uwe Sonnewald
- Department of Biology, Division of Biochemistry, Friedrich-Alexander-University Erlangen-NurembergErlangen, Germany
| | - Seyed A. Hosseini
- Leibniz Institute of Plant Genetics and Crop Plant ResearchGatersleben, Germany
| | - Mohammad-Reza Hajirezaei
- Leibniz Institute of Plant Genetics and Crop Plant ResearchGatersleben, Germany
- *Correspondence: Mohammad-Reza Hajirezaei, Néstor Carrillo,
| | - Néstor Carrillo
- Instituto de Biología Molecular y Celular de Rosario (Consejo Nacional de Investigaciones Científicas y Técnicas), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de RosarioRosario, Argentina
- *Correspondence: Mohammad-Reza Hajirezaei, Néstor Carrillo,
| |
Collapse
|
18
|
Phukan UJ, Jeena GS, Tripathi V, Shukla RK. Regulation of Apetala2/Ethylene Response Factors in Plants. FRONTIERS IN PLANT SCIENCE 2017; 8:150. [PMID: 28270817 PMCID: PMC5318435 DOI: 10.3389/fpls.2017.00150] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 01/25/2017] [Indexed: 05/18/2023]
Abstract
Multiple environmental stresses affect growth and development of plants. Plants try to adapt under these unfavorable condition through various evolutionary mechanisms like physiological and biochemical alterations connecting various network of regulatory processes. Transcription factors (TFs) like APETALA2/ETHYLENE RESPONSE FACTORS (AP2/ERFs) are an integral component of these signaling cascades because they regulate expression of a wide variety of down stream target genes related to stress response and development through different mechanism. This downstream regulation of transcript does not always positively or beneficially affect the plant but also they display some developmental defects like senescence and reduced growth under normal condition or sensitivity to stress condition. Therefore, tight auto/cross regulation of these TFs at transcriptional, translational and domain level is crucial to understand. The present manuscript discuss the multiple regulation and advantage of plasticity and specificity of these family of TFs to a wide or single downstream target(s) respectively. We have also discussed the concern which comes with the unwanted associated traits, which could only be averted by further study and exploration of these AP2/ERFs.
Collapse
Affiliation(s)
- Ujjal J. Phukan
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic PlantsLucknow, India
| | - Gajendra S. Jeena
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic PlantsLucknow, India
| | - Vineeta Tripathi
- Botany Division, CSIR-Central Drug Research InstituteLucknow, India
| | - Rakesh K. Shukla
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic PlantsLucknow, India
- *Correspondence: Rakesh K. Shukla
| |
Collapse
|
19
|
Jin JH, Zhang HX, Tan JY, Yan MJ, Li DW, Khan A, Gong ZH. A New Ethylene-Responsive Factor CaPTI1 Gene of Pepper (Capsicum annuum L.) Involved in the Regulation of Defense Response to Phytophthora capsici. FRONTIERS IN PLANT SCIENCE 2016; 6:1217. [PMID: 26779241 PMCID: PMC4705296 DOI: 10.3389/fpls.2015.01217] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 12/17/2015] [Indexed: 05/18/2023]
Abstract
Ethylene-responsive factors (ERF) are usually considered to play diverse roles in plant response to biotic and abiotic stresses. In this study, an ERF gene CaPTI1 was isolated from pepper transcriptome database. CaPTI1 contains an open reading frame (ORF) of 543 bp, which encodes a putative polypeptide of 180 amino acids with a theoretical molecular weight of 20.30 kDa. Results of expression profile showed that CaPTI1 had a highest expression level in roots and this gene could not only response to the infection of Phytophthora capsici and the stresses of cold and drought, but also be induced by the signaling molecule (salicylic acid, Methyl Jasmonate, Ethephon, and hydogen peroxide). Furthermore, virus-induce gene silencing (VIGS) of CaPTI1 in pepper weakened the defense response significantly by reducing the expression of defense related genes CaPR1, CaDEF1 and CaSAR82 and also the root activity. These results suggested that CaPTI1 is involved in the regulation of defense response to P. capsici in pepper.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zhen-Hui Gong
- College of Horticulture, Northwest A&F UniversityYangling, China
| |
Collapse
|
20
|
Ouyang Z, Liu S, Huang L, Hong Y, Li X, Huang L, Zhang Y, Zhang H, Li D, Song F. Tomato SlERF.A1, SlERF.B4, SlERF.C3 and SlERF.A3, Members of B3 Group of ERF Family, Are Required for Resistance to Botrytis cinerea. FRONTIERS IN PLANT SCIENCE 2016; 7:1964. [PMID: 28083004 PMCID: PMC5187353 DOI: 10.3389/fpls.2016.01964] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 12/12/2016] [Indexed: 05/11/2023]
Abstract
The Ethylene-Responsive Factors (ERFs) comprise a large family of transcriptional factors that play critical roles in plant immunity. Gray mold disease caused by Botrytis cinerea, a typical necrotrophic fungal pathogen, is the serious disease that threatens tomato production worldwide. However, littler is known about the molecular mechanism regulating the immunity to B. cinerea in tomato. In the present study, virus-induced gene silencing (VIGS)-based functional analyses of 18 members of B3 group (also called Group IX) in tomato ERF family were performed to identify putative ERFs that are involved in disease resistance against B. cinerea. VIGS-based silencing of either SlERF.B1 or SlERF.C2 had lethal effect while silencing of SlERF.A3 (Pit4) significantly suppressed vegetative growth of tomato plants. Importantly, silencing of SlERF.A1, SlERF.A3, SlERF.B4, or SlERF.C3 resulted in increased susceptibility to B. cinerea, attenuated the B. cinerea-induced expression of jasmonic acid/ethylene-mediated signaling responsive defense genes and promoted the B. cinerea-induced H2O2 accumulation. However, silencing of SlERF.A3 also decreased the resistance against Pseudomonas syringae pv. tomato (Pst) DC3000 but silencing of SlERF.A1, SlERF.B4 or SlERF.C3 did not affect the resistance to this bacterial pathogen. Expression of SlERF.A1, SlERF.A3, SlERF.B4, or SlERF.C3 was induced by B. cinerea and by defense signaling hormones such as salicylic acid, methyl jasmonate, and 1-aminocyclopropane-1-carboxylic acid (an ethylene precursor). SlERF.A1, SlERF.B4, SlERF.C3, and SlERF.A3 proteins were found to localize in nucleus of cells and possess transactivation activity in yeasts. These data suggest that SlERF.A1, SlERF.B4, and SlERF.C3, three previously uncharacterized ERFs in B3 group, and SlERF.A3, a previously identified ERF with function in immunity to Pst DC3000, play important roles in resistance against B. cinerea in tomato.
Collapse
Affiliation(s)
- Zhigang Ouyang
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang UniversityHangzhou, China
- National Navel Orange Engineering Research Center, College of Life and Environmental Sciences, Gannan Normal UniversityGanzhou, China
| | - Shixia Liu
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang UniversityHangzhou, China
| | - Lihong Huang
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang UniversityHangzhou, China
| | - Yongbo Hong
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang UniversityHangzhou, China
| | - Xiaohui Li
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang UniversityHangzhou, China
| | - Lei Huang
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang UniversityHangzhou, China
| | - Yafen Zhang
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang UniversityHangzhou, China
| | - Huijuan Zhang
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang UniversityHangzhou, China
| | - Dayong Li
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang UniversityHangzhou, China
| | - Fengming Song
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang UniversityHangzhou, China
- *Correspondence: Fengming Song,
| |
Collapse
|
21
|
Yogendra KN, Kumar A, Sarkar K, Li Y, Pushpa D, Mosa KA, Duggavathi R, Kushalappa AC. Transcription factor StWRKY1 regulates phenylpropanoid metabolites conferring late blight resistance in potato. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:7377-89. [PMID: 26417019 PMCID: PMC4765800 DOI: 10.1093/jxb/erv434] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Quantitative resistance is polygenically controlled and durable, but the underlying molecular and biochemical mechanisms are poorly understood. Secondary cell wall thickening is a critical process in quantitative resistance, regulated by transcriptional networks. This paper provides compelling evidence on the functionality of StWRKY1 transcription factor, in a compatible interaction of potato-Phytophthora infestans, to extend our knowledge on the regulation of the metabolic pathway genes leading to strengthening the secondary cell wall. A metabolomics approach was used to identify resistance-related metabolites belonging to the phenylpropanoid pathway and their biosynthetic genes regulated by StWRKY1. The StWRKY1 gene in resistant potato was silenced to decipher its role in the regulation of phenylpropanoid pathway genes to strengthen the secondary cell wall. Sequencing of the promoter region of StWRKY1 in susceptible genotypes revealed the absence of heat shock elements (HSEs). Simultaneous induction of both the heat shock protein (sHSP17.8) and StWRKY1 following pathogen invasion enables functioning of the latter to interact with the HSE present in the resistant StWRKY1 promoter region. EMSA and luciferase transient expression assays further revealed direct binding of StWRKY1 to promoters of hydroxycinnamic acid amide (HCAA) biosynthetic genes encoding 4-coumarate:CoA ligase and tyramine hydroxycinnamoyl transferase. Silencing of the StWRKY1 gene was associated with signs of reduced late blight resistance by significantly increasing the pathogen biomass and decreasing the abundance of HCAAs. This study provides convincing evidence on the role of StWRKY1 in the regulation of downstream genes to biosynthesize HCAAs, which are deposited to reinforce secondary cell walls.
Collapse
Affiliation(s)
| | - Arun Kumar
- Department of Plant Science, McGill University, Ste Anne de Bellevue, Quebec, Canada
| | - Kobir Sarkar
- Department of Plant Science, McGill University, Ste Anne de Bellevue, Quebec, Canada
| | - Yunliang Li
- Department of Plant Science, McGill University, Ste Anne de Bellevue, Quebec, Canada
| | - Doddaraju Pushpa
- Department of Plant Science, McGill University, Ste Anne de Bellevue, Quebec, Canada
| | - Kareem A Mosa
- Department of Plant Science, McGill University, Ste Anne de Bellevue, Quebec, Canada
| | - Raj Duggavathi
- Department of Animal Science, McGill University, Ste Anne de Bellevue, Quebec, Canada
| | - Ajjamada C Kushalappa
- Department of Plant Science, McGill University, Ste Anne de Bellevue, Quebec, Canada
| |
Collapse
|
22
|
Louis J, Basu S, Varsani S, Castano-Duque L, Jiang V, Williams WP, Felton GW, Luthe DS. Ethylene Contributes to maize insect resistance1-Mediated Maize Defense against the Phloem Sap-Sucking Corn Leaf Aphid. PLANT PHYSIOLOGY 2015; 169:313-24. [PMID: 26253737 PMCID: PMC4577432 DOI: 10.1104/pp.15.00958] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 08/06/2015] [Indexed: 05/04/2023]
Abstract
Signaling networks among multiple phytohormones fine-tune plant defense responses to insect herbivore attack. Previously, it was reported that the synergistic combination of ethylene (ET) and jasmonic acid (JA) was required for accumulation of the maize insect resistance1 (mir1) gene product, a cysteine (Cys) proteinase that is a key defensive protein against chewing insect pests in maize (Zea mays). However, this study suggests that mir1-mediated resistance to corn leaf aphid (CLA; Rhopalosiphum maidis), a phloem sap-sucking insect pest, is independent of JA but regulated by the ET-signaling pathway. Feeding by CLA triggers the rapid accumulation of mir1 transcripts in the resistant maize genotype, Mp708. Furthermore, Mp708 provided elevated levels of antibiosis (limits aphid population)- and antixenosis (deters aphid settling)-mediated resistance to CLA compared with B73 and Tx601 maize susceptible inbred lines. Synthetic diet aphid feeding trial bioassays with recombinant Mir1-Cys Protease demonstrates that Mir1-Cys Protease provides direct toxicity to CLA. Furthermore, foliar feeding by CLA rapidly sends defensive signal(s) to the roots that trigger belowground accumulation of the mir1, signifying a potential role of long-distance signaling in maize defense against the phloem-feeding insects. Collectively, our data indicate that ET-regulated mir1 transcript accumulation, uncoupled from JA, contributed to heightened resistance to CLA in maize. In addition, our results underscore the significance of ET acting as a central node in regulating mir1 expression to different feeding guilds of insect herbivores.
Collapse
Affiliation(s)
- Joe Louis
- Department of Entomology (J.L., S.B., S.V.) and Department of Biochemistry (J.L.), University of Nebraska, Lincoln, Nebraska 68583; Department of Plant Science (L.C.-D., V.J., D.S.L.) and Department of Entomology (G.W.F.), Pennsylvania State University, University Park, Pennsylvania 16802; and United States Department of Agriculture-Agricultural Research Service, Corn Host Plant Resistance Research Unit (W.P.W.), Mississippi State, Mississippi 39762
| | - Saumik Basu
- Department of Entomology (J.L., S.B., S.V.) and Department of Biochemistry (J.L.), University of Nebraska, Lincoln, Nebraska 68583; Department of Plant Science (L.C.-D., V.J., D.S.L.) and Department of Entomology (G.W.F.), Pennsylvania State University, University Park, Pennsylvania 16802; and United States Department of Agriculture-Agricultural Research Service, Corn Host Plant Resistance Research Unit (W.P.W.), Mississippi State, Mississippi 39762
| | - Suresh Varsani
- Department of Entomology (J.L., S.B., S.V.) and Department of Biochemistry (J.L.), University of Nebraska, Lincoln, Nebraska 68583; Department of Plant Science (L.C.-D., V.J., D.S.L.) and Department of Entomology (G.W.F.), Pennsylvania State University, University Park, Pennsylvania 16802; and United States Department of Agriculture-Agricultural Research Service, Corn Host Plant Resistance Research Unit (W.P.W.), Mississippi State, Mississippi 39762
| | - Lina Castano-Duque
- Department of Entomology (J.L., S.B., S.V.) and Department of Biochemistry (J.L.), University of Nebraska, Lincoln, Nebraska 68583; Department of Plant Science (L.C.-D., V.J., D.S.L.) and Department of Entomology (G.W.F.), Pennsylvania State University, University Park, Pennsylvania 16802; and United States Department of Agriculture-Agricultural Research Service, Corn Host Plant Resistance Research Unit (W.P.W.), Mississippi State, Mississippi 39762
| | - Victoria Jiang
- Department of Entomology (J.L., S.B., S.V.) and Department of Biochemistry (J.L.), University of Nebraska, Lincoln, Nebraska 68583; Department of Plant Science (L.C.-D., V.J., D.S.L.) and Department of Entomology (G.W.F.), Pennsylvania State University, University Park, Pennsylvania 16802; and United States Department of Agriculture-Agricultural Research Service, Corn Host Plant Resistance Research Unit (W.P.W.), Mississippi State, Mississippi 39762
| | - W Paul Williams
- Department of Entomology (J.L., S.B., S.V.) and Department of Biochemistry (J.L.), University of Nebraska, Lincoln, Nebraska 68583; Department of Plant Science (L.C.-D., V.J., D.S.L.) and Department of Entomology (G.W.F.), Pennsylvania State University, University Park, Pennsylvania 16802; and United States Department of Agriculture-Agricultural Research Service, Corn Host Plant Resistance Research Unit (W.P.W.), Mississippi State, Mississippi 39762
| | - Gary W Felton
- Department of Entomology (J.L., S.B., S.V.) and Department of Biochemistry (J.L.), University of Nebraska, Lincoln, Nebraska 68583; Department of Plant Science (L.C.-D., V.J., D.S.L.) and Department of Entomology (G.W.F.), Pennsylvania State University, University Park, Pennsylvania 16802; and United States Department of Agriculture-Agricultural Research Service, Corn Host Plant Resistance Research Unit (W.P.W.), Mississippi State, Mississippi 39762
| | - Dawn S Luthe
- Department of Entomology (J.L., S.B., S.V.) and Department of Biochemistry (J.L.), University of Nebraska, Lincoln, Nebraska 68583; Department of Plant Science (L.C.-D., V.J., D.S.L.) and Department of Entomology (G.W.F.), Pennsylvania State University, University Park, Pennsylvania 16802; and United States Department of Agriculture-Agricultural Research Service, Corn Host Plant Resistance Research Unit (W.P.W.), Mississippi State, Mississippi 39762
| |
Collapse
|
23
|
Casteel CL, De Alwis M, Bak A, Dong H, Whitham SA, Jander G. Disruption of Ethylene Responses by Turnip mosaic virus Mediates Suppression of Plant Defense against the Green Peach Aphid Vector. PLANT PHYSIOLOGY 2015; 169:209-18. [PMID: 26091820 PMCID: PMC4577379 DOI: 10.1104/pp.15.00332] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 06/17/2015] [Indexed: 05/19/2023]
Abstract
Plants employ diverse responses mediated by phytohormones to defend themselves against pathogens and herbivores. Adapted pathogens and herbivores often manipulate these responses to their benefit. Previously, we demonstrated that Turnip mosaic virus (TuMV) infection suppresses callose deposition, an important plant defense induced in response to feeding by its aphid vector, the green peach aphid (Myzus persicae), and increases aphid fecundity compared with uninfected control plants. Further, we determined that production of a single TuMV protein, Nuclear Inclusion a-Protease (NIa-Pro) domain, was responsible for changes in host plant physiology and increased green peach aphid reproduction. To characterize the underlying molecular mechanisms of this phenomenon, we examined the role of three phytohormone signaling pathways, jasmonic acid, salicylic acid, and ethylene (ET), in TuMV-infected Arabidopsis (Arabidopsis thaliana), with or without aphid herbivory. Experiments with Arabidopsis mutants ethylene insensitive2 and ethylene response1, and chemical inhibitors of ET synthesis and perception (aminoethoxyvinyl-glycine and 1-methylcyclopropene, respectively), show that the ET signaling pathway is required for TuMV-mediated suppression of Arabidopsis resistance to the green peach aphid. Additionally, transgenic expression of NIa-Pro in Arabidopsis alters ET responses and suppresses aphid-induced callose formation in an ET-dependent manner. Thus, disruption of ET responses in plants is an additional function of NIa-Pro, a highly conserved potyvirus protein. Virus-induced changes in ET responses may mediate vector-plant interactions more broadly and thus represent a conserved mechanism for increasing transmission by insect vectors across generations.
Collapse
Affiliation(s)
- Clare L Casteel
- Department of Plant Pathology, University of California, Davis, California 95616 (C.L.C., A.B.); Boyce Thompson Institute for Plant Research, Ithaca, New York 14853 (M.D.A., G.J.); andDepartment of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa 50011 (H.D., S.A.W.)
| | - Manori De Alwis
- Department of Plant Pathology, University of California, Davis, California 95616 (C.L.C., A.B.); Boyce Thompson Institute for Plant Research, Ithaca, New York 14853 (M.D.A., G.J.); andDepartment of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa 50011 (H.D., S.A.W.)
| | - Aurélie Bak
- Department of Plant Pathology, University of California, Davis, California 95616 (C.L.C., A.B.); Boyce Thompson Institute for Plant Research, Ithaca, New York 14853 (M.D.A., G.J.); andDepartment of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa 50011 (H.D., S.A.W.)
| | - Haili Dong
- Department of Plant Pathology, University of California, Davis, California 95616 (C.L.C., A.B.); Boyce Thompson Institute for Plant Research, Ithaca, New York 14853 (M.D.A., G.J.); andDepartment of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa 50011 (H.D., S.A.W.)
| | - Steven A Whitham
- Department of Plant Pathology, University of California, Davis, California 95616 (C.L.C., A.B.); Boyce Thompson Institute for Plant Research, Ithaca, New York 14853 (M.D.A., G.J.); andDepartment of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa 50011 (H.D., S.A.W.)
| | - Georg Jander
- Department of Plant Pathology, University of California, Davis, California 95616 (C.L.C., A.B.); Boyce Thompson Institute for Plant Research, Ithaca, New York 14853 (M.D.A., G.J.); andDepartment of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa 50011 (H.D., S.A.W.)
| |
Collapse
|
24
|
Hancock RD, Hogenhout S, Foyer CH. Mechanisms of plant-insect interaction. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:421-4. [PMID: 25723001 PMCID: PMC4286411 DOI: 10.1093/jxb/eru503] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
|