1
|
Vega-Mas I, Marino D, De la Peña M, Fuertes-Mendizábal T, González-Murua C, Estavillo JM, González-Moro MB. Enhanced photorespiratory and TCA pathways by elevated CO 2 to manage ammonium nutrition in tomato leaves. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 217:109216. [PMID: 39486222 DOI: 10.1016/j.plaphy.2024.109216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/19/2024] [Accepted: 10/19/2024] [Indexed: 11/04/2024]
Abstract
Plants grown under exclusive ammonium (NH4+) nutrition have high carbon (C) demand to sustain proper nitrogen (N) assimilation and energy required for plant growth, generally impaired when compared to nitrate (NO3-) nutrition. Thereby, the increment of the atmospheric carbon dioxide (CO2) concentration, in the context of climate change, will potentially allow plants to better face ammonium nutrition. In this work, tomato (Solanum lycopersicum L.) plants were grown under ammonium or nitrate nutrition in conditions of ambient (aCO2, 400 ppm) or elevated CO2 (eCO2, 800 ppm) atmosphere. Elevated CO2 increased photosynthesis rate and tomato shoot growth regardless of the N source. In the case of NH4+-fed leaves the positive effect of elevated CO2 occurred despite of the high tissue NH4+ accumulation. Under eCO2 ammonium nutrition triggered, among others, the modulation of genes related to C provision pathways (including carbonic anhydrase and glyoxylate cycle), antioxidant response and cell membranes protection. The enhanced photosynthate production at eCO2 facilitated C skeleton provision through the TCA cycle and anaplerotic pathways to promote amino acid synthesis. Moreover, photorespiratory activity was stimulated by eCO2 and contributed to yield serine as additional sink for NH4+ excess. Overall, these changes denote a connection between the respiratory and the photorespiratory pathways linked to ammonium nutrition. This metabolic strategy may allow crops to grow efficiently using ammonium as fertilizer in a future climate change scenario, while mitigating N losses.
Collapse
Affiliation(s)
- Izargi Vega-Mas
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Leioa, Spain.
| | - Daniel Marino
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Marlon De la Peña
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | | | - Carmen González-Murua
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - José María Estavillo
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | | |
Collapse
|
2
|
Westhoff P, Weber APM. The role of metabolomics in informing strategies for improving photosynthesis. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1696-1713. [PMID: 38158893 DOI: 10.1093/jxb/erad508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 12/29/2023] [Indexed: 01/03/2024]
Abstract
Photosynthesis plays a vital role in acclimating to and mitigating climate change, providing food and energy security for a population that is constantly growing, and achieving an economy with zero carbon emissions. A thorough comprehension of the dynamics of photosynthesis, including its molecular regulatory network and limitations, is essential for utilizing it as a tool to boost plant growth, enhance crop yields, and support the production of plant biomass for carbon storage. Photorespiration constrains photosynthetic efficiency and contributes significantly to carbon loss. Therefore, modulating or circumventing photorespiration presents opportunities to enhance photosynthetic efficiency. Over the past eight decades, substantial progress has been made in elucidating the molecular basis of photosynthesis, photorespiration, and the key regulatory mechanisms involved, beginning with the discovery of the canonical Calvin-Benson-Bassham cycle. Advanced chromatographic and mass spectrometric technologies have allowed a comprehensive analysis of the metabolite patterns associated with photosynthesis, contributing to a deeper understanding of its regulation. In this review, we summarize the results of metabolomics studies that shed light on the molecular intricacies of photosynthetic metabolism. We also discuss the methodological requirements essential for effective analysis of photosynthetic metabolism, highlighting the value of this technology in supporting strategies aimed at enhancing photosynthesis.
Collapse
Affiliation(s)
- Philipp Westhoff
- CEPLAS Plant Metabolomics and Metabolism Laboratory, Heinrich-Heine-University, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| | - Andreas P M Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Science (CEPLAS), Heinrich-Heine-University, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| |
Collapse
|
3
|
von Bismarck T, Wendering P, Perez de Souza L, Ruß J, Strandberg L, Heyneke E, Walker BJ, Schöttler MA, Fernie AR, Nikoloski Z, Armbruster U. Growth in fluctuating light buffers plants against photorespiratory perturbations. Nat Commun 2023; 14:7052. [PMID: 37923709 PMCID: PMC10624928 DOI: 10.1038/s41467-023-42648-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 10/12/2023] [Indexed: 11/06/2023] Open
Abstract
Photorespiration (PR) is the pathway that detoxifies the product of the oxygenation reaction of Rubisco. It has been hypothesized that in dynamic light environments, PR provides a photoprotective function. To test this hypothesis, we characterized plants with varying PR enzyme activities under fluctuating and non-fluctuating light conditions. Contrasting our expectations, growth of mutants with decreased PR enzyme levels was least affected in fluctuating light compared with wild type. Results for growth, photosynthesis and metabolites combined with thermodynamics-based flux analysis revealed two main causal factors for this unanticipated finding: reduced rates of photosynthesis in fluctuating light and complex re-routing of metabolic fluxes. Only in non-fluctuating light, mutants lacking the glutamate:glyoxylate aminotransferase 1 re-routed glycolate processing to the chloroplast, resulting in photooxidative damage through H2O2 production. Our results reveal that dynamic light environments buffer plant growth and metabolism against photorespiratory perturbations.
Collapse
Affiliation(s)
- Thekla von Bismarck
- Molecular Photosynthesis, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany.
- CEPLAS - Cluster of Excellence on Plant Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany.
| | - Philipp Wendering
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
- Bioinformatics Department, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany
| | - Leonardo Perez de Souza
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Jeremy Ruß
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Linnéa Strandberg
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Elmien Heyneke
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Berkley J Walker
- DOE-Plant Research Laboratory, Michigan State University, 612 Wilson Rd, East Lansing, MI, 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Rd Rm 212, East Lansing, MI, 48823, USA
| | - Mark A Schöttler
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Zoran Nikoloski
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
- Bioinformatics Department, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany
| | - Ute Armbruster
- Molecular Photosynthesis, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany.
- CEPLAS - Cluster of Excellence on Plant Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany.
| |
Collapse
|
4
|
Zhang Y, Fernie AR. The Role of TCA Cycle Enzymes in Plants. Adv Biol (Weinh) 2023; 7:e2200238. [PMID: 37341441 DOI: 10.1002/adbi.202200238] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 04/29/2023] [Indexed: 06/22/2023]
Abstract
As one of the iconic pathways in plant metabolism, the tricarboxylic acid (TCA) cycle is commonly thought to not only be responsible for the oxidization of respiratory substrate to drive ATP synthesis but also provide carbon skeletons to anabolic processes and contribute to carbon-nitrogen interaction and biotic stress responses. The functions of the TCA cycle enzymes are characterized by a saturation transgenesis approach, whereby the constituent expression of proteins is knocked out or reduced in order to investigate their function in vivo. The alteration of TCA cycle enzyme expression results in changed plant growth and photosynthesis under controlled conditions. Moreover, improvements in plant performance and postharvest properties are reported by overexpression of either endogenous forms or heterologous genes of a number of the enzymes. Given the importance of the TCA cycle in plant metabolism regulation, here, the function of each enzyme and its roles in different tissues are discussed. This article additionally highlights the recent finding that the plant TCA cycle, like that of mammals and microbes, dynamically assembles functional substrate channels or metabolons and discusses the implications of this finding to the current understanding of the metabolic regulation of the plant TCA cycle.
Collapse
Affiliation(s)
- Youjun Zhang
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
- Center of Plant System Biology and Biotechnology, Plovdiv, 4000, Bulgaria
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
- Center of Plant System Biology and Biotechnology, Plovdiv, 4000, Bulgaria
| |
Collapse
|
5
|
Jin K, Chen G, Yang Y, Zhang Z, Lu T. Strategies for manipulating Rubisco and creating photorespiratory bypass to boost C 3 photosynthesis: Prospects on modern crop improvement. PLANT, CELL & ENVIRONMENT 2023; 46:363-378. [PMID: 36444099 DOI: 10.1111/pce.14500] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 06/16/2023]
Abstract
Photosynthesis is a process that uses solar energy to fix CO2 in the air and converts it into sugar, and ultimately powers almost all life activities on the earth. C3 photosynthesis is the most common form of photosynthesis in crops. Current efforts of increasing crop yields in response to growing global food requirement are mostly focused on improving C3 photosynthesis. In this review, we summarized the strategies of C3 photosynthesis improvement in terms of Rubisco properties and photorespiratory limitation. Potential engineered targets include Rubisco subunits and their catalytic sites, Rubisco assembly chaperones, and Rubisco activase. In addition, we reviewed multiple photorespiratory bypasses built by strategies of synthetic biology to reduce the release of CO2 and ammonia and minimize energy consumption by photorespiration. The potential strategies are suggested to enhance C3 photosynthesis and boost crop production.
Collapse
Affiliation(s)
- Kaining Jin
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
- Department of Plant Sciences, Centre for Crop Systems Analysis, Wageningen University & Research, Wageningen, The Netherlands
| | - Guoxin Chen
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Yirong Yang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Zhiguo Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Tiegang Lu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| |
Collapse
|
6
|
Fu X, Walker BJ. Dynamic response of photorespiration in fluctuating light environments. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:600-611. [PMID: 35962786 DOI: 10.1093/jxb/erac335] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Photorespiration is a dynamic process that is intimately linked to photosynthetic carbon assimilation. There is a growing interest in understanding carbon assimilation during dynamic conditions, but the role of photorespiration under such conditions is unclear. In this review, we discuss recent work relevant to the function of photorespiration under dynamic conditions, with a special focus on light transients. This work reveals that photorespiration is a fundamental component of the light induction of assimilation where variable diffusive processes limit CO2 exchange with the atmosphere. Additionally, metabolic interactions between photorespiration and the C3 cycle may help balance fluxes under dynamic light conditions. We further discuss how the energy demands of photorespiration present special challenges to energy balancing during dynamic conditions. We finish the review with an overview of why regulation of photorespiration may be important under dynamic conditions to maintain appropriate fluxes through metabolic pathways related to photorespiration such as nitrogen and one-carbon metabolism.
Collapse
Affiliation(s)
- Xinyu Fu
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | - Berkley J Walker
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
7
|
The impact of photorespiration on plant primary metabolism through metabolic and redox regulation. Biochem Soc Trans 2021; 48:2495-2504. [PMID: 33300978 DOI: 10.1042/bst20200055] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 12/19/2022]
Abstract
Photorespiration is an inevitable trait of all oxygenic phototrophs, being the only known metabolic route that converts the inhibitory side-product of Rubisco's oxygenase activity 2-phosphoglycolate (2PG) back into the Calvin-Benson (CB) cycle's intermediate 3-phosphoglycerate (3PGA). Through this function of metabolite repair, photorespiration is able to protect photosynthetic carbon assimilation from the metabolite intoxication that would occur in the present-day oxygen-rich atmosphere. In recent years, much plant research has provided compelling evidence that photorespiration safeguards photosynthesis and engages in cross-talk with a number of subcellular processes. Moreover, the potential of manipulating photorespiration to increase the photosynthetic yield potential has been demonstrated in several plant species. Considering this multifaceted role, it is tempting to presume photorespiration itself is subject to a suite of regulation mechanisms to eventually exert a regulatory impact on other processes, and vice versa. The identification of potential pathway interactions and underlying regulatory aspects has been facilitated via analysis of the photorespiratory mutant phenotype, accompanied by the emergence of advanced omics' techniques and biochemical approaches. In this mini-review, I focus on the identification of enzymatic steps which control the photorespiratory flux, as well as levels of transcriptional, posttranslational, and metabolic regulation. Most importantly, glycine decarboxylase (GDC) and 2PG are identified as being key photorespiratory determinants capable of controlling photorespiratory flux and communicating with other branches of plant primary metabolism.
Collapse
|
8
|
Metabolite Profiling in Arabidopsisthaliana with Moderately Impaired Photorespiration Reveals Novel Metabolic Links and Compensatory Mechanisms of Photorespiration. Metabolites 2021; 11:metabo11060391. [PMID: 34203750 PMCID: PMC8232240 DOI: 10.3390/metabo11060391] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 01/19/2023] Open
Abstract
Photorespiration is an integral component of plant primary metabolism. Accordingly, it has been often observed that impairing the photorespiratory flux negatively impacts other cellular processes. In this study, the metabolic acclimation of the Arabidopsisthaliana wild type was compared with the hydroxypyruvate reductase 1 (HPR1; hpr1) mutant, displaying only a moderately reduced photorespiratory flux. Plants were analyzed during development and under varying photoperiods with a combination of non-targeted and targeted metabolome analysis, as well as 13C- and 14C-labeling approaches. The results showed that HPR1 deficiency is more critical for photorespiration during the vegetative compared to the regenerative growth phase. A shorter photoperiod seems to slowdown the photorespiratory metabolite conversion mostly at the glycerate kinase and glycine decarboxylase steps compared to long days. It is demonstrated that even a moderate impairment of photorespiration severely reduces the leaf-carbohydrate status and impacts on sulfur metabolism. Isotope labeling approaches revealed an increased CO2 release from hpr1 leaves, most likely occurring from enhanced non-enzymatic 3-hydroxypyruvate decarboxylation and a higher flux from serine towards ethanolamine through serine decarboxylase. Collectively, the study provides evidence that the moderate hpr1 mutant is an excellent tool to unravel the underlying mechanisms governing the regulation of metabolic linkages of photorespiration with plant primary metabolism.
Collapse
|
9
|
Photorespiration: The Futile Cycle? PLANTS 2021; 10:plants10050908. [PMID: 34062784 PMCID: PMC8147352 DOI: 10.3390/plants10050908] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 04/29/2021] [Accepted: 04/29/2021] [Indexed: 12/03/2022]
Abstract
Photorespiration, or C2 photosynthesis, is generally considered a futile cycle that potentially decreases photosynthetic carbon fixation by more than 25%. Nonetheless, many essential processes, such as nitrogen assimilation, C1 metabolism, and sulfur assimilation, depend on photorespiration. Most studies of photosynthetic and photorespiratory reactions are conducted with magnesium as the sole metal cofactor despite many of the enzymes involved in these reactions readily associating with manganese. Indeed, when manganese is present, the energy efficiency of these reactions may improve. This review summarizes some commonly used methods to quantify photorespiration, outlines the influence of metal cofactors on photorespiratory enzymes, and discusses why photorespiration may not be as wasteful as previously believed.
Collapse
|
10
|
Scossa F, Alseekh S, Fernie AR. Integrating multi-omics data for crop improvement. JOURNAL OF PLANT PHYSIOLOGY 2021; 257:153352. [PMID: 33360148 DOI: 10.1016/j.jplph.2020.153352] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/13/2020] [Accepted: 12/14/2020] [Indexed: 05/26/2023]
Abstract
Our agricultural systems are now in urgent need to secure food for a growing world population. To meet this challenge, we need a better characterization of plant genetic and phenotypic diversity. The combination of genomics, transcriptomics and metabolomics enables a deeper understanding of the mechanisms underlying the complex architecture of many phenotypic traits of agricultural relevance. We review the recent advances in plant genomics to see how these can be integrated with broad molecular profiling approaches to improve our understanding of plant phenotypic variation and inform crop breeding strategies.
Collapse
Affiliation(s)
- Federico Scossa
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476, Potsdam, Golm, Germany; Council for Agricultural Research and Economics (CREA), Research Centre for Genomics and Bioinformatics (CREA-GB), 00178, Rome, Italy.
| | - Saleh Alseekh
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476, Potsdam, Golm, Germany; Center of Plant Systems Biology and Biotechnology (CPSBB), Plovdiv, Bulgaria
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476, Potsdam, Golm, Germany; Center of Plant Systems Biology and Biotechnology (CPSBB), Plovdiv, Bulgaria.
| |
Collapse
|
11
|
Hoshika Y, Haworth M, Watanabe M, Koike T. Interactive effect of leaf age and ozone on mesophyll conductance in Siebold's beech. PHYSIOLOGIA PLANTARUM 2020; 170:172-186. [PMID: 32394437 DOI: 10.1111/ppl.13121] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/01/2020] [Accepted: 05/07/2020] [Indexed: 06/11/2023]
Abstract
Mesophyll conductance (Gm ) is one of the most important factors determining photosynthesis. Tropospheric ozone (O3 ) is known to accelerate leaf senescence and causes a decline of photosynthetic activity in leaves. However, the effects of age-related variation of O3 on Gm have not been well investigated, and we, therefore, analysed leaf gas exchange data in a free-air O3 exposure experiment on Siebold's beech with two levels (ambient and elevated O3 : 28 and 62 nmol mol-1 as daylight average, respectively). In addition, we examined whether O3 -induced changes on leaf morphology (leaf mass per area, leaf density and leaf thickness) may affect CO2 diffusion inside leaves. We found that O3 damaged the photosynthetic biochemistry progressively during the growing season. The Gm was associated with a reduced photosynthesis in O3 -fumigated Siebold's beech in August. The O3 -induced reduction of Gm was negatively correlated with leaf density, which was increased by elevated O3 , suggesting that the reduction of Gm was accompanied by changes in the physical structure of mesophyll cells. On the other hand, in October, the O3 -induced decrease of Gm was diminished because Gm decreased due to leaf senescence regardless of O3 treatment. The reduction of photosynthesis in senescent leaves after O3 exposure was mainly due to a decrease of maximum carboxylation rate (Vcmax ) and/or maximum electron transport rate (Jmax ) rather than diffusive limitations to CO2 transport such as Gm . A leaf age×O3 interaction of photosynthetic response will be a key for modelling photosynthesis in O3 -polluted environments.
Collapse
Affiliation(s)
- Yasutomo Hoshika
- Institute of Research on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Via Madonna del Piano, Sesto Fiorentino, I-50019, Italy
| | - Matthew Haworth
- Institute of Sustainable Plant Protection (IPSP), National Research Council of Italy (CNR), Via Madonna del Piano, Sesto Fiorentino, I-50019, Italy
| | - Makoto Watanabe
- Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, 183-8509, Japan
| | - Takayoshi Koike
- Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8689, Japan
| |
Collapse
|
12
|
Timm S, Hagemann M. Photorespiration-how is it regulated and how does it regulate overall plant metabolism? JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3955-3965. [PMID: 32274517 DOI: 10.1093/jxb/eraa183] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 04/08/2020] [Indexed: 05/03/2023]
Abstract
Under the current atmospheric conditions, oxygenic photosynthesis requires photorespiration to operate. In the presence of low CO2/O2 ratios, ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) performs an oxygenase side reaction, leading to the formation of high amounts of 2-phosphoglycolate during illumination. Given that 2-phosphoglycolate is a potent inhibitor of photosynthetic carbon fixation, it must be immediately removed through photorespiration. The core photorespiratory cycle is orchestrated across three interacting subcellular compartments, namely chloroplasts, peroxisomes, and mitochondria, and thus cross-talks with a multitude of other cellular processes. Over the past years, the metabolic interaction of photorespiration and photosynthetic CO2 fixation has attracted major interest because research has demonstrated the enhancement of C3 photosynthesis and growth through the genetic manipulation of photorespiration. However, to optimize future engineering approaches, it is also essential to improve our current understanding of the regulatory mechanisms of photorespiration. Here, we summarize recent progress regarding the steps that control carbon flux in photorespiration, eventually involving regulatory proteins and metabolites. In this regard, both genetic engineering and the identification of various layers of regulation point to glycine decarboxylase as the key enzyme to regulate and adjust the photorespiratory carbon flow. Potential implications of the regulation of photorespiration for acclimation to environmental changes along with open questions are also discussed.
Collapse
Affiliation(s)
- Stefan Timm
- University of Rostock, Plant Physiology Department, Rostock, Germany
| | - Martin Hagemann
- University of Rostock, Plant Physiology Department, Rostock, Germany
| |
Collapse
|
13
|
Perez De Souza L, Alseekh S, Brotman Y, Fernie AR. Network-based strategies in metabolomics data analysis and interpretation: from molecular networking to biological interpretation. Expert Rev Proteomics 2020; 17:243-255. [PMID: 32380880 DOI: 10.1080/14789450.2020.1766975] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Metabolomics has become a crucial part of systems biology; however, data analysis is still often undertaken in a reductionist way focusing on changes in individual metabolites. Whilst such approaches indeed provide relevant insights into the metabolic phenotype of an organism, the intricate nature of metabolic relationships may be better explored when considering the whole system. AREAS COVERED This review highlights multiple network strategies that can be applied for metabolomics data analysis from different perspectives including: association networks based on quantitative information, mass spectra similarity networks to assist metabolite annotation and biochemical networks for systematic data interpretation. We also highlight some relevant insights into metabolic organization obtained through the exploration of such approaches. EXPERT OPINION Network based analysis is an established method that allows the identification of non-intuitive metabolic relationships as well as the identification of unknown compounds in mass spectrometry. Additionally, the representation of data from metabolomics within the context of metabolic networks is intuitive and allows for the use of statistical analysis that can better summarize relevant metabolic changes from a systematic perspective.
Collapse
Affiliation(s)
- Leonardo Perez De Souza
- Department of molecular physiology, Max-Planck-Institute of Molecular Plant Physiology , Potsdam-Golm, Germany
| | - Saleh Alseekh
- Department of molecular physiology, Max-Planck-Institute of Molecular Plant Physiology , Potsdam-Golm, Germany.,Department of plant metabolomics, Centre of Plant Systems Biology and Biotechnology , Plovdiv, Bulgaria
| | - Yariv Brotman
- Department of Life Sciences, Ben-Gurion University of the Negev , Beersheba, Israel
| | - Alisdair R Fernie
- Department of molecular physiology, Max-Planck-Institute of Molecular Plant Physiology , Potsdam-Golm, Germany.,Department of plant metabolomics, Centre of Plant Systems Biology and Biotechnology , Plovdiv, Bulgaria
| |
Collapse
|
14
|
Alseekh S, Perez de Souza L, Benina M, Fernie AR. The style and substance of plant flavonoid decoration; towards defining both structure and function. PHYTOCHEMISTRY 2020; 174:112347. [PMID: 32203741 DOI: 10.1016/j.phytochem.2020.112347] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 05/19/2023]
Abstract
Over 8000 different flavonoids have been described and a considerable number of new flavonoid structures are being elucidated every year. The advent of metabolomics alongside the development of phytochemical genetics - wherein the genetic basis underlying the regulation of the levels of plant metabolites is determined - has provided a massive boost to such efforts. That said our understanding of the individual function(s) of the vast majority of the metabolites that constitute this important class of phytochemicals remains unknown. Here we review what is known concerning the major decorative modifications of flavonoids in plants, namely hydroxylation, glycosylation, methylation and acylation. Our major focus is with regard to the in planta function of these modified compounds, however, we also highlight the demonstrated bioactive roles which they possess. We additionally performed a comprehensive survey of the flavonoids listed in the KNApSAcK database in order to assess the frequency of occurrence of each type of flavonoid modification. We conclude that whilst considerable research has been carried out regarding the biological roles of flavonoids most studies to date have merely provided information on the compound class or sub-classes thereof as a whole with too little currently known on the specific role of individual metabolites. We, therefore, finally suggest a framework based on currently available tools by which the relative importance of the individual compounds can be assessed under various biological conditions in order to fill this knowledge-gap.
Collapse
Affiliation(s)
- Saleh Alseekh
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany; Center of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria
| | - Leonardo Perez de Souza
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Maria Benina
- Center of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany; Center of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria.
| |
Collapse
|
15
|
Fernie AR, Bauwe H. Wasteful, essential, evolutionary stepping stone? The multiple personalities of the photorespiratory pathway. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:666-677. [PMID: 31904886 DOI: 10.1111/tpj.14669] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/30/2019] [Accepted: 12/11/2019] [Indexed: 05/08/2023]
Abstract
The photorespiratory pathway, in short photorespiration, is a metabolic repair system that enables the CO2 fixation enzyme Rubisco to sustainably operate in the presence of oxygen, that is, during oxygenic photosynthesis of plants and cyanobacteria. Photorespiration is necessary because an auto-inhibitory metabolite, 2-phosphoglycolate (2PG), is produced when Rubisco binds oxygen instead of CO2 as a substrate and must be removed, to avoid collapse of metabolism, and recycled as efficiently as possible. The basic principle of recycling 2PG very likely evolved several billion years ago in connection with the evolution of oxyphotobacteria. It comprises the multi-step combination of two molecules of 2PG to form 3-phosphoglycerate. The biochemistry of this process dictates that one out of four 2PG carbons is lost as CO2 , which is a long-standing plant breeders' concern because it represents by far the largest fraction of respiratory processes that reduce gross-photosynthesis of major crops down to about 50% and less, lowering potential yields. In addition to the ATP needed for recycling of the 2PG carbon, extra energy is needed for the refixation of liberated equal amounts of ammonia. It is thought that the energy costs of photorespiration have an additional negative impact on crop yields in at least some environments. This paper discusses recent advances concerning the origin and evolution of photorespiration, and gives an overview of contemporary and envisioned strategies to engineer the biochemistry of, or even avoid, photorespiration.
Collapse
Affiliation(s)
- Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Hermann Bauwe
- Plant Physiology Department, University of Rostock, Albert-Einstein-Straße 3, D-18051, Rostock, Germany
| |
Collapse
|
16
|
Bloom AJ, Kasemsap P, Rubio-Asensio JS. Rising atmospheric CO 2 concentration inhibits nitrate assimilation in shoots but enhances it in roots of C 3 plants. PHYSIOLOGIA PLANTARUM 2020; 168:963-972. [PMID: 31642522 DOI: 10.1111/ppl.13040] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/19/2019] [Accepted: 10/19/2019] [Indexed: 05/24/2023]
Abstract
We have proposed that rising atmospheric CO2 concentrations inhibit malate production in chloroplasts and thus impede assimilation of nitrate into protein in shoots of C3 plants, a phenomenon that will strongly influence primary productivity and food security under the environmental conditions anticipated during the next few decades. Although hundreds of studies support this proposal, several publications in 2018 and 2019 purport to present counterevidence. The following study evaluates these publications as well as presents new data that elevated CO2 enhances root nitrate assimilation in wheat and Arabidopsis while it inhibits shoot nitrate assimilation.
Collapse
Affiliation(s)
- Arnold J Bloom
- Department of Plant Sciences, University of California at Davis, Davis, CA, 95616, USA
| | - Pornpipat Kasemsap
- Department of Plant Sciences, University of California at Davis, Davis, CA, 95616, USA
| | - José S Rubio-Asensio
- Department of Irrigation, Centro de Edafología y Biología Aplicada del Segura, Murcia, Spain
| |
Collapse
|
17
|
Using energy-efficient synthetic biochemical pathways to bypass photorespiration. Biochem Soc Trans 2020; 47:1805-1813. [PMID: 31754693 DOI: 10.1042/bst20190322] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/24/2019] [Accepted: 10/28/2019] [Indexed: 12/30/2022]
Abstract
Current crop yields will not be enough to sustain today's diets for a growing global population. As plant photosynthetic efficiency has not reached its theoretical maximum, optimizing photosynthesis is a promising strategy to enhance plant productivity. The low productivity of C3 plants is caused in part by the substantial energetic investments necessary to maintain a high flux through the photorespiratory pathway. Accordingly, lowering the energetic costs of photorespiration to enhance the productivity of C3 crops has been a goal of synthetic plant biology for decades. The use of synthetic bypasses to photorespiration in different plants showed an improvement of photosynthetic performance and growth under laboratory and field conditions, even though in silico predictions suggest that the tested synthetic pathways should confer a minimal or even negative energetic advantage over the wild type photorespiratory pathway. Current strategies increasingly utilize theoretical modeling and new molecular techniques to develop synthetic biochemical pathways that bypass photorespiration, representing a highly promising approach to enhance future plant productivity.
Collapse
|
18
|
Busch FA. Photorespiration in the context of Rubisco biochemistry, CO 2 diffusion and metabolism. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:919-939. [PMID: 31910295 DOI: 10.1111/tpj.14674] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 12/20/2019] [Accepted: 01/03/2020] [Indexed: 05/11/2023]
Abstract
Photorespiratory metabolism is essential for plants to maintain functional photosynthesis in an oxygen-containing environment. Because the oxygenation reaction of Rubisco is followed by the loss of previously fixed carbon, photorespiration is often considered a wasteful process and considerable efforts are aimed at minimizing the negative impact of photorespiration on the plant's carbon uptake. However, the photorespiratory pathway has also many positive aspects, as it is well integrated within other metabolic processes, such as nitrogen assimilation and C1 metabolism, and it is important for maintaining the redox balance of the plant. The overall effect of photorespiratory carbon loss on the net CO2 fixation of the plant is also strongly influenced by the physiology of the leaf related to CO2 diffusion. This review outlines the distinction between Rubisco oxygenation and photorespiratory CO2 release as a basis to evaluate the costs and benefits of photorespiration.
Collapse
Affiliation(s)
- Florian A Busch
- Research School of Biology and ARC Centre of Excellence for Translational Photosynthesis, Australian National University, Acton, ACT, 2601, Australia
| |
Collapse
|
19
|
da Fonseca-Pereira P, Souza PVL, Hou LY, Schwab S, Geigenberger P, Nunes-Nesi A, Timm S, Fernie AR, Thormählen I, Araújo WL, Daloso DM. Thioredoxin h2 contributes to the redox regulation of mitochondrial photorespiratory metabolism. PLANT, CELL & ENVIRONMENT 2020; 43:188-208. [PMID: 31378951 DOI: 10.1111/pce.13640] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 07/24/2019] [Accepted: 07/31/2019] [Indexed: 05/18/2023]
Abstract
Thioredoxins (TRXs) are important proteins involved in redox regulation of metabolism. In plants, it has been shown that the mitochondrial metabolism is regulated by the mitochondrial TRX system. However, the functional significance of TRX h2, which is found at both cytosol and mitochondria, remains unclear. Arabidopsis plants lacking TRX h2 showed delayed seed germination and reduced respiration alongside impaired stomatal and mesophyll conductance, without impacting photosynthesis under ambient O2 conditions. However, an increase in the stoichiometry of photorespiratory CO2 release was found during O2 -dependent gas exchange measurements in trxh2 mutants. Metabolite profiling of trxh2 leaves revealed alterations in key metabolites of photorespiration and in several metabolites involved in respiration and amino acid metabolism. Decreased abundance of serine hydroxymethyltransferase and glycine decarboxylase (GDC) H and L subunits as well as reduced NADH/NAD+ ratios were also observed in trxh2 mutants. We further demonstrated that the redox status of GDC-L is altered in trxh2 mutants in vivo and that recombinant TRX h2 can deactivate GDC-L in vitro, indicating that this protein is redox regulated by the TRX system. Collectively, our results demonstrate that TRX h2 plays an important role in the redox regulation of mitochondrial photorespiratory metabolism.
Collapse
Affiliation(s)
- Paula da Fonseca-Pereira
- Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, 36570-900, Brazil
| | - Paulo V L Souza
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, 60451-970, Brazil
| | - Liang-Yu Hou
- Department Biology I, Ludwig-Maximilians-Universität München, Planegg-Martinsried, 82152, Germany
| | - Saskia Schwab
- Plant Physiology Department, University of Rostock, Rostock, D-18051, Germany
| | - Peter Geigenberger
- Department Biology I, Ludwig-Maximilians-Universität München, Planegg-Martinsried, 82152, Germany
| | - Adriano Nunes-Nesi
- Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, 36570-900, Brazil
| | - Stefan Timm
- Plant Physiology Department, University of Rostock, Rostock, D-18051, Germany
| | - Alisdair R Fernie
- Department Willmitzer, Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Ina Thormählen
- Department Biology I, Ludwig-Maximilians-Universität München, Planegg-Martinsried, 82152, Germany
| | - Wagner L Araújo
- Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, 36570-900, Brazil
| | - Danilo M Daloso
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, 60451-970, Brazil
| |
Collapse
|
20
|
Fürtauer L, Küstner L, Weckwerth W, Heyer AG, Nägele T. Resolving subcellular plant metabolism. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:438-455. [PMID: 31361942 PMCID: PMC8653894 DOI: 10.1111/tpj.14472] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 07/09/2019] [Accepted: 07/12/2019] [Indexed: 05/15/2023]
Abstract
Plant cells are characterized by a high degree of compartmentalization and a diverse proteome and metabolome. Only a very limited number of studies has addressed combined subcellular proteomics and metabolomics which strongly limits biochemical and physiological interpretation of large-scale 'omics data. Our study presents a methodological combination of nonaqueous fractionation, shotgun proteomics, enzyme activities and metabolomics to reveal subcellular diurnal dynamics of plant metabolism. Subcellular marker protein sets were identified and enzymatically validated to resolve metabolism in a four-compartment model comprising chloroplasts, cytosol, vacuole and mitochondria. These marker sets are now available for future studies that aim to monitor subcellular metabolome and proteome dynamics. Comparing subcellular dynamics in wild type plants and HXK1-deficient gin2-1 mutants revealed a strong impact of HXK1 activity on metabolome dynamics in multiple compartments. Glucose accumulation in the cytosol of gin2-1 was accompanied by diminished vacuolar glucose levels. Subcellular dynamics of pyruvate, succinate and fumarate amounts were significantly affected in gin2-1 and coincided with differential mitochondrial proteome dynamics. Lowered mitochondrial glycine and serine amounts in gin2-1 together with reduced abundance of photorespiratory proteins indicated an effect of the gin2-1 mutation on photorespiratory capacity. Our findings highlight the necessity to resolve plant metabolism to a subcellular level to provide a causal relationship between metabolites, proteins and metabolic pathway regulation.
Collapse
Affiliation(s)
- Lisa Fürtauer
- Department Biology I, Plant Evolutionary Cell BiologyLudwig‐Maximilians‐Universität MünchenPlanegg‐MartinsriedGermany
- Department of Ecogenomics and Systems BiologyUniversity of ViennaViennaAustria
| | - Lisa Küstner
- Department of Plant BiotechnologyUniversity of StuttgartInstitute of Biomaterials and Biomolecular SystemsStuttgartGermany
| | - Wolfram Weckwerth
- Department of Ecogenomics and Systems BiologyUniversity of ViennaViennaAustria
- Vienna Metabolomics CenterUniversity of ViennaViennaAustria
| | - Arnd G. Heyer
- Department of Plant BiotechnologyUniversity of StuttgartInstitute of Biomaterials and Biomolecular SystemsStuttgartGermany
| | - Thomas Nägele
- Department Biology I, Plant Evolutionary Cell BiologyLudwig‐Maximilians‐Universität MünchenPlanegg‐MartinsriedGermany
- Department of Ecogenomics and Systems BiologyUniversity of ViennaViennaAustria
- Vienna Metabolomics CenterUniversity of ViennaViennaAustria
| |
Collapse
|
21
|
Eisenhut M, Roell MS, Weber APM. Mechanistic understanding of photorespiration paves the way to a new green revolution. THE NEW PHYTOLOGIST 2019; 223:1762-1769. [PMID: 31032928 DOI: 10.1111/nph.15872] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 04/11/2019] [Indexed: 05/25/2023]
Abstract
Photorespiration is frequently considered a wasteful and inefficient process. However, mutant analysis demonstrated that photorespiration is essential for recycling of 2-phosphoglycolate in C3 and C4 land plants, in algae, and even in cyanobacteria operating carboxysome-based carbon (C) concentrating mechanisms. Photorespiration links photosynthetic C assimilation with other metabolic processes, such as nitrogen and sulfur assimilation, as well as C1 metabolism, and it may contribute to balancing the redox poise between chloroplasts, peroxisomes, mitochondria and cytoplasm. The high degree of metabolic interdependencies and the pleiotropic phenotypes of photorespiratory mutants impedes the distinction between core and accessory functions. Newly developed synthetic bypasses of photorespiration, beyond holding potential for significant yield increases in C3 crops, will enable us to differentiate between essential and accessory functions of photorespiration.
Collapse
Affiliation(s)
- Marion Eisenhut
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University, Universitätsstrasse 1, Düsseldorf, 40225, Germany
| | - Marc-Sven Roell
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University, Universitätsstrasse 1, Düsseldorf, 40225, Germany
| | - Andreas P M Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University, Universitätsstrasse 1, Düsseldorf, 40225, Germany
| |
Collapse
|
22
|
Tcherkez G, Limami AM. Net photosynthetic CO 2 assimilation: more than just CO 2 and O 2 reduction cycles. THE NEW PHYTOLOGIST 2019; 223:520-529. [PMID: 30927445 DOI: 10.1111/nph.15828] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 03/24/2019] [Indexed: 06/09/2023]
Abstract
Net photosynthetic assimilation in C3 plants is mostly viewed as a simple balance between CO2 fixation by Rubisco-catalyzed carboxylation and CO2 production by photorespiration (and to a lower extent, by day respiration) that can be easily manipulated during gas exchange experiments using the CO2 : O2 ratio of the environment. However, it now becomes clear that it is not so simple, because the photosynthetic response to gaseous conditions involves 'ancillary' metabolisms, even in the short-term. That is, carbon and nitrogen utilization by pathways other than the Calvin cycle and the photorespiratory cycle, as well as rapid signaling events, can influence the observed rate of net photosynthesis. The potential impact of such ancillary metabolisms is assessed as well as how it must be taken into account to avoid misinterpretation of photosynthetic CO2 response curves or low O2 effects in C3 leaves.
Collapse
Affiliation(s)
- Guillaume Tcherkez
- Research School of Biology, Australian National University, Canberra, 2601, ACT, Australia
| | - Anis M Limami
- IRHS Centre INRA d'Angers, Université d'Angers, 42 rue George Morel, 49070, Beaucouzé, France
| |
Collapse
|
23
|
Li J, Tietz S, Cruz JA, Strand DD, Xu Y, Chen J, Kramer DM, Hu J. Photometric screens identified Arabidopsis peroxisome proteins that impact photosynthesis under dynamic light conditions. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 97:460-474. [PMID: 30350901 DOI: 10.1111/tpj.14134] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 10/14/2018] [Accepted: 10/17/2018] [Indexed: 05/02/2023]
Abstract
Plant peroxisomes function collaboratively with other subcellular organelles, such as chloroplasts and mitochondria, in several metabolic processes. To comprehensively investigate the impact of peroxisomal function on photosynthesis, especially under conditions that are more relevant to natural environments, a systematic screen of over 150 Arabidopsis mutants of genes encoding peroxisomal proteins was conducted using the automated Dynamic Environment Photosynthesis Imager (DEPI). Dynamic and high-light (HL) conditions triggered significant photosynthetic defects in a subset of the mutants, including those of photorespiration (PR) and other peroxisomal processes, some of which may also be related to PR. Further analysis of the PR mutants revealed activation of cyclic electron flow (CEF) around photosystem I and higher accumulation of hydrogen peroxide (H2 O2 ) under HL conditions. We hypothesize that impaired PR disturbs the balance of ATP and NADPH, leading to the accumulation of H2 O2 that activates CEF to produce ATP to compensate for the imbalance of reducing equivalents. The identification of peroxisomal mutants involved in PR and other peroxisomal functions in the photometric screen will enable further investigation of regulatory links between photosynthesis and PR and interorganellar interaction at the mechanistic level.
Collapse
Affiliation(s)
- Jiying Li
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
| | - Stefanie Tietz
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
| | - Jeffrey A Cruz
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Deserah D Strand
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
| | - Ye Xu
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
| | - Jin Chen
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
- Department of Computer Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - David M Kramer
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Jianping Hu
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
24
|
Levey M, Timm S, Mettler-Altmann T, Luca Borghi G, Koczor M, Arrivault S, PM Weber A, Bauwe H, Gowik U, Westhoff P. Efficient 2-phosphoglycolate degradation is required to maintain carbon assimilation and allocation in the C4 plant Flaveria bidentis. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:575-587. [PMID: 30357386 PMCID: PMC6322630 DOI: 10.1093/jxb/ery370] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 10/15/2018] [Indexed: 05/18/2023]
Abstract
Photorespiration is indispensable for oxygenic photosynthesis since it detoxifies and recycles 2-phosphoglycolate (2PG), which is the primary oxygenation product of Rubisco. However, C4 plant species typically display very low rates of photorespiration due to their efficient biochemical carbon-concentrating mechanism. Thus, the broader relevance of photorespiration in these organisms remains unclear. In this study, we assessed the importance of a functional photorespiratory pathway in the C4 plant Flaveria bidentis using knockdown of the first enzymatic step, namely 2PG phosphatase (PGLP). The isolated RNAi lines showed strongly reduced amounts of PGLP protein, but distinct signs of the photorespiratory phenotype only emerged below 5% residual PGLP protein. Lines with this characteristic were stunted in growth, had strongly increased 2PG content, exhibited accelerated leaf senescence, and accumulated high amounts of branched-chain and aromatic amino acids, which are both characteristics of incipient carbon starvation. Oxygen-dependent gas-exchange measurements consistently suggested the cumulative impairment of ribulose-1,5-bisphosphate regeneration with increased photorespiratory pressure. Our results indicate that photorespiration is essential for maintaining high rates of C4 photosynthesis by preventing the 2PG-mediated inhibition of carbon utilization efficiency. However, considerably higher 2PG accumulation can be tolerated compared to equivalent lines of C3 plants due to the differential distribution of specific enzymatic steps between the mesophyll and bundle sheath cells.
Collapse
Affiliation(s)
- Myles Levey
- Institute of Plant Molecular and Developmental Biology, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University, Universitätsstraße, Düsseldorf, Germany
| | - Stefan Timm
- University of Rostock, Plant Physiology Department, Albert-Einstein-Straße, Rostock, Germany
| | - Tabea Mettler-Altmann
- Institute of Plant Biochemistry and Cluster of Excellence on Plant Sciences (CEPLAS) Plant Metabolism and Metabolomics Laboratory, Heinrich Heine University, Universitätsstraße, Düsseldorf, Germany
| | - Gian Luca Borghi
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg, Golm, Germany
| | - Maria Koczor
- Institute of Plant Molecular and Developmental Biology, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University, Universitätsstraße, Düsseldorf, Germany
| | - Stéphanie Arrivault
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg, Golm, Germany
| | - Andreas PM Weber
- Institute of Plant Biochemistry and Cluster of Excellence on Plant Sciences (CEPLAS) Plant Metabolism and Metabolomics Laboratory, Heinrich Heine University, Universitätsstraße, Düsseldorf, Germany
| | - Hermann Bauwe
- University of Rostock, Plant Physiology Department, Albert-Einstein-Straße, Rostock, Germany
| | - Udo Gowik
- Institute of Plant Molecular and Developmental Biology, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University, Universitätsstraße, Düsseldorf, Germany
| | - Peter Westhoff
- Institute of Plant Molecular and Developmental Biology, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University, Universitätsstraße, Düsseldorf, Germany
| |
Collapse
|
25
|
Lothier J, De Paepe R, Tcherkez G. Mitochondrial complex I dysfunction increases CO 2 efflux and reconfigures metabolic fluxes of day respiration in tobacco leaves. THE NEW PHYTOLOGIST 2019; 221:750-763. [PMID: 30133747 DOI: 10.1111/nph.15393] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Accepted: 07/15/2018] [Indexed: 06/08/2023]
Abstract
Mutants affected in complex I are useful to understand the role played by mitochondrial electron transport and redox metabolism in cellular homeostasis and signaling. However, their respiratory phenotype is incompletely described and a specific examination of day respiration (Rd ) is lacking. Here, we used isotopic methods and metabolomics to investigate the impact of complex I dysfunction on Rd in two respiratory mutants of forest tobacco (Nicotiana sylvestris): cytoplasmic male sterile II (CMSII) and nuclear male sterile 1 (NMS1), previously characterized for complex I disruption. Rd was higher in mutants and the inhibition of leaf respiration by light was lower. Higher Rd values were caused by increased (phosphoenol)pyruvate (PEP) metabolism at the expense of anaplerotic (PEP carboxylase (PEPc) -catalyzed) activity. De novo synthesis of Krebs cycle intermediates in the light was larger in mutants than in the wild-type, although numerically small in all genotypes. Carbon metabolism in mutants involved alternative pathways, such as alanine synthesis, and an increase in amino acid production with the notable exception of aspartate. Our results show that the alteration of NADH re-oxidation activity by complex I does not cause a general inhibition of catabolism, but rather a re-orchestration of fluxes in day respiratory metabolism, leading to an increased CO2 efflux.
Collapse
Affiliation(s)
- Jérémy Lothier
- Institut de Recherche en Horticulture et Semences, UMR 1345 INRA-Université d'Angers, 42 rue Georges Morel, 49071, Beaucouzé Cedex, France
| | - Rosine De Paepe
- Institute of Plant Sciences Paris-Saclay, UMR 9213/UMR1403, Université Paris Sud, CNRS-INRA, Université d'Evry, Université Paris-Diderot, Bâtiment 630, 91405, Orsay Cedex, France
| | - Guillaume Tcherkez
- Research School of Biology, Australian National University, ANU College of Science, 2601, Canberra, ACT, Australia
| |
Collapse
|
26
|
Shim SH, Lee SK, Lee DW, Brilhaus D, Wu G, Ko S, Lee CH, Weber AP, Jeon JS. Loss of Function of Rice Plastidic Glycolate/Glycerate Translocator 1 Impairs Photorespiration and Plant Growth. FRONTIERS IN PLANT SCIENCE 2019; 10:1726. [PMID: 32038690 PMCID: PMC6993116 DOI: 10.3389/fpls.2019.01726] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 12/09/2019] [Indexed: 05/21/2023]
Abstract
Ribulose-1,5-bisphosphate carboxylase/oxygenase, the key enzyme of photosynthetic carbon fixation, is able to accept both O2 and CO2 as substrates. When it fixes O2, it produces 2-phosphoglycolate, which is detoxified by photorespiration and recycled to the Calvin-Benson-Bassham cycle. To complete photorespiration, metabolite transport across three organelles, chloroplasts, peroxisomes, and mitochondria, is necessary through transmembrane transporters. In rice (Oryza sativa) little is known about photorespiratory transmembrane transporters. Here, we identified the rice plastidic glycolate/glycerate translocator 1 (OsPLGG1), a homolog of Arabidopsis PLGG1. OsPLGG1 mutant lines, osplgg1-1, osplgg1-2, and osplgg1-3, showed a growth retardation phenotype, such as pale green leaf, reduced tiller number, and reduced seed grain weight as well as reduced photosynthetic carbon reduction rate due to low activities of photosystem I and II. The plant growth retardation in osplgg1 mutants was rescued under high CO2 condition. Subcellular localization of OsPLGG1-GFP fusion protein, along with its predicted N-terminal transmembrane domain, confirmed that OsPLGG1 is a chloroplast transmembrane protein. Metabolite analysis indicated significant accumulation of photorespiratory metabolites, especially glycolate and glycerate, which have been shown to be transported by the Arabidopsis PLGG1, and changes for a number of metabolites which are not intermediates of photorespiration in the mutants. These results suggest that OsPLGG1 is the functional plastidic glycolate/glycerate transporter, which is necessary for photorespiration and growth in rice.
Collapse
Affiliation(s)
- Su-Hyeon Shim
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, South Korea
| | - Sang-Kyu Lee
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, South Korea
| | - Dae-Woo Lee
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, South Korea
| | - Dominik Brilhaus
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences, Heinrich Heine University, Düsseldorf, Germany
| | - Guangxi Wu
- Department of Molecular Biology, Pusan National University, Busan, South Korea
| | - Sooyeon Ko
- Department of Molecular Biology, Pusan National University, Busan, South Korea
| | - Choon-Hwan Lee
- Department of Molecular Biology, Pusan National University, Busan, South Korea
| | - Andreas P.M. Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences, Heinrich Heine University, Düsseldorf, Germany
| | - Jong-Seong Jeon
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, South Korea
- *Correspondence: Jong-Seong Jeon,
| |
Collapse
|
27
|
Reinholdt O, Bauwe H, Hagemann M, Timm S. Redox-regulation of mitochondrial metabolism through thioredoxin o1 facilitates light induction of photosynthesis. PLANT SIGNALING & BEHAVIOR 2019; 14:1674607. [PMID: 31589099 PMCID: PMC6866678 DOI: 10.1080/15592324.2019.1674607] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Despite the well-known biochemistry of the major pathways involved in central carbon and amino acid metabolism, there are still gaps regarding their regulation or regulatory interactions. Recent research demonstrated the physiological significance of the mitochondrial redox machinery, particularly thioredoxin o1 (TRXo1), for proper regulation of the tricarboxylic acid cycle, components of the mitochondrial electron transport chain and photorespiration. These findings imply that TRXo1 regulation contributes to the metabolic acclimation toward changes in the prevailing environmental conditions. Here, we analyzed if TRXo1 is involved in the light induction of photosynthesis. Our results show that the trxo1 mutant activates CO2 assimilation rates to a significantly lower extend than wild type in response to short-term light/dark changes. Metabolite analysis suggests that activation of glycine-to-serine conversion catalyzed through glycine decarboxylase in conjunction with serine hydroxymethyltransferase in trxo1 is slowed down at onset of illumination. We propose that redox regulation via TRXo1 is necessary to allow the rapid induction of mitochondrial steps of the photorespiratory cycle and, in turn, to facilitate light-induction of photosynthesis.
Collapse
Affiliation(s)
- Ole Reinholdt
- Plant Physiology Department, University of Rostock, Rostock, Germany
| | - Hermann Bauwe
- Plant Physiology Department, University of Rostock, Rostock, Germany
| | - Martin Hagemann
- Plant Physiology Department, University of Rostock, Rostock, Germany
| | - Stefan Timm
- Plant Physiology Department, University of Rostock, Rostock, Germany
- CONTACT Stefan Timm Plant Physiology Department, University of Rostock, Rostock, Germany
| |
Collapse
|
28
|
Zhang Y, Fernie AR. On the role of the tricarboxylic acid cycle in plant productivity. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2018; 60:1199-1216. [PMID: 29917310 DOI: 10.1111/jipb.12690] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 06/18/2018] [Indexed: 05/10/2023]
Abstract
The tricarboxylic acid (TCA) cycle is one of the canonical energy pathways of living systems, as well as being an example of a pathway in which dynamic enzyme assemblies, or metabolons, are well characterized. The role of the enzymes have been the subject of saturated transgenesis approaches, whereby the expression of the constituent enzymes were reduced or knocked out in order to ascertain their in vivo function. Some of the resultant plants exhibited improved photosynthesis and plant growth, under controlled greenhouse conditions. In addition, overexpression of the endogenous genes, or heterologous forms of a number of the enzymes, has been carried out in tomato fruit and the roots of a range of species, and in some instances improvement in fruit yield and postharvest properties and plant performance, under nutrient limitation, have been reported, respectively. Given a number of variants, in nature, we discuss possible synthetic approaches involving introducing these variants, or at least a subset of them, into plants. We additionally discuss the likely consequences of introducing synthetic metabolons, wherein certain pairs of reactions are artificially permanently assembled into plants, and speculate as to future strategies to further improve plant productivity by manipulation of the core metabolic pathway.
Collapse
Affiliation(s)
- Youjun Zhang
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
- Center of Plant System Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
- Center of Plant System Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| |
Collapse
|
29
|
Bloom AJ, Lancaster KM. Manganese binding to Rubisco could drive a photorespiratory pathway that increases the energy efficiency of photosynthesis. NATURE PLANTS 2018; 4:414-422. [PMID: 29967515 DOI: 10.1038/s41477-018-0191-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 06/01/2018] [Indexed: 05/18/2023]
Abstract
Most plants, contrary to popular belief, do not waste over 30% of their photosynthate in a futile cycle called photorespiration. Rather, the photorespiratory pathway generates additional malate in the chloroplast that empowers many energy-intensive chemical reactions, such as those involved in nitrate assimilation. Thus, the balance between carbon fixation and photorespiration determines the plant carbon-nitrogen balance and protein concentrations. Plant protein concentrations, in turn, depend not only on the relative concentrations of carbon dioxide and oxygen in the chloroplast but also on the relative activities of magnesium and manganese, which are metals that associate with several key enzymes in the photorespiratory pathway and alter their function. Understanding the regulation of these processes is critical for sustaining food quality under rising CO2 atmospheres.
Collapse
Affiliation(s)
- Arnold J Bloom
- Department of Plant Sciences, University of California at Davis, Davis, CA, USA.
| | - Kyle M Lancaster
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
30
|
Gakière B, Fernie AR, Pétriacq P. More to NAD + than meets the eye: A regulator of metabolic pools and gene expression in Arabidopsis. Free Radic Biol Med 2018; 122:86-95. [PMID: 29309893 DOI: 10.1016/j.freeradbiomed.2018.01.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 12/22/2017] [Accepted: 01/03/2018] [Indexed: 10/18/2022]
Abstract
Since its discovery more than a century ago, nicotinamide adenine dinucleotide (NAD+) is recognised as a fascinating cornerstone of cellular metabolism. This ubiquitous energy cofactor plays vital roles in metabolic pathways and regulatory processes, a fact emphasised by the essentiality of a balanced NAD+ metabolism for normal plant growth and development. Research on the role of NAD in plants has been predominantly carried out in the model plant Arabidopsis thaliana (Arabidopsis) with emphasis on the redox properties and cellular signalling functions of the metabolite. This review examines the current state of knowledge concerning how NAD can regulate both metabolic pools and gene expression in Arabidopsis. Particular focus is placed on recent studies highlighting the complexity of metabolic regulations involving NAD, more particularly in the mitochondrial compartment, and of signalling roles with respect to interactions with environmental fluctuations most specifically those involving plant immunity.
Collapse
Affiliation(s)
- Bertrand Gakière
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Univ. Paris-Sud, Univ. Evry, Univ. Paris-Diderot, Univ. Paris-Saclay, Bâtiment 630 Rue Noetzlin, 91192 Gif-sur-Yvette cedex, France; Plateforme Métabolisme Métabolome, Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Univ. Paris-Sud, Univ. Evry, Univ. Paris-Diderot, Univ. ParisSaclay, Bâtiment 630 Rue Noetzlin, 91192 Gif-sur-Yvette cedex, France
| | - Alisdair R Fernie
- Max-Planck-Institute for Molecular Plant Physiology, Wissenschaftspark Golm, 14476 Potsdam-Golm, Germany
| | - Pierre Pétriacq
- biOMICS Facility, Department of Animal and Plant Sciences, The University of Sheffield, S10 2TN Sheffield, United Kingdom; UMR 1332 Biologie du Fruit et Pathologie, INRA Bordeaux & Université de Bordeaux, F-33883 Villenave d'Ornon, France.
| |
Collapse
|
31
|
Abstract
Photosynthesis is fundamental to biomass production, but is a dynamic process sensitive to environmental constraints. In recent years, approaches to increase biomass and grain yield by altering photosynthetically related processes in the plant have received considerable attention. However, improving biomass yield requires a predictive understanding of the molecular mechanisms that allow photosynthesis to be adjusted. The important roles of metabolic reactions external to those directly involved in photosynthesis are highlighted in this review; however, our major focus is on the routes taken to improve photosynthetic carbon assimilation and to increase photosynthetic efficiency and consequently biomass yield.
Collapse
|
32
|
Liang Y, Zeng X, Peng X, Hou X. Arabidopsis glutamate:glyoxylate aminotransferase 1 (Ler) mutants generated by CRISPR/Cas9 and their characteristics. Transgenic Res 2018; 27:61-74. [DOI: 10.1007/s11248-017-0052-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 11/27/2017] [Indexed: 10/18/2022]
|
33
|
Dietz KJ. Subcellular metabolomics: the choice of method depends on the aim of the study. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:5695-5698. [PMID: 29155967 PMCID: PMC5854114 DOI: 10.1093/jxb/erx406] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Affiliation(s)
- Karl-Josef Dietz
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, Universitätsstr. Germany
- Correspondence:
| |
Collapse
|
34
|
Abstract
Dynamic systems modeling is a method to study systematic properties of a complex system. The basic principles, procedures, and tools available to develop a dynamic systems model of complex metabolic processes are detailed. Here, a photosynthetic carbon metabolism model, which includes the Calvin Benson cycle, photorespiration, and starch and sucrose synthesis pathways, is used as an example to illustrate the whole process of model development.
Collapse
Affiliation(s)
- Honglong Zhao
- Plant Systems Biology Group, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Fenglin Road 500, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yi Xiao
- Plant Systems Biology Group, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Fenglin Road 500, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin-Guang Zhu
- Plant Systems Biology Group, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Fenglin Road 500, Shanghai, 200032, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Plant Systems Biology Groups, CAS Key Laboratory for Computational Biology, CAS-MPG Partner Institute for Computational Biology, CAS, Room 102, Physiology Building, Yueyang Road 320, Shanghai, 200031, China.
| |
Collapse
|
35
|
Saji S, Bathula S, Kubo A, Tamaoki M, Aono M, Sano T, Tobe K, Timm S, Bauwe H, Nakajima N, Saji H. Ozone-Sensitive Arabidopsis Mutants with Deficiencies in Photorespiratory Enzymes. PLANT & CELL PHYSIOLOGY 2017; 58:914-924. [PMID: 28339978 DOI: 10.1093/pcp/pcx027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 02/13/2017] [Indexed: 05/24/2023]
Abstract
An ozone-sensitive mutant was isolated from T-DNA-tagged lines of Arabidopsis thaliana. The T-DNA was inserted at a locus on chromosome 3, where two genes encoding glycolate oxidases, GOX1 and GOX2, peroxisomal enzymes involved in photorespiration, reside contiguously. The amounts of the mutant's foliar transcripts for these genes were reduced, and glycolate oxidase activity was approximately 60% of that of the wild-type plants. No difference in growth and appearance was observed between the mutant and the wild-type plants under normal conditions with ambient air under a light intensity of 100 µmol photons m-2 s-1. However, signs of severe damage, such as chlorosis and ion leakage from the tissue, rapidly appeared in mutant leaves in response to ozone treatment at a concentration of 0.2 µl l-1 under a higher light intensity of 350 µmol photons m-2 s-1 that caused no such symptoms in the wild-type plant. The mutant also exhibited sensitivity to sulfur dioxide and long-term high-intensity light. Arabidopsis mutants with deficiencies in other photorespiratory enzymes such as glutamate:glyoxylate aminotransferase and hydroxypyruvate reductase also exhibited ozone sensitivities. Therefore, photorespiration appears to be involved in protection against photooxidative stress caused by ozone and other abiotic factors under high-intensity light.
Collapse
Affiliation(s)
- Shoko Saji
- Center for Environmental Biology and Ecosystem Studies, National Institute for Environmental Studies, Onogawa, Tsukuba, Ibaraki, Japan
| | - Srinivas Bathula
- Center for Environmental Biology and Ecosystem Studies, National Institute for Environmental Studies, Onogawa, Tsukuba, Ibaraki, Japan
- Department of Biotechnology, School of Herbal Studies and Naturo Sciences, Dravidian University, Kuppam, Andhra Pradesh, India
| | - Akihiro Kubo
- Center for Environmental Biology and Ecosystem Studies, National Institute for Environmental Studies, Onogawa, Tsukuba, Ibaraki, Japan
| | - Masanori Tamaoki
- Center for Environmental Biology and Ecosystem Studies, National Institute for Environmental Studies, Onogawa, Tsukuba, Ibaraki, Japan
| | - Mitsuko Aono
- Center for Environmental Biology and Ecosystem Studies, National Institute for Environmental Studies, Onogawa, Tsukuba, Ibaraki, Japan
| | - Tomoharu Sano
- Center for Environmental Measurement and Analysis, National Institute for Environmental Studies, Onogawa, Tsukuba, Ibaraki, Japan
| | - Kazuo Tobe
- Center for Environmental Biology and Ecosystem Studies, National Institute for Environmental Studies, Onogawa, Tsukuba, Ibaraki, Japan
| | - Stefan Timm
- Plant Physiology Department, University of Rostock, Rostock, Germany
| | - Hermann Bauwe
- Plant Physiology Department, University of Rostock, Rostock, Germany
| | - Nobuyoshi Nakajima
- Center for Environmental Biology and Ecosystem Studies, National Institute for Environmental Studies, Onogawa, Tsukuba, Ibaraki, Japan
| | - Hikaru Saji
- Center for Environmental Biology and Ecosystem Studies, National Institute for Environmental Studies, Onogawa, Tsukuba, Ibaraki, Japan
| |
Collapse
|
36
|
de Souza LP, Szecówka M, Fernie AR, Tohge T. 13CO 2 Labeling and Mass Spectral Analysis of Photorespiration. Methods Mol Biol 2017; 1653:157-166. [PMID: 28822132 DOI: 10.1007/978-1-4939-7225-8_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Photorespiratory metabolism is compartmented over the chloroplast, peroxisome, cytosol, and mitochondria, and due to its complex structure it is often the case that metabolite levels alone are not able to fully describe photorespiration. Metabolic fluxes represent a more meaningful biological description of metabolism, adding to metabolite levels and often revealing different aspects of the system such as the presence of inactive metabolic pools of photorespiratory intermediates. We describe here a protocol for the 13CO2 feeding of Arabidopsis and tracing of 13C enriched metabolites for metabolic fluxes estimation, which allows high throughput analysis of labeling pattern on different metabolites involved in photorespiration and downstream processes.
Collapse
Affiliation(s)
- Leonardo Perez de Souza
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Marek Szecówka
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Takayuki Tohge
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany.
| |
Collapse
|
37
|
Modde K, Timm S, Florian A, Michl K, Fernie AR, Bauwe H. High serine:glyoxylate aminotransferase activity lowers leaf daytime serine levels, inducing the phosphoserine pathway in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:643-656. [PMID: 28011718 PMCID: PMC5441925 DOI: 10.1093/jxb/erw467] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Serine:glyoxylate aminotransferase (SGAT) converts glyoxylate and serine to glycine and hydroxypyruvate during photorespiration. Besides this, SGAT operates with several other substrates including asparagine. The impact of this enzymatic promiscuity on plant metabolism, particularly photorespiration and serine biosynthesis, is poorly understood. We found that elevated SGAT activity causes surprisingly clear changes in metabolism and interferes with photosynthetic CO2 uptake and biomass accumulation of Arabidopsis. The faster serine turnover during photorespiration progressively lowers day-time leaf serine contents and in turn induces the phosphoserine pathway. Transcriptional upregulation of this additional route of serine biosynthesis occurs already during the day but particularly at night, efficiently counteracting night-time serine depletion. Additionally, higher SGAT activity results in an increased use of asparagine as the external donor of amino groups to the photorespiratory pathway but does not alter leaf asparagine content at night. These results suggest leaf SGAT activity needs to be dynamically adjusted to ensure (i) variable flux through the photorespiratory pathway at a minimal consumption of asparagine and (ii) adequate serine levels for other cellular metabolism.
Collapse
Affiliation(s)
- Katharina Modde
- University of Rostock, Plant Physiology Department, Albert-Einstein-Straße, Rostock, Germany
| | - Stefan Timm
- University of Rostock, Plant Physiology Department, Albert-Einstein-Straße, Rostock, Germany
| | - Alexandra Florian
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg, Golm, Germany
| | - Klaudia Michl
- University of Rostock, Plant Physiology Department, Albert-Einstein-Straße, Rostock, Germany
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg, Golm, Germany
| | - Hermann Bauwe
- University of Rostock, Plant Physiology Department, Albert-Einstein-Straße, Rostock, Germany
| |
Collapse
|
38
|
de Oliveira Silva FM, de Ávila Silva L, Araújo WL, Zsögön A, Nunes-Nesi A. Exploiting Natural Variation to Discover Candidate Genes Involved in Photosynthesis-Related Traits. Methods Mol Biol 2017; 1653:125-135. [PMID: 28822130 DOI: 10.1007/978-1-4939-7225-8_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Naturally occurring genetic variation in plants can be very useful to dissect the complex regulation of primary metabolism as well as of physiological traits such as photosynthesis and photorespiration. The physiological and genetic mechanisms underlying natural variation in closely related species or accessions may provide important information that can be used to improve crop yield. In this chapter we describe in detail the use of a population of introgression lines (ILs), with the Solanum pennellii IL population as a study case, as a tool for the identification of genomic regions involved in the control of photosynthetic efficiency.
Collapse
Affiliation(s)
| | - Lucas de Ávila Silva
- Departmento de Biologia Vegetal, Universidade Federal de Viçosa, Campus UFR, Viçosa, MG, 36570-000, Brazil
| | - Wagner L Araújo
- Departmento de Biologia Vegetal, Universidade Federal de Viçosa, Campus UFR, Viçosa, MG, 36570-000, Brazil
| | - Agustin Zsögön
- Departmento de Biologia Vegetal, Universidade Federal de Viçosa, Campus UFR, Viçosa, MG, 36570-000, Brazil
| | - Adriano Nunes-Nesi
- Departmento de Biologia Vegetal, Universidade Federal de Viçosa, Campus UFR, Viçosa, MG, 36570-000, Brazil.
| |
Collapse
|
39
|
Abadie C, Carroll A, Tcherkez G. Interactions Between Day Respiration, Photorespiration, and N and S Assimilation in Leaves. ADVANCES IN PHOTOSYNTHESIS AND RESPIRATION 2017. [DOI: 10.1007/978-3-319-68703-2_1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
40
|
Mhamdi A, Kerchev PI, Willems P, Noctor G, Van Breusegem F. Measurement of Transcripts Associated with Photorespiration and Related Redox Signaling. Methods Mol Biol 2017; 1653:17-29. [PMID: 28822123 DOI: 10.1007/978-1-4939-7225-8_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
To study photorespiration and to characterize related components, gene expression analysis is a central approach. An overview of the experimental setup, protocols, and methods we use to investigate photorespiration-associated gene expression is presented. Within this chapter, we describe simple procedures to experimentally alter the photorespiratory flux and provide protocols for transcriptomic analysis with a focus on genes encoding photorespiratory proteins as well as those induced by photorespiratory hydrogen peroxide (H2O2). Examples of typical results are presented and their significance to understanding redox signaling is discussed.
Collapse
Affiliation(s)
- Amna Mhamdi
- Department of Plant Systems Biology, VIB, 9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
| | - Pavel I Kerchev
- Department of Plant Systems Biology, VIB, 9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
| | - Patrick Willems
- Department of Plant Systems Biology, VIB, 9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- Medical Biotechnology Center, VIB, 9000, Ghent, Belgium
- Department of Biochemistry, Ghent University, 9000, Ghent, Belgium
| | - Graham Noctor
- Institut des Sciences des Plantes de Paris-Saclay, Unité Mixte de Recherche 8618 Centre National de la Recherche Scientifique, Université de Paris-Sud, 91405, Orsay cedex, France.
- Unité Mixte de Recherche 9213/Unité Mixte de Recherche 1403, Université Paris-Sud, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, 91405, Orsay, France.
| | - Frank Van Breusegem
- Department of Plant Systems Biology, VIB, 9052, Ghent, Belgium.
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium.
| |
Collapse
|
41
|
Lysine acetylation in mitochondria: From inventory to function. Mitochondrion 2016; 33:58-71. [PMID: 27476757 DOI: 10.1016/j.mito.2016.07.012] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 07/25/2016] [Accepted: 07/26/2016] [Indexed: 12/12/2022]
Abstract
Cellular signaling pathways are regulated in a highly dynamic fashion in order to quickly adapt to distinct environmental conditions. Acetylation of lysine residues represents a central process that orchestrates cellular metabolism and signaling. In mitochondria, acetylation seems to be the most prevalent post-translational modification, presumably linked to the compartmentation and high turnover of acetyl-CoA in this organelle. Similarly, the elevated pH and the higher concentration of metabolites in mitochondria seem to favor non-enzymatic lysine modifications, as well as other acylations. Hence, elucidating the mechanisms for metabolic control of protein acetylation is crucial for our understanding of cellular processes. Recent advances in mass spectrometry-based proteomics have considerably increased our knowledge of the regulatory scope of acetylation. Here, we review the current knowledge and functional impact of mitochondrial protein acetylation across species. We first cover the experimental approaches to identify and analyze lysine acetylation on a global scale, we then explore both commonalities and specific differences of plant and animal acetylomes and the evolutionary conservation of protein acetylation, as well as its particular impact on metabolism and diseases. Important future directions and technical challenges are discussed, and it is pointed out that the transfer of knowledge between species and diseases, both in technology and biology, is of particular importance for further advancements in this field.
Collapse
|
42
|
Photorespiration: origins and metabolic integration in interacting compartments. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67. [PMCID: PMC4867902 DOI: 10.1093/jxb/erw178] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
|