1
|
Xie YS, Zeng Q, Huang WT, Wang JY, Li HW, Yu SZ, Liu C, Zhang XQ, Feng CL, Zhang WH, Li TZ, Cheng YQ. A novel RAV transcription factor from pear interacts with viral RNA-silencing suppressors to inhibit viral infection. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:1079-1093. [PMID: 39312631 DOI: 10.1111/tpj.17037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 09/06/2024] [Accepted: 09/11/2024] [Indexed: 09/25/2024]
Abstract
In plants, RNA silencing constitutes a strong defense against viral infection, which viruses counteract with RNA-silencing suppressors (RSSs). Understanding the interactions between viral RSSs and host factors is crucial for elucidating the molecular arms race between viruses and host plants. We report that the helicase motif (Hel) of the replicase encoded by apple stem grooving virus (ASGV)-the main virus affecting pear trees in China-is an RSS that can inhibit both local and systemic RNA silencing, possibly by binding double-stranded (ds) siRNA. The transcription factor related to ABSCISIC ACID INSENSITIVE3/VIVIPAROUS1 from pear (PbRAV1) enters the cytoplasm and binds Hel through its C terminus, thereby attenuating its RSS activity by reducing its binding affinity to 21- and 24-nt ds siRNA, and suppressing ASGV infection. PbRAV1 can also target p24, an RSS encoded by grapevine leafroll-associated virus 2 (GLRaV-2), with similar negative effects on p24's suppressive function and inhibition of GLRaV-2 infection. Moreover, like the positive role of the PbRAV1 homolog from grapevine (VvRAV1) in p24's previously reported RSS activity, ASGV Hel can also hijack VvRAV1 and employ the protein to sequester 21-nt ds siRNA, thereby enhancing its own RSS activity and promoting ASGV infection. Furthermore, PbRAV1 neither interacts with CP, an RSS encoded by grapevine inner necrosis virus, nor has any obvious effect on CP's RSS activity. Our results identify an RSS encoded by ASGV and demonstrate that PbRAV1, representing a novel type of RAV transcription factor, plays a defensive role against viral infection by targeting viral RSSs.
Collapse
Affiliation(s)
- Yin-Shuai Xie
- Department of Pomology, Lab of Stress Physiology and Molecular Biology for Tree Fruits, a Key Lab of Beijing Municipality, China Agricultural University, Beijing, 100193, China
| | - Qi Zeng
- Department of Pomology, Lab of Stress Physiology and Molecular Biology for Tree Fruits, a Key Lab of Beijing Municipality, China Agricultural University, Beijing, 100193, China
| | - Wen-Ting Huang
- Department of Pomology, Lab of Stress Physiology and Molecular Biology for Tree Fruits, a Key Lab of Beijing Municipality, China Agricultural University, Beijing, 100193, China
| | - Jin-Ying Wang
- Department of Pomology, Lab of Stress Physiology and Molecular Biology for Tree Fruits, a Key Lab of Beijing Municipality, China Agricultural University, Beijing, 100193, China
| | - Han-Wei Li
- Department of Pomology, Lab of Stress Physiology and Molecular Biology for Tree Fruits, a Key Lab of Beijing Municipality, China Agricultural University, Beijing, 100193, China
| | - Shang-Zhen Yu
- Department of Pomology, Lab of Stress Physiology and Molecular Biology for Tree Fruits, a Key Lab of Beijing Municipality, China Agricultural University, Beijing, 100193, China
| | - Can Liu
- Department of Pomology, Lab of Stress Physiology and Molecular Biology for Tree Fruits, a Key Lab of Beijing Municipality, China Agricultural University, Beijing, 100193, China
| | - Xue-Qing Zhang
- Department of Pomology, Lab of Stress Physiology and Molecular Biology for Tree Fruits, a Key Lab of Beijing Municipality, China Agricultural University, Beijing, 100193, China
| | - Chen-Lu Feng
- Department of Pomology, Lab of Stress Physiology and Molecular Biology for Tree Fruits, a Key Lab of Beijing Municipality, China Agricultural University, Beijing, 100193, China
| | - Wen-Hao Zhang
- Department of Pomology, Lab of Stress Physiology and Molecular Biology for Tree Fruits, a Key Lab of Beijing Municipality, China Agricultural University, Beijing, 100193, China
| | - Tian-Zhong Li
- Department of Pomology, Lab of Stress Physiology and Molecular Biology for Tree Fruits, a Key Lab of Beijing Municipality, China Agricultural University, Beijing, 100193, China
| | - Yu-Qin Cheng
- Department of Pomology, Lab of Stress Physiology and Molecular Biology for Tree Fruits, a Key Lab of Beijing Municipality, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
2
|
Kamaal N, Akram M, Pratap A, Kumar D, Nair RM. Urdbean Leaf Crinkle Virus: A Mystery Waiting to Be Solved. Viruses 2023; 15:2120. [PMID: 37896897 PMCID: PMC10612105 DOI: 10.3390/v15102120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/03/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
Urdbean leaf crinkle disease (ULCD) affects mainly the urdbean or blackgram (Vigna mungo (L.) Hepper) causing distinct symptoms that often result in serious yield losses. It has been known to occur for more than five decades and is considered to be of viral etiology. The identity of the causal agent, often referred to as the urdbean leaf crinkle virus, is not unequivocally proved. There are few attempts to characterize the causal agent of ULCD; however, there is no unanimity in the results. Recent attempts to characterize the causal agent of ULCD using next-generation sequencing of the virome of ULCD-affected urdbean plants indicated the involvement of cowpea mild mottle virus; however, without conforming through Koch's postulates, the etiology of ULCD remains inconclusive. Claims of different insect vectors involved in the transmission of ULCD make this disease even more mysterious. The information available so far indicates that either two different viruses are causing ULCD or a mixture of viruses is involved. The identity of the virus/es causing ULCD still remains to be unambiguously ascertained. In this review, we attempt to analyze information on the various aspects of ULCD.
Collapse
Affiliation(s)
- Naimuddin Kamaal
- ICAR-Indian Institute of Pulses Research, Kanpur 208024, India; (N.K.); (A.P.); (D.K.)
| | - Mohammad Akram
- ICAR-Indian Institute of Pulses Research, Kanpur 208024, India; (N.K.); (A.P.); (D.K.)
| | - Aditya Pratap
- ICAR-Indian Institute of Pulses Research, Kanpur 208024, India; (N.K.); (A.P.); (D.K.)
| | - Deepender Kumar
- ICAR-Indian Institute of Pulses Research, Kanpur 208024, India; (N.K.); (A.P.); (D.K.)
| | | |
Collapse
|
3
|
Pasin F. Assembly of plant virus agroinfectious clones using biological material or DNA synthesis. STAR Protoc 2022; 3:101716. [PMID: 36149792 PMCID: PMC9519601 DOI: 10.1016/j.xpro.2022.101716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/29/2022] [Accepted: 08/26/2022] [Indexed: 01/26/2023] Open
Abstract
Infectious clone technology is universally applied for biological characterization and engineering of viruses. This protocol describes procedures that implement synthetic biology advances for streamlined assembly of virus infectious clones. Here, I detail homology-based cloning using biological material, as well as SynViP assembly using type IIS restriction enzymes and chemically synthesized DNA fragments. The assembled virus clones are based on compact T-DNA binary vectors of the pLX series and are delivered to host plants by Agrobacterium-mediated inoculation. For complete details on the use and execution of this protocol, please refer to Pasin et al. (2017, 2018) and Pasin (2021).
Collapse
Affiliation(s)
- Fabio Pasin
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas - Universitat Politècnica de València (CSIC-UPV), 46011 Valencia, Spain.
| |
Collapse
|
4
|
Abulfaraj AA, Hirt H, Rayapuram N. G3BPs in Plant Stress. FRONTIERS IN PLANT SCIENCE 2021; 12:680710. [PMID: 34177995 PMCID: PMC8222905 DOI: 10.3389/fpls.2021.680710] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/14/2021] [Indexed: 05/24/2023]
Abstract
The sessile nature of plants enforces highly adaptable strategies to adapt to different environmental stresses. Plants respond to these stresses by a massive reprogramming of mRNA metabolism. Balancing of mRNA fates, including translation, sequestration, and decay is essential for plants to not only coordinate growth and development but also to combat biotic and abiotic environmental stresses. RNA stress granules (SGs) and processing bodies (P bodies) synchronize mRNA metabolism for optimum functioning of an organism. SGs are evolutionarily conserved cytoplasmic localized RNA-protein storage sites that are formed in response to adverse conditions, harboring mostly but not always translationally inactive mRNAs. SGs disassemble and release mRNAs into a translationally active form upon stress relief. RasGAP SH3 domain binding proteins (G3BPs or Rasputins) are "scaffolds" for the assembly and stability of SGs, which coordinate receptor mediated signal transduction with RNA metabolism. The role of G3BPs in the formation of SGs is well established in mammals, but G3BPs in plants are poorly characterized. In this review, we discuss recent findings of the dynamics and functions of plant G3BPs in response to environmental stresses and speculate on possible mechanisms such as transcription and post-translational modifications that might regulate the function of this important family of proteins.
Collapse
Affiliation(s)
- Aala A. Abulfaraj
- Department of Biological Sciences, Science and Arts College, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Heribert Hirt
- King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Max Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Naganand Rayapuram
- King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
5
|
Herath V, Verchot J. Transcriptional Regulatory Networks Associate with Early Stages of Potato Virus X Infection of Solanum tuberosum. Int J Mol Sci 2021; 22:2837. [PMID: 33799566 PMCID: PMC8001266 DOI: 10.3390/ijms22062837] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/04/2021] [Accepted: 03/09/2021] [Indexed: 11/16/2022] Open
Abstract
Potato virus X (PVX) belongs to genus Potexvirus. This study characterizes the cellular transcriptome responses to PVX infection in Russet potato at 2 and 3 days post infection (dpi). Among the 1242 differentially expressed genes (DEGs), 268 genes were upregulated, and 37 genes were downregulated at 2 dpi while 677 genes were upregulated, and 265 genes were downregulated at 3 dpi. DEGs related to signal transduction, stress response, and redox processes. Key stress related transcription factors were identified. Twenty-five pathogen resistance gene analogs linked to effector triggered immunity or pathogen-associated molecular pattern (PAMP)-triggered immunity were identified. Comparative analysis with Arabidopsis unfolded protein response (UPR) induced DEGs revealed genes associated with UPR and plasmodesmata transport that are likely needed to establish infection. In conclusion, this study provides an insight on major transcriptional regulatory networked involved in early response to PVX infection and establishment.
Collapse
Affiliation(s)
- Venura Herath
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77802, USA;
- Department of Agriculture Biology, Faculty of Agriculture, University of Peradeniya, Peradeniya 20400, Sri Lanka
| | - Jeanmarie Verchot
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77802, USA;
| |
Collapse
|