1
|
Li Y, Huang K, Zhang L, Zhang B, Duan P, Zhang G, Huang X, Zhou C, Han N, Zheng L, Wang Y, Li Y. A molecular framework for the GS2-SUG1 module-mediated control of grain size and weight in rice. Nat Commun 2025; 16:3944. [PMID: 40287410 PMCID: PMC12033236 DOI: 10.1038/s41467-025-59236-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 04/15/2025] [Indexed: 04/29/2025] Open
Abstract
Grain size is a key agronomic traits that influence grain yield in crops. The transcription factor GS2/OsGRF4 can improve grain size and yield, but its underlying mechanism remains unclear. Here we report a suppressor of the gain-of-function allele GS2AA (SUG1) that encodes a plant-specific protein DEP2/SRS1/EP2/OsRELA and acts as a transcriptional regulator. The sug1 mutants form short grains, while overexpression of SUG1 results in long grains. GS2 directly activates the expression of SUG1. SUG1 associates with transcription factors OsBZR1, OsMADS56 and OsSPL13 to control grain size through GA and BR signaling as well as growth pathways. Natural variation in SUG1 contributes to grain size diversity, and the SUG1Hap2 allele from indica varieties can be used to improve grain size and yield of japonica varieties with the SUG1Hap3 allele. Thus, our findings uncover that the GS2-SUG1 module controls grain size by integrating multiple growth signals, providing the potential targets for crop improvement.
Collapse
Affiliation(s)
- Yingjie Li
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100039, China
- Hainan Seed Industry Laboratory, Sanya, 572000, China
| | - Ke Huang
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100039, China
- Hainan Seed Industry Laboratory, Sanya, 572000, China
| | - Limin Zhang
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Baolan Zhang
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Penggen Duan
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Guozheng Zhang
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Xiahe Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chen Zhou
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China
| | - Nannan Han
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China
| | - Leiying Zheng
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Yingchun Wang
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100039, China
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yunhai Li
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100039, China.
| |
Collapse
|
2
|
Zhang L, Huang R, Mao D, Zeng J, Fang P, He Q, Shu F, Deng H, Zhang W, Sun P. Proteomes and ubiquitylomes reveal the regulation mechanism of cold tolerance mediated by OsGRF4 in rice. FRONTIERS IN PLANT SCIENCE 2025; 16:1531399. [PMID: 40190655 PMCID: PMC11968423 DOI: 10.3389/fpls.2025.1531399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 02/27/2025] [Indexed: 04/09/2025]
Abstract
Low temperature is one of the major abiotic stresses that severely restrict the development of rice. It has been demonstrated previously that OsGRF4 enhances cold tolerance in rice, the molecular mechanism of which remains unknown. This study employed a combination of proteome and ubiquitylome approaches to analyze OsGRF4 mediated chilling between the overexpression line (OX) and wild type (CK). Proteome results showed that 6,157 proteins were identified and 5,045 proteins were quantified after 24-h cold treatment. A total of 59 proteins were upregulated and 63 proteins were downregulated in the OX24 vs. OX0 group; 27 proteins were upregulated and 34 proteins were downregulated in OX24 vs. CK24. Finally, 3,789 ubiquitination modification sites were located on 1,846 proteins, of which 2,695 sites of 1,376 proteins contained quantitative information. However, 178 sites in 131 proteins were quantified as upregulated and 92 sites in 72 proteins were quantified as downregulated differentially ubiquitin-modified proteins (DUMPs) in OX24 vs. OX0. To the contrary, 82 sites in 71 proteins were identified as upregulated and 13 sites in 12 proteins were identified as downregulated DUMPs in CK24 vs. OX24. The results suggested that global ubiquitination levels increase during cold tolerance in rice. In total, 76 differentially abundant proteins and 101 DUMPs were co-localized within 50 cold or stress tolerance Quantitative Trait Locis (QTLs). The combined analysis of proteomics and ubiquitination omics found that five proteins demonstrated opposing changes in protein and ubiquitination; the protein Q6ZH84 (Os02g0593700) was an upregulated differentially abundant protein (DAP) but was a downregulated DUMP in OX24 vs. OX0, which is a homologous gene of NBR1 that regulated cold tolerance. Os02g0593700 should upregulate protein expression by reducing ubiquitination modification, thus affecting cold tolerance. The enrichment pathway shows that OsGRF4 plays an important role in rice cold tolerance by ubiquitination through glutathione metabolism and arachidonic acid metabolism. The research provides a new perspective on the molecular mechanism of cold tolerance regulated by OsGRF4.
Collapse
Affiliation(s)
- Li Zhang
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha, China
- Hunan Institute of Nuclear Agriculture Sciences and Chinese Herbal Medicines, Changsha, China
| | - Renyan Huang
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha, China
| | - Donghai Mao
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Science, Changsha, China
| | - Jia Zeng
- Longping Branch, College of Biology, Hunan University, Changsha, China
| | - Pengpeng Fang
- Longping Branch, College of Biology, Hunan University, Changsha, China
| | - Qiang He
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Fu Shu
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Huafeng Deng
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha, China
- Longping Branch, College of Biology, Hunan University, Changsha, China
| | - Wuhan Zhang
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Pingyong Sun
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha, China
- Longping Branch, College of Biology, Hunan University, Changsha, China
| |
Collapse
|
3
|
Wang Y, Lv Y, Wen Y, Wang J, Hu P, Wu K, Chai B, Gan S, Liu J, Wu Y, Zhu L, Dong N, Tan Y, Wu H, Zhang G, Zhu L, Ren D, Zhang Q, Wang Y, Qian Q, Hu J. GS2 cooperates with IPA1 to control panicle architecture. THE NEW PHYTOLOGIST 2025; 245:2726-2743. [PMID: 39887382 PMCID: PMC11840411 DOI: 10.1111/nph.20412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 01/06/2025] [Indexed: 02/01/2025]
Abstract
Panicle size and grain number are important agronomic traits that determine grain yield in rice. However, the underlying mechanism regulating panicle size and grain number remains largely unknown. Here, we report that GS2 plays an important role in regulating panicle architecture. The RNAi of GS2™ (target site mutation, TM) produced erect and dense panicle with increased primary and secondary branches and grain number per panicle, whereas the overexpression of GS2™ showed longer panicles and fewer grains than wild-type. GS2 directly binds to the GCCA motif and significantly enhances the transcriptional activation ability through the interaction with IPA1. DEP1 is a common target gene of GS2 and IPA1 in regulating branch number and grain number per panicle. The pyramiding of GS2™ and IPA1™1 (Target site mutation1, TM1) on hybrid rice can significantly increase rice yield. Our findings reveal the novel function of GS2 and the molecular mechanism of GS2/IPA1-DEP1 module in controlling panicle architecture.
Collapse
Affiliation(s)
- Yueying Wang
- State Key Laboratory of Rice Biology and BreedingChina National Rice Research InstituteHangzhou311401China
| | - Yang Lv
- State Key Laboratory of Rice Biology and BreedingChina National Rice Research InstituteHangzhou311401China
| | - Yi Wen
- State Key Laboratory of Rice Biology and BreedingChina National Rice Research InstituteHangzhou311401China
| | - Junge Wang
- State Key Laboratory of Rice Biology and BreedingChina National Rice Research InstituteHangzhou311401China
| | - Peng Hu
- State Key Laboratory of Rice Biology and BreedingChina National Rice Research InstituteHangzhou311401China
| | - Kaixiong Wu
- State Key Laboratory of Rice Biology and BreedingChina National Rice Research InstituteHangzhou311401China
| | - Bingze Chai
- State Key Laboratory of Rice Biology and BreedingChina National Rice Research InstituteHangzhou311401China
| | - Shuxian Gan
- Institute of Agricultural Sciences, Xishuangbanna PrefectureJinghongYunnan Province666100China
| | - Jialong Liu
- State Key Laboratory of Rice Biology and BreedingChina National Rice Research InstituteHangzhou311401China
| | - Yue Wu
- State Key Laboratory of Rice Biology and BreedingChina National Rice Research InstituteHangzhou311401China
| | - Lixin Zhu
- State Key Laboratory of Rice Biology and BreedingChina National Rice Research InstituteHangzhou311401China
| | - Nannan Dong
- State Key Laboratory of Rice Biology and BreedingChina National Rice Research InstituteHangzhou311401China
| | - Yiqing Tan
- State Key Laboratory of Rice Biology and BreedingChina National Rice Research InstituteHangzhou311401China
| | - Hao Wu
- State Key Laboratory of Rice Biology and BreedingChina National Rice Research InstituteHangzhou311401China
| | - Guangheng Zhang
- State Key Laboratory of Rice Biology and BreedingChina National Rice Research InstituteHangzhou311401China
- Academician Workstation, National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural SciencesSanya572024China
| | - Li Zhu
- State Key Laboratory of Rice Biology and BreedingChina National Rice Research InstituteHangzhou311401China
| | - Deyong Ren
- State Key Laboratory of Rice Biology and BreedingChina National Rice Research InstituteHangzhou311401China
| | - Qiang Zhang
- State Key Laboratory of Rice Biology and BreedingChina National Rice Research InstituteHangzhou311401China
- Academician Workstation, National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural SciencesSanya572024China
| | - Yuexing Wang
- State Key Laboratory of Rice Biology and BreedingChina National Rice Research InstituteHangzhou311401China
| | - Qian Qian
- State Key Laboratory of Rice Biology and BreedingChina National Rice Research InstituteHangzhou311401China
- Academician Workstation, National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural SciencesSanya572024China
| | - Jiang Hu
- State Key Laboratory of Rice Biology and BreedingChina National Rice Research InstituteHangzhou311401China
- Academician Workstation, National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural SciencesSanya572024China
- Hainan Seed Industry LaboratorySanya572024China
| |
Collapse
|
4
|
Li G, Wang H, Li H, Feng B, Fu W, Ma J, Li J, Wu Z, Islam MR, Chen T, Zhang H, Wei H, Tao L, Fu G. GRAIN SIZE ON CHROMOSOME 2 orchestrates phytohormone, sugar signaling and energy metabolism to confer thermal resistance in rice. PHYSIOLOGIA PLANTARUM 2025; 177:e70113. [PMID: 39972987 DOI: 10.1111/ppl.70113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 01/18/2025] [Accepted: 01/22/2025] [Indexed: 02/21/2025]
Abstract
GRAIN SIZE ON CHROMOSOME 2 (GS2) has been reported to enhance rice grain yield and confer tolerance to cold, drought, and salt stress, but its function in heat tolerance of rice remains undocumented. This study aimed to investigate whether GS2 could enhance thermal tolerance by subjecting rice seedlings of Huazhan (HZ) and its near-isogenic line (HZ-GS2) to heat stress. HZ-GS2 plants exhibited less damage compared to HZ plants under heat stress. Transcriptome revealed the involvement of phytohormones, sugar signaling, and energy metabolism in the mechanism by which GS2 influences heat tolerance. Under heat stress, HZ-GS2 plants showed higher increases or lower decreases in glucose, gibberellins (GAs), salicylic acid (SA), indoleacetic acid (IAA), adenosine triphosphate (ATP), energy charge, as well as the activities of hexokinase, NADH dehydrogenase, cytochrome oxidase, ATP synthase, and ATPase. Exogenous GA3 enhanced heat tolerance in rice by increasing energy charge, ATPase, activities of complex V and hexokinase. Additionally, glucose, sucrose, 3-aminobenzamide (3-ab), and Na2SO3 conferred heat tolerance in rice plants. Importantly, a significant increase in Fv/Fm was observed in plants treated with a combination of GA3, glucose, and 3-ab, compared to those sprayed alone. Thus, GS2 coordinates GA3, hexokinase, and energy metabolism to improve energy status, thereby enhancing heat tolerance in rice plants.
Collapse
Affiliation(s)
- Guangyan Li
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Agricultural College/Research Institute of Rice Industrial Engineering Technology, Yangzhou University, Yangzhou, China
| | - Huanran Wang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
- Agronomy College, Jilin Agricultural University, Changchun, China
| | - Hubo Li
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
| | - Baohua Feng
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
| | - Weimeng Fu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
| | - Jiaying Ma
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
| | - Juncai Li
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
- Agronomy College, Jilin Agricultural University, Changchun, China
| | - Zhihai Wu
- Agronomy College, Jilin Agricultural University, Changchun, China
| | - Md Rezaul Islam
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
- Department of agriculture Extension, Ministry of agriculture, Dhaka, Bangladesh
| | - Tingting Chen
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
| | - Hongcheng Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Agricultural College/Research Institute of Rice Industrial Engineering Technology, Yangzhou University, Yangzhou, China
| | - Haiyan Wei
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Agricultural College/Research Institute of Rice Industrial Engineering Technology, Yangzhou University, Yangzhou, China
| | - Longxing Tao
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
| | - Guanfu Fu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
- Agronomy College, Jilin Agricultural University, Changchun, China
| |
Collapse
|
5
|
Khaksefidi RE, Chen W, Shen C, Langridge P, Tucker MR, Zhang D. The role of Ancestral MicroRNAs in grass inflorescence development. JOURNAL OF PLANT PHYSIOLOGY 2025; 304:154417. [PMID: 39754787 DOI: 10.1016/j.jplph.2024.154417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 12/22/2024] [Accepted: 12/24/2024] [Indexed: 01/06/2025]
Abstract
Plant inflorescences are complex, highly diverse structures whose morphology is determined in meristems that form during reproductive development. Inflorescence structure influences flower formation, and consequently grain number, and yield in crops. Correct inflorescence and flower development require tight control of gene expression via complex interplay between regulatory networks. MicroRNAs (miRNAs) have emerged as fundamental modulators of gene expression at the transcriptional and/or post-transcriptional level in plant inflorescence development. First discovered more than three decades ago, miRNAs have proved to be revolutionary in advancing our mechanistic understanding of gene expression. This review highlights current knowledge of downstream target genes and pathways of some highly conserved miRNAs that regulate the maintenance, identity, and activity of inflorescence and floral meristems in economically and agriculturally important grass species, including rice (Oryza sativa), maize (Zea mays), barley (Hordeum vulgare), and wheat (Triticum aestivum). Furthermore, we summarize emerging regulatory networks of miRNAs and their targets to suggest new avenues and strategies for application of miRNAs as a tool to enhance crop yield and performance.
Collapse
Affiliation(s)
- Reyhaneh Ebrahimi Khaksefidi
- Waite Research Institute, School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia
| | - Weiwei Chen
- Waite Research Institute, School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia
| | - Chaoqun Shen
- Waite Research Institute, School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia; Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Peter Langridge
- Waite Research Institute, School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia; Wheat Initiative, Julius Kühn Institute, 14195, Berlin, Germany
| | - Matthew R Tucker
- Waite Research Institute, School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia.
| | - Dabing Zhang
- Waite Research Institute, School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia; Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
6
|
Sun L, Zhu M, Zhou X, Gu R, Hou Y, Li T, Huang H, Yang R, Wang S, Zhao W. The miR396a-SlGRF8 module regulates sugar accumulation in the roots via SlSTP10 during the interaction between root-knot nematodes and tomato plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:2701-2715. [PMID: 39451077 DOI: 10.1111/jipb.13794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 09/22/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024]
Abstract
Root-knot nematodes (RKNs; Meloidogyne spp.) are a serious threat to crop production. The competition between plants and pathogens for assimilates influences the outcome of their interactions. However, the mechanisms by which plants and nematodes compete with each other for assimilates have not been elucidated. In this study, we demonstrated that miR396a plays a negative role in defense against RKNs and a positive role in sugar accumulation in tomato roots. The overexpression of SlGRF8 (Solanum lycopersicum growth-regulating factor 8), the target of miR396a, decreased the sugar content of the roots and the susceptibility to RKNs, whereas the grf8-cr mutation had the opposite effects. Furthermore, we confirmed that SlGRF8 regulated the sugar content in roots by directly activating the transcription of SlSTP10 (Solanum lycopersicum sugar transporter protein 10) in response to RKN stress. Moreover, SlSTP10 was expressed primarily in the tissues surrounding giant cells, and the SlSTP10 knockout increased both the sugar content in the roots and the plant's susceptibility to RKNs. Overall, this study provides important insight into the molecular mechanism through which the miR396a-SlGRF8-SlSTP10 module regulates sugar allocation in roots under RKN stress.
Collapse
Affiliation(s)
- Lulu Sun
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, 102206, China
| | - Mengting Zhu
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, 102206, China
| | - Xiaoxuan Zhou
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, 102206, China
| | - Ruiyue Gu
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, 102206, China
| | - Yuying Hou
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, 102206, China
| | - Tongtong Li
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, 102206, China
| | - Huang Huang
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, 102206, China
| | - Rui Yang
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, 102206, China
| | - Shaohui Wang
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, 102206, China
| | - Wenchao Zhao
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, 102206, China
| |
Collapse
|
7
|
Wang F, Lin J, Yang F, Chen X, Liu Y, Yan L, Chen J, Wang Z, Xie H, Zhang J, Xu H, Chen S. The OsMAPK5-OsWRKY72 module negatively regulates grain length and grain weight in rice. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:2648-2663. [PMID: 39474750 PMCID: PMC11622537 DOI: 10.1111/jipb.13786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 12/07/2024]
Abstract
Grain size and grain weight are important determinants for grain yield. In this study, we identify a novel OsMAPK5-OsWRKY72 module that negatively regulates grain length and grain weight in rice. We found that loss-of-function of OsMAPK5 leads to larger cell size of the rice spikelet hulls and a significant increase in both grain length and grain weight in an indica variety Minghui 86 (MH86). OsMAPK5 interacts with OsMAPKK3/4/5 and OsWRKY72 and phosphorylates OsWRKY72 at T86 and S88. Similar to the osmapk5 MH86 mutants, the oswrky72 knockout MH86 mutants exhibited larger size of spikelet hull cells and increased grain length and grain weight, whereas the OsWRKY72-overexpression MH86 plants showed opposite phenotypes. OsWRKY72 targets the W-box motifs in the promoter of OsARF6, an auxin response factor involved in auxin signaling. Dual-luciferase reporter assays demonstrated that OsWRKY72 activates OsARF6 expression. The activation effect of the phosphorylation-mimicking OsWRKY72T86D/S88D on OsARF6 expression was significantly enhanced, whereas the effects of the OsWRKY72 phosphorylation-null mutants were significantly reduced. In addition, auxin levels in young panicles of the osmapk5 and oswrky72 mutants were significantly higher than that in the wild-type MH86. Collectively, our study uncovered novel connections of the OsMAPKK3/4/5-OsMAPK5-mediated MAPK signaling, OsWRKY72-mediated transcription regulation, and OsARF6-mediated auxin signaling pathways in regulating grain length and grain weight in an indica-type rice, providing promising targets for molecular breeding of rice varieties with high yield and quality.
Collapse
Affiliation(s)
- Fuxiang Wang
- Marine and Agricultural Biotechnology Laboratory, College of Geography and OceanographyMinjiang UniversityFuzhou350108China
- National Rice Engineering Laboratory of China, Rice Research InstituteFujian Academy of Agricultural SciencesFuzhou350003China
- College of AgricultureFujian Agriculture and Forestry UniversityFuzhou350002China
| | - Jiexin Lin
- Marine and Agricultural Biotechnology Laboratory, College of Geography and OceanographyMinjiang UniversityFuzhou350108China
| | - Fan Yang
- Marine and Agricultural Biotechnology Laboratory, College of Geography and OceanographyMinjiang UniversityFuzhou350108China
- College of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhou350002China
| | - Xiaofeng Chen
- Marine and Agricultural Biotechnology Laboratory, College of Geography and OceanographyMinjiang UniversityFuzhou350108China
| | - Yiyi Liu
- Marine and Agricultural Biotechnology Laboratory, College of Geography and OceanographyMinjiang UniversityFuzhou350108China
| | - Lingnan Yan
- Marine and Agricultural Biotechnology Laboratory, College of Geography and OceanographyMinjiang UniversityFuzhou350108China
| | - Jing Chen
- Marine and Agricultural Biotechnology Laboratory, College of Geography and OceanographyMinjiang UniversityFuzhou350108China
- College of Life SciencesFujian Agriculture and Forestry UniversityFuzhou350002China
| | - Zonghua Wang
- Marine and Agricultural Biotechnology Laboratory, College of Geography and OceanographyMinjiang UniversityFuzhou350108China
| | - Huaan Xie
- National Rice Engineering Laboratory of China, Rice Research InstituteFujian Academy of Agricultural SciencesFuzhou350003China
| | - Jianfu Zhang
- National Rice Engineering Laboratory of China, Rice Research InstituteFujian Academy of Agricultural SciencesFuzhou350003China
| | - Huibin Xu
- Marine and Agricultural Biotechnology Laboratory, College of Geography and OceanographyMinjiang UniversityFuzhou350108China
| | - Songbiao Chen
- Marine and Agricultural Biotechnology Laboratory, College of Geography and OceanographyMinjiang UniversityFuzhou350108China
| |
Collapse
|
8
|
Yao Z, Wang Q, Xue Y, Liang Z, Ni Y, Jiang Y, Zhang P, Wang T, Li Q, Li L, Niu J. Tae-miR396b regulates TaGRFs in spikes of three wheat spike mutants. PeerJ 2024; 12:e18550. [PMID: 39587997 PMCID: PMC11587873 DOI: 10.7717/peerj.18550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 10/28/2024] [Indexed: 11/27/2024] Open
Abstract
Tillering and spike differentiation are key agronomic traits for wheat (Triticum aestivum L.) production. Numerous studies have shown that miR396 and growth-regulating factor genes (GRFs) are involved in growth and development of different plant organs. Previously, we have reported that wheat miR396b (tae-miR396b) and their targets TaGRFs (T. aestivum GRFs) play important roles in regulating wheat tillering. This study was to investigate the regulatory roles of tae-miR396b and TaGRFs played during wheat spike development. Wheat cultivar Guomai 301 (wild type, WT) and its three sipke mutants dwarf round spike mutant (drs), apical spikelet sterility mutant (ass) and prematurely terminated spike differentiation mutant (ptsd1) were studied. Three homeologous genes of tae-miR396b on the long arms of chromosomes 6A, 6B, and 6D were identified, and they encoded the same mature miRNA. Complementary sequences of mature tae-miR396b were identified in 23 TaGRFs, indicating they were the target genes of tae-miR396b. Tae-miR396b had different regulatory effects on TaGRFs between Guomai 301 and its mutants. TaGRF2-7A was confirmed to be the target gene of tae-miR396b by molecular interaction assay. The expression levels of tae-miR396b and TaGRFs were different between WT and mutants drs, ass and ptsd1 at the floret primordium visible (S1), the two awns/spikelet reaching apical meristem of the spikelet (S2), and the green anther stage (S3). The expression level of tae-miR396b in WT was significantly higher than that in mutants drs and ass. The most TaGRFs were negatively regulated by tae-miR396b. The abnormal expressions of TaGRF1 (6A, 6D), TaGRF2 (7A, 7B, 7D), TaGRF4 (6A, 6B), TaGRF5 (4A, 7A, 7D), and TaGRF10 (6A, 6B, 6D) were important causes for abnormal spike development in the three mutants. This study laid foundation for further elucidating functions of tae-miR396b and TaGRFs underlying wheat spike development. Regulating tae-miR396b and TaGRFs will be a new approach for wheat high yield breeding.
Collapse
Affiliation(s)
- Ziping Yao
- National Centre of Engineering and Technological Research for Wheat, Henan Agricultural University, Zhengzhou, Henan, China
| | - Qi Wang
- National Centre of Engineering and Technological Research for Wheat, Henan Agricultural University, Zhengzhou, Henan, China
| | - Ying Xue
- National Centre of Engineering and Technological Research for Wheat, Henan Agricultural University, Zhengzhou, Henan, China
| | - Zhiheng Liang
- National Centre of Engineering and Technological Research for Wheat, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yongjing Ni
- Henan Engineering Research Center of Wheat Spring Freeze Injury Identification, Shangqiu Academy of Agricultural and Forestry Sciences, Shangqiu, China
| | - Yumei Jiang
- National Centre of Engineering and Technological Research for Wheat, Henan Agricultural University, Zhengzhou, Henan, China
| | - Peipei Zhang
- National Centre of Engineering and Technological Research for Wheat, Henan Agricultural University, Zhengzhou, Henan, China
| | - Ting Wang
- National Centre of Engineering and Technological Research for Wheat, Henan Agricultural University, Zhengzhou, Henan, China
| | - Qiaoyun Li
- National Centre of Engineering and Technological Research for Wheat, Henan Agricultural University, Zhengzhou, Henan, China
| | - Lei Li
- National Centre of Engineering and Technological Research for Wheat, Henan Agricultural University, Zhengzhou, Henan, China
| | - Jishan Niu
- National Centre of Engineering and Technological Research for Wheat, Henan Agricultural University, Zhengzhou, Henan, China
| |
Collapse
|
9
|
Wu B, Fu M, Du J, Wang M, Zhang S, Li S, Chen J, Zha W, Li C, Liu K, Xu H, Wang H, Shi S, Wu Y, Li P, You A, Zhou L. Identification of the Cold-Related Genes COLD11 and OsCTS11 via BSA-seq and Fine Mapping at the Rice Seedling Stage. RICE (NEW YORK, N.Y.) 2024; 17:72. [PMID: 39576378 PMCID: PMC11584825 DOI: 10.1186/s12284-024-00749-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/06/2024] [Indexed: 11/25/2024]
Abstract
Cold stress has a significantly negative effect on the growth, development, and yield of rice. However, the genetic basis for the differences in the cold tolerance of Xian/indica and Geng/japonica rice seedlings is still largely unknown. In this study, an RIL population was generated by crossing of the cold-tolerant japonica variety Nipponbare and the cold-sensitive indica variety WD16343 for BSA-seq analysis, and a major cold tolerance QTL qCTS11 was identified on chromosome 11. This locus was narrowed to the 584 kb region through fine mapping. Sequence alignment and expression analysis identified the cloned gene COLD11 and a novel cold-related gene OsCTS11. According to the reported functional variation of COLD11, Nipponbare (TCG + 3GCG)×2 presented more GCG repeats in the 1st exon than WD16343 (TCG + 3GCG), partially explaining the difference in cold tolerance between the parents. OsCTS11, encoding a stress enhanced protein based on phylogenetic analysis, was strongly induced by cold stress and located in the chloroplast and the nucleus. oscts11-mutant lines generated via CRISPR/Cas9 system improved the cold tolerance of rice seedlings. Our study not only reveals novel genetic loci associated with cold tolerance, but also provides potentially valuable gene resources for the cultivation of cold-tolerant rice.
Collapse
Affiliation(s)
- Bian Wu
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Minghui Fu
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430070, China
| | - Jinghua Du
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430070, China
- Huazhong Agricultural University, Wuhan, 430070, China
| | - Mengjing Wang
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430070, China
- Huazhong Agricultural University, Wuhan, 430070, China
| | - Siyue Zhang
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430070, China
- Huazhong Agricultural University, Wuhan, 430070, China
| | - Sanhe Li
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Junxiao Chen
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Wenjun Zha
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Changyan Li
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Kai Liu
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Huashan Xu
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Huiying Wang
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Shaojie Shi
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Yan Wu
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Peide Li
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Aiqing You
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430070, China.
- Hubei Hongshan Laboratory, Wuhan, 430070, China.
| | - Lei Zhou
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430070, China.
- Hubei Hongshan Laboratory, Wuhan, 430070, China.
| |
Collapse
|
10
|
Shi H, Zhang W, Cao H, Zhai L, Song Q, Xu J. Identification of Candidate Genes for Cold Tolerance at Seedling Stage by GWAS in Rice ( Oryza sativa L.). BIOLOGY 2024; 13:784. [PMID: 39452093 PMCID: PMC11505075 DOI: 10.3390/biology13100784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/27/2024] [Accepted: 09/28/2024] [Indexed: 10/26/2024]
Abstract
Due to global climate change, cold temperatures have significantly impacted rice production, resulting in reduced yield and quality. In this study, we investigated two traits related to the cold tolerance (CT) of 1992 diverse rice accessions at the seedling stage. Geng accessions exhibited higher levels of CT compared to xian accessions, with the GJ-tmp subgroup displaying the strongest CT. However, extreme CT accessions were also identified within the xian subspecies. Through GWAS analysis based on the survival rate (SR) and leaf score of cold tolerance (SCT), a total of 29 QTLs associated with CT at the seedling stage were identified, among which four QTLs (qSR3.1a, qSR4.1a, qSR11.1x, and qSR12.1a) were found to be important. Furthermore, five candidate genes (LOC_Os03g44760, LOC_Os04g06900, LOC_Os04g07260, LOC_Os11g40610, and LOC_Os12g10710) along with their favorable haplotypes were identified through gene function annotation and haplotype analysis. Pyramiding multiple favorable haplotypes resulted in a significant improvement in CT performance. Subsequently, three selected accessions (CX534, B236, and IRIS_313-8565), carrying different superior alleles for CT, were selected and recommended for molecular breeding for CT using marker-assisted selection (MAS). The findings from this study provide valuable resources for enhancing rice's ability for CT while laying a foundation for the future cloning of novel genes involved in conferring CT.
Collapse
Affiliation(s)
- Huimin Shi
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, China;
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (W.Z.); (H.C.)
| | - Wenyu Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (W.Z.); (H.C.)
| | - Huimin Cao
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (W.Z.); (H.C.)
| | - Laiyuan Zhai
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China;
| | - Qingxin Song
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, China;
| | - Jianlong Xu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (W.Z.); (H.C.)
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China;
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China
| |
Collapse
|
11
|
Wang R, Zhu Y, Zhao D. Genome-Wide Identification and Expression Analysis of Growth-Regulating Factors in Eucommia ulmoides Oliver (Du-Zhong). PLANTS (BASEL, SWITZERLAND) 2024; 13:1185. [PMID: 38732399 PMCID: PMC11085888 DOI: 10.3390/plants13091185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/20/2024] [Accepted: 04/21/2024] [Indexed: 05/13/2024]
Abstract
The roots, stems, leaves, and seeds of Eucommia ulmoides contain a large amount of trans-polyisoprene (also known as Eu-rubber), which is considered to be an important laticiferous plant with valuable industrial applications. Eu-rubber used in industry is mainly extracted from leaves. Therefore, it is of great significance to identify genes related to regulating the leaf size of E. ulmoides. Plant growth-regulating factors (GRFs) play important roles in regulating leaf size, and their functions are highly conserved across different plant species. However, there have been very limited reports on EuGRFs until now. In this study, eight canonical EuGRFs with both QLQ and WRC domains and two putative eul-miR396s were identified in the chromosome-level genome of E. ulmoides. It is found that, unlike AtGRFs, all EuGRFs contain the miR396s binding site in the terminal of WRC domains. These EuGRFs were distributed on six chromosomes in the genome of E. ulmoides. Collinearity analysis of the E. ulmoides genome revealed that EuGRF1 and EuGRF3 exhibit collinear relationships with EuGRF2, suggesting that those three genes may have emerged via gene replication events. The collinear relationship between EuGRFs, AtGRFs, and OsGRFs showed that EuGRF5 and EuGRF8 had no collinear members in Arabidopsis and rice. Almost all EuGRFs show a higher expression level in growing and developing tissues, and most EuGRF promoters process phytohormone-response and stress-induced cis-elements. Moreover, we found the expression of EuGRFs was significantly induced by gibberellins (GA3) in three hours, and the height of E. ulmoides seedlings was significantly increased one week after GA3 treatment. The findings in this study provide potential candidate genes for further research and lay the foundation for further exploring the molecular mechanism underlying E. ulmoides development in response to GA3.
Collapse
Affiliation(s)
- Ruoruo Wang
- Plant Conservation Technology Center, Guizhou Key Laboratory of Agricultural Biotechnology, Biotechnology Institute of Guizhou Province, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - Ying Zhu
- Plant Conservation Technology Center, Guizhou Key Laboratory of Agricultural Biotechnology, Biotechnology Institute of Guizhou Province, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - Degang Zhao
- Plant Conservation Technology Center, Guizhou Key Laboratory of Agricultural Biotechnology, Biotechnology Institute of Guizhou Province, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
- Ministry of Agriculture and Rural Affairs, Key Laboratory of Crop Genetic Resources and Germplasm Innovation in Karst Region, Guiyang 550006, China
- The Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China
| |
Collapse
|
12
|
Liu D, Luo S, Li Z, Liang G, Guo Y, Xu Y, Chong K. COG3 confers the chilling tolerance to mediate OsFtsH2-D1 module in rice. THE NEW PHYTOLOGIST 2024; 241:2143-2157. [PMID: 38173177 DOI: 10.1111/nph.19514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 12/03/2023] [Indexed: 01/05/2024]
Abstract
The chilling stress induced by the global climate change harms rice production, especially at seedling and booting stage, which feed half the population of the world. Although there are key quantitative trait locus genes identified in the individual stage, few genes have been reported and functioned at both stages. Utilizing chromosome segment substitution lines (CSSLs) and a combination of map-based cloning and phenotypes of the mutants and overexpression lines, we identified the major gene Chilling-tolerance in Geng/japonica rice 3 (COG3) of q chilling-tolerance at the booting and seedling stage 11 (qCTBS11) conferred chilling tolerance at both seedling and booting stages. COG3 was significantly upregulated in Nipponbare under chilling treatment compared with its expression in 93-11. The loss-of-function mutants cog3 showed a reduced chilling tolerance. On the contrary, overexpression enhanced chilling tolerance. Genome evolution and genetic analysis suggested that COG3 may have undergone strong selection in temperate japonica during domestication. COG3, a putative calmodulin-binding protein, physically interacted with OsFtsH2 at chloroplast. In cog3-1, OsFtsH2-mediated D1 degradation was impaired under chilling treatment compared with wild-type. Our results suggest that COG3 is necessary for maintaining OsFtsH2 protease activity to regulate chilling tolerance at the booting and seedling stage.
Collapse
Affiliation(s)
- Dongfeng Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Shengtao Luo
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhitao Li
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guohua Liang
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Yalong Guo
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Yunyuan Xu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kang Chong
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
13
|
Shi S, Wang H, Zha W, Wu Y, Liu K, Xu D, He G, Zhou L, You A. Recent Advances in the Genetic and Biochemical Mechanisms of Rice Resistance to Brown Planthoppers ( Nilaparvata lugens Stål). Int J Mol Sci 2023; 24:16959. [PMID: 38069282 PMCID: PMC10707318 DOI: 10.3390/ijms242316959] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Rice (Oryza sativa L.) is the staple food of more than half of Earth's population. Brown planthopper (Nilaparvata lugens Stål, BPH) is a host-specific pest of rice responsible for inducing major losses in rice production. Utilizing host resistance to control N. lugens is considered to be the most cost-effective method. Therefore, the exploration of resistance genes and resistance mechanisms has become the focus of breeders' attention. During the long-term co-evolution process, rice has evolved multiple mechanisms to defend against BPH infection, and BPHs have evolved various mechanisms to overcome the defenses of rice plants. More than 49 BPH-resistance genes/QTLs have been reported to date, and the responses of rice to BPH feeding activity involve various processes, including MAPK activation, plant hormone production, Ca2+ flux, etc. Several secretory proteins of BPHs have been identified and are involved in activating or suppressing a series of defense responses in rice. Here, we review some recent advances in our understanding of rice-BPH interactions. We also discuss research progress in controlling methods of brown planthoppers, including cultural management, trap cropping, and biological control. These studies contribute to the establishment of green integrated management systems for brown planthoppers.
Collapse
Affiliation(s)
- Shaojie Shi
- Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (S.S.); (H.W.)
| | - Huiying Wang
- Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (S.S.); (H.W.)
| | - Wenjun Zha
- Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (S.S.); (H.W.)
| | - Yan Wu
- Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (S.S.); (H.W.)
| | - Kai Liu
- Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (S.S.); (H.W.)
| | - Deze Xu
- Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (S.S.); (H.W.)
| | - Guangcun He
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Lei Zhou
- Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (S.S.); (H.W.)
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Aiqing You
- Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (S.S.); (H.W.)
- Hubei Hongshan Laboratory, Wuhan 430070, China
| |
Collapse
|
14
|
Jing S, Xu J, Tang H, Li P, Yu B, Liu Q. The roles of small RNAs in rice-brown planthopper interactions. FRONTIERS IN PLANT SCIENCE 2023; 14:1326726. [PMID: 38078088 PMCID: PMC10701906 DOI: 10.3389/fpls.2023.1326726] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 11/10/2023] [Indexed: 03/10/2025]
Abstract
Interactions between rice plants (Oryza sativa L.) and brown planthoppers (Nilaparvata lugens Stål, BPHs) are used as a model system to study the molecular mechanisms underlying plant-insect interactions. Small RNAs (sRNAs) regulate growth, development, immunity, and environmental responses in eukaryotic organisms, including plants and insects. Recent research suggests that sRNAs play significant roles in rice-BPH interactions by mediating post-transcriptional gene silencing. The focus of this review is to explore the roles of sRNAs in rice-BPH interactions and to highlight recent research progress in unraveling the mechanism of cross-kingdom RNA interference (ckRNAi) between host plants and insects and the application of ckRNAi in pest management of crops including rice. The research summarized here will aid in the development of safe and effective BPH control strategies.
Collapse
Affiliation(s)
| | | | | | | | - Bin Yu
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Qingsong Liu
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| |
Collapse
|
15
|
Xu P, Zhang W, Wang X, Zhu Y, Liang W, He Y, Yu X. Multiomics analysis reveals a link between Brassica-specific miR1885 and rapeseed tolerance to low temperature. PLANT, CELL & ENVIRONMENT 2023; 46:3405-3419. [PMID: 37564020 DOI: 10.1111/pce.14690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 06/26/2023] [Accepted: 08/01/2023] [Indexed: 08/12/2023]
Abstract
Brassica crops include various edible vegetable and plant oil crops, and their production is limited by low temperature beyond their tolerant capability. The key regulators of low-temperature resistance in Brassica remain largely unexplored. To identify posttranscriptional regulators of plant response to low temperature, we performed small RNA profiling, and found that 16 known miRNAs responded to cold treatment in Brassica rapa. The cold response of seven of those miRNAs were further confirmed by qRT-PCR and/or northern blot analyses. In parallel, a genome-wide association study of 220 accessions of Brassica napus identified four candidate MIRNA genes, all of which were cold-responsive, at the loci associated with low-temperature resistance. Specifically, these large-scale data analyses revealed a link between miR1885 and the plant response to low temperature in both B. rapa and B. napus. Using 5' rapid amplification of cDNA ends approach, we validated that miR1885 can cleave its putative target gene transcripts, Bn.TIR.A09 and Bn.TNL.A03, in B. napus. Furthermore, overexpression of miR1885 in Semiwinter type B. napus decreased the mRNA abundance of Bn.TIR.A09 and Bn.TNL.A03 and resulted in increased sensitivity to low temperature. Knocking down of miR1885 in Spring type B. napus led to increased mRNA abundance of its targets and improved rapeseed tolerance to low temperature. Together, our results suggested that the loci of miR1885 and its targets could be potential candidates for the molecular breeding of low temperature-tolerant Spring type Brassica crops.
Collapse
Affiliation(s)
- Pengfei Xu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Wenting Zhang
- Guangdong Provincial Key Laboratory of Crops Genetics & Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Xuan Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Yantao Zhu
- Hybrid Rape Research Center of Shaanxi Province, Yangling, Shaanxi, China
| | - Wanqi Liang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yuke He
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Xiang Yu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
16
|
Tian Y, Ye W, Liang X, Xu P, Wu X, Fu X, Chin Y, Liao Y. Rapid Visual Detection of High Nitrogen-Use Efficiency Gene OsGRF4 in Rice ( Oryza sativa L.) Using Loop-Mediated Isothermal Amplification Method. Genes (Basel) 2023; 14:1850. [PMID: 37895199 PMCID: PMC10606894 DOI: 10.3390/genes14101850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
The GROWTH-REGULATING FACTOR4 (OsGRF4) allele is an important target for the development of new high nitrogen-use efficiency (NUE) rice lines that would require less fertilizers. Detection of OsGRF4 through PCR (polymerase chain reaction)-based assay is cumbersome and needs advanced laboratory skills and facilities. Hence, a method for conveniently and rapidly detecting OsGRF4 on-field is a key requirement for further research and applications. In this study, we employed cleaved amplified polymorphic sequences (CAPs) and loop-mediated isothermal amplification (LAMP) techniques to develop a convenient visual detection method for high NUE gene OsGRF4NM73 (OsGRF4 from the rice line NM73). The TC→AA mutation at 1187-1188 bp loci was selected as the target sequence for the OsGRF4NM73 allele. We further employed this method of identification in 10 rice varieties that carried the OsGRF4 gene and results revealed that one variety (NM73) carries the target OsGRF4NM73 allele, while other varieties did not possess the osgrf4 genotype. The optimal LAMP reaction using hydroxynaphthol blue (HNB), a chromogenic indicator, was carried out at 65 °C for 60 min, and the presence of OsGRF4NM73 allele was confirmed by color changes from violet to sky blue. The results of this study showed that the LAMP method can be conveniently and accurately used to detect the OsGRF4NM73 gene in rice.
Collapse
Affiliation(s)
- Yonghang Tian
- College of Food Science and Engineering, Hainan Tropical Ocean University, No. 1 Yucai Road, Sanya 572022, China; (X.L.); (Y.C.)
- Marine Food Engineering Technology Research Center of Hainan Province, No. 1 Yucai Road, Sanya 572022, China
| | - Wenwei Ye
- Rice Research Institute, Sichuan Agricultural University, No. 211 Huiming Road, Wenjiang District, Chengdu 611130, China; (W.Y.); (P.X.); (X.W.)
| | - Xiangshuai Liang
- College of Food Science and Engineering, Hainan Tropical Ocean University, No. 1 Yucai Road, Sanya 572022, China; (X.L.); (Y.C.)
| | - Peizhou Xu
- Rice Research Institute, Sichuan Agricultural University, No. 211 Huiming Road, Wenjiang District, Chengdu 611130, China; (W.Y.); (P.X.); (X.W.)
| | - Xianjun Wu
- Rice Research Institute, Sichuan Agricultural University, No. 211 Huiming Road, Wenjiang District, Chengdu 611130, China; (W.Y.); (P.X.); (X.W.)
| | - Xiangdong Fu
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, China;
| | - Yaoxian Chin
- College of Food Science and Engineering, Hainan Tropical Ocean University, No. 1 Yucai Road, Sanya 572022, China; (X.L.); (Y.C.)
- Marine Food Engineering Technology Research Center of Hainan Province, No. 1 Yucai Road, Sanya 572022, China
| | - Yongxiang Liao
- Rice Research Institute, Sichuan Agricultural University, No. 211 Huiming Road, Wenjiang District, Chengdu 611130, China; (W.Y.); (P.X.); (X.W.)
| |
Collapse
|
17
|
Zheng L, Wu H, Wang A, Zhang Y, Liu Z, Ling HQ, Song XJ, Li Y. The SOD7/DPA4-GIF1 module coordinates organ growth and iron uptake in Arabidopsis. NATURE PLANTS 2023; 9:1318-1332. [PMID: 37550368 DOI: 10.1038/s41477-023-01475-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 07/03/2023] [Indexed: 08/09/2023]
Abstract
Organ growth is controlled by both intrinsic genetic factors and external environmental signals. However, the molecular mechanisms that coordinate plant organ growth and nutrient supply remain largely unknown. We have previously reported that the B3 domain transcriptional repressor SOD7 (NGAL2) and its closest homologue DPA4 (NGAL3) act redundantly to limit organ and seed growth in Arabidopsis. Here we report that SOD7 represses the interaction between the transcriptional coactivator GRF-INTERACTING FACTOR 1 (GIF1) and growth-regulating factors (GRFs) by competitively interacting with GIF1, thereby limiting organ and seed growth. We further reveal that GIF1 physically interacts with FER-LIKE IRON DEFICIENCY-INDUCED TRANSCRIPTION FACTOR (FIT), which acts as a central regulator of iron uptake and homeostasis. SOD7 can competitively repress the interaction of GIF1 with FIT to influence iron uptake and responses. The sod7-2 dpa4-3 mutant enhances the expression of genes involved in iron uptake and displays high iron accumulation. Genetic analyses support that GIF1 functions downstream of SOD7 to regulate organ and seed growth as well as iron uptake and responses. Thus, our findings define a previously unrecognized mechanism that the SOD7/DPA4-GIF1 module coordinates organ growth and iron uptake by targeting key regulators of growth and iron uptake.
Collapse
Affiliation(s)
- Leiying Zheng
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Huilan Wu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Anbin Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yueying Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zupei Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Hong-Qing Ling
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China.
- Hainan Yazhou Bay Seed Laboratory, Sanya, China.
| | - Xian-Jun Song
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China.
| | - Yunhai Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
18
|
Niu Y, Fan S, Cheng B, Li H, Wu J, Zhao H, Huang Z, Yan F, Qi B, Zhang L, Zhang G. Comparative transcriptomics and co-expression networks reveal cultivar-specific molecular signatures associated with reproductive-stage cold stress in rice. PLANT CELL REPORTS 2023; 42:707-722. [PMID: 36723676 DOI: 10.1007/s00299-023-02984-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
The resistance of Huaidao5 results from the high constitutive expression of tolerance genes, while that of Huaidao9 is due to the cold-induced resistance in flag leaves and panicles. The regulation mechanism of rice seedlings' cold tolerance is relatively clear, and knowledge of its underlying mechanisms at the reproductive stage is limited. We performed differential expression and co-expression network analyses to transcriptomes from panicle and flag leaf tissues of a cold-tolerant cultivar (Huaidao5), and a sensitive cultivar (Huaidao9), under reproductive-stage cold stress. The results revealed that the expression levels of genes in stress-related pathways such as MAPK signaling pathway, diterpenoid biosynthesis, glutathione metabolism, plant-pathogen interaction and plant hormone signal transduction were constitutively highly expressed in Huaidao5, especially in panicles. Moreover, the Hudaidao5's panicle sample-specific (under cold) module contained some genes related to rice yield, such as GW5L, GGC2, SG1 and CTPS1. However, the resistance of Huaidao9 was derived from the induced resistance to cold in flag leaves and panicles. In the flag leaves, the responses included a series of stress response and signal transduction, while in the panicles nitrogen metabolism was severely affected, especially 66 endosperm-specific genes. Through integrating differential expression with co-expression networks, we predicted 161 candidate genes (79 cold-responsive genes common to both cultivars and 82 cold-tolerance genes associated with differences in cold tolerance between cultivars) potentially affecting cold response/tolerance, among which 85 (52.80%) were known to be cold-related genes. Moreover, 52 (65.82%) cold-responsive genes (e.g., TIFY11C, LSK1 and LPA) could be confirmed by previous transcriptome studies and 72 (87.80%) cold-tolerance genes (e.g., APX5, OsFbox17 and OsSTA109) were located within QTLs associated with cold tolerance. This study provides an efficient strategy for further discovery of mechanisms of cold tolerance in rice.
Collapse
Affiliation(s)
- Yuan Niu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Song Fan
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Baoshan Cheng
- Huaiyin Institute of Agricultural Science in Xuhuai Region of Jiangsu Province, Huai'an, 223001, China.
| | - Henan Li
- Shanghai Bioelectronica Limited Liability Company, Shanghai, 200131, China
| | - Jiang Wu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Hongliang Zhao
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Zhiwei Huang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Feiyu Yan
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Bo Qi
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Linqing Zhang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Guoliang Zhang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China.
- State Key Laboratory of Soil and Agricultural Sustainable Development, Nanjing, 210008, China.
- Jiangsu Key Laboratory of Attapulgite Clay Resource Utilization, Huai'an, 223003, China.
| |
Collapse
|
19
|
Feng J, Li Z, Luo W, Liang G, Xu Y, Chong K. COG2 negatively regulates chilling tolerance through cell wall components altered in rice. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:19. [PMID: 36680595 DOI: 10.1007/s00122-023-04261-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 10/10/2022] [Indexed: 06/17/2023]
Abstract
Chilling-tolerant QTL gene COG2 encoded an extensin and repressed chilling tolerance by affecting the compositions of cell wall. Rice as a major crop is susceptible to chilling stress. Chilling tolerance is a complex trait controlled by multiple quantitative trait loci (QTLs). Here, we identify a QTL gene, COG2, that negatively regulates cold tolerance at seedling stage in rice. COG2 overexpression transgenic plants are sensitive to cold, whereas knockout transgenic lines enhance chilling tolerance. Natural variation analysis shows that Hap1 is a specific haplotype in japonica/Geng rice and correlates with chilling tolerance. The SNP1 in COG2 promoter is a specific divergency and leads to the difference in the expression level of COG2 between japonica/Geng and indica/Xian cultivars. COG2 encodes a cell wall-localized extensin and affects the compositions of cell wall, including pectin and cellulose, to defense the chilling stress. The results extend the understanding of the adaptation to the environment and provide an editing target for molecular design breeding of cold tolerance in rice.
Collapse
Affiliation(s)
- Jinglei Feng
- The Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhitao Li
- The Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Luo
- The Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Guohua Liang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Centre for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Yunyuan Xu
- The Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100093, China
| | - Kang Chong
- The Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- University of the Chinese Academy of Sciences, Beijing, 100049, China.
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100093, China.
| |
Collapse
|
20
|
Hu Q, Jiang B, Wang L, Song Y, Tang X, Zhao Y, Fan X, Gu Y, Zheng Q, Cheng J, Zhang H. Genome-wide analysis of growth-regulating factor genes in grape (Vitis vinifera L.): identification, characterization and their responsive expression to osmotic stress. PLANT CELL REPORTS 2023; 42:107-121. [PMID: 36284021 DOI: 10.1007/s00299-022-02939-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Identification, characterization and osmotic stress responsive expression of growth-regulating factor genes in grape. The growth and fruit production of grape vine are severely affected by adverse environmental conditions. Growth-regulating factors (GRFs) play a vital role in the regulation of plant growth, reproduction and stress tolerance. However, their biological functions in fruit vine crops are still largely unknown. In the present study, a total number of nine VvGRFs were identified in the grape genome. Phylogenetic and collinear relationship analysis revealed that they formed seven subfamilies, and have gone through three segmental duplication events. All VvGRFs were predicted to be nucleic localized and contained both the conserved QLQ and WRC domains at their N-terminals, one of the typical structural features of GRF proteins. Quantitative real-time PCR analyses demonstrated that all VvGRFs, with a predominant expression of VvGRF7, were constitutively expressed in roots, leaves and stems of grape plants, and showed responsive expression to osmotic stress. Further growth phenotypic analysis demonstrated that ectopic expression of VvGRF7 promoted the growth and sensitivity of transgenic Arabidopsis plants to osmotic stress. Our findings provide important information for the future study of VvGRF gene functions, and potential gene resources for the genetic breeding of new fruit vine varieties with improved fruit yield and stress tolerance.
Collapse
Affiliation(s)
- Qiang Hu
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong Province, China
- Yantai Institute, China Agricultural University, 2006 Binhaizhong Road, Yantai, 264670, Shandong Province, China
| | - Binyu Jiang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong Province, China
| | - Liru Wang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong Province, China
| | - Yanjing Song
- Shandong Institute of Sericulture, Shandong Academy of Agricultural Sciences, 21 Zhichubei Road, Yantai, 264001, Shandong Province, China
| | - Xiaoli Tang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong Province, China
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong (Ludong University), Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong Province, China
| | - Yanhong Zhao
- College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong Province, China
| | - Xiaobin Fan
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong Province, China
| | - Yafeng Gu
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong Province, China
- Yantai Institute, China Agricultural University, 2006 Binhaizhong Road, Yantai, 264670, Shandong Province, China
| | - Qiuling Zheng
- Yantai Academy of Agricultural Sciences, 26 West Gangcheng Avenue, Yantai, 265599, Shandong Province, China
| | - Jieshan Cheng
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong Province, China.
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong (Ludong University), Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong Province, China.
| | - Hongxia Zhang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong Province, China.
- Shandong Institute of Sericulture, Shandong Academy of Agricultural Sciences, 21 Zhichubei Road, Yantai, 264001, Shandong Province, China.
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong (Ludong University), Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong Province, China.
| |
Collapse
|
21
|
Genome-wide identification of GRF gene family and their contribution to abiotic stress response in pitaya (Hylocereus polyrhizus). Int J Biol Macromol 2022; 223:618-635. [PMID: 36356872 DOI: 10.1016/j.ijbiomac.2022.10.284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/27/2022] [Accepted: 10/19/2022] [Indexed: 11/09/2022]
Abstract
Growth-regulating factors (GRFs) are plant-specific transcription factors identified in many land plants. Recently, their indispensable roles in stress response are highlighted. In present work, 11 HpGRFs were cloned in pitaya. Segmental duplication is considered essential for the expansion of HpGRFs. A phylogenetic tree suggested that GRFs could be divided into eight categories, among which G-I was a Caryophyllales-specific one. The categorization was further evidenced by differences in the gene structure, collinearity, protein domain of HpGRFs. Five miR396 hairpins giving rise to two types of matured miR396s were identified in pitaya via sRNA-Seq in combination with bioinformatic analysis. Parallel analysis of RNA ends proved that HpGRFs except HpGRF5 were degraded by miR396-directed cleavages at the regions which code the conserved WRC motifs of HpGRFs. Multiple cis-regulatory elements were discovered in the promoters of HpGRFs. Among the elements, most are involved in stress and phytohormone response as well as plant growth, indicating a crosstalk between them. Expression analysis showed the responsive patterns of the miR396-GRF module under abiotic stresses. To conclude, our work systematically identified the miR396-targeted HpGRFs in pitaya and confirmed their involvement in stress response, providing novel insights into the comprehensive understanding of the stress resistance of pitaya.
Collapse
|
22
|
Huang J, Chen Z, Lin J, Guan B, Chen J, Zhang Z, Chen F, Jiang L, Zheng J, Wang T, Chen H, Xie W, Huang S, Wang H, Huang Y, Huang R. gw2.1, a new allele of GW2, improves grain weight and grain yield in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 325:111495. [PMID: 36240912 DOI: 10.1016/j.plantsci.2022.111495] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 10/04/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Grain weight is an important characteristic of grain shape and a key contributing factor to the grain yield in rice. Here, we report that gw2.1, a new allele of the Grain Width and Weight 2 (GW2) gene, regulates grain size and grain weight. A single nucleotide substitution in the coding sequence (CDS) of gw2.1 resulted in the change of glutamate to lysine (E128K) in GW2.1 protein. Complementation tests and GW2 overexpression experiments demonstrated that the missense mutation in gw2.1 was responsible for the phenotype of enlarged grain size in the mutant line jf42. The large grain trait of the near-isogenic line NIL-gw2.1 was found to result from increased cell proliferation during flower development. Meanwhile, NIL-gw2.1 was shown to increase grain yield without compromising the grain quality. The GW2 protein was localized to the cell nucleus and membrane, and interacted with CHB705, a subunit of the chromatin remodeling complex. Finally, the F1 hybrids from crosses of NIL-gw2.1 with 7 cytoplasmic male-sterile lines exhibited large grains and desirable grain appearance. Thus, gw2.1 is a promising allele that could be applied to improve grain yield and grain appearance in rice. AVAILABILITY OF DATA AND MATERIALS: The datasets generated and/or analyzed in the study are available from the corresponding author on reasonable request.
Collapse
Affiliation(s)
- Jinpeng Huang
- School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Zhiming Chen
- School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Jiajia Lin
- School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Binbin Guan
- School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Jinwen Chen
- Quanzhou Agricultural Science Institute, Quanzhou 362212, China
| | - Zesen Zhang
- School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Fangyu Chen
- Key Laboratory of Ministry of Education for Genetic Improvement and Comprehensive Utilization of Crops, Fujian Provincial Key Laboratory of Crop Breeding by Design, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Liangrong Jiang
- School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Jingsheng Zheng
- School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Tiansheng Wang
- Quanzhou Agricultural Science Institute, Quanzhou 362212, China
| | - Huiqing Chen
- Quanzhou Agricultural Science Institute, Quanzhou 362212, China
| | - Wangyou Xie
- Quanzhou Agricultural Science Institute, Quanzhou 362212, China
| | - Senhao Huang
- Key Laboratory of Ministry of Education for Genetic Improvement and Comprehensive Utilization of Crops, Fujian Provincial Key Laboratory of Crop Breeding by Design, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Houcong Wang
- School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Yumin Huang
- School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Rongyu Huang
- School of Life Sciences, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
23
|
Developing Genetic Engineering Techniques for Control of Seed Size and Yield. Int J Mol Sci 2022; 23:ijms232113256. [PMID: 36362043 PMCID: PMC9655546 DOI: 10.3390/ijms232113256] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/15/2022] [Accepted: 10/15/2022] [Indexed: 11/06/2022] Open
Abstract
Many signaling pathways regulate seed size through the development of endosperm and maternal tissues, which ultimately results in a range of variations in seed size or weight. Seed size can be determined through the development of zygotic tissues (endosperm and embryo) and maternal ovules. In addition, in some species such as rice, seed size is largely determined by husk growth. Transcription regulator factors are responsible for enhancing cell growth in the maternal ovule, resulting in seed growth. Phytohormones induce significant effects on entire features of growth and development of plants and also regulate seed size. Moreover, the vegetative parts are the major source of nutrients, including the majority of carbon and nitrogen-containing molecules for the reproductive part to control seed size. There is a need to increase the size of seeds without affecting the number of seeds in plants through conventional breeding programs to improve grain yield. In the past decades, many important genetic factors affecting seed size and yield have been identified and studied. These important factors constitute dynamic regulatory networks governing the seed size in response to environmental stimuli. In this review, we summarized recent advances regarding the molecular factors regulating seed size in Arabidopsis and other crops, followed by discussions on strategies to comprehend crops' genetic and molecular aspects in balancing seed size and yield.
Collapse
|
24
|
Jin X, Tsago Y, Lu Y, Sunusi M, Khan AU. Map-based cloning and transcriptome analysis of the more-tiller and small-grain mutant in rice. PLANTA 2022; 256:98. [PMID: 36222916 DOI: 10.1007/s00425-022-04011-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
A G to T nucleotide substitution of OsTSG2 led to more tillers and smaller grains in rice by participating in phytohormone signal transduction and starch and sucrose metabolism. Rice is one of the most important food crops worldwide. Grain size and tiller number are the most important factors determining rice yield. The more-tiller and small-grain 2 (tsg2) mutant in rice, developed by ethyl methanesulfonate (EMS) mutagenesis, has smaller grains, more tillers, and a higher yield per plant relative to the wild-type (WT). Based on the genetic analysis, the tsg2 traits were conferred by a single recessive nuclear gene located on the long arm of chromosome 2. After fine-mapping the OsTSG2 locus, a G to T nucleotide substitution was identified, which resulted in an A to S mutation in a highly conserved domain of the growth-regulation factor protein. The single-strand conformation polymorphism (SSCP) marker was developed based on the SNP associated with the phenotypic segregation of traits. The functional complementation of OsTSG2 from the tsg2 mutant to the WT led to an increase in grain size and weight. The differentially expressed genes (DEGs) identified by RNA sequencing were involved in phytohormone signal transduction and starch and sucrose metabolism. Enzyme-linked immunosorbent assay (ELISA) analysis detected variation in the indole acetic acid (IAA) and jasmonic acid (JA) content in the tsg2 inflorescence, while the cellular organization, degree of chalkiness, gel consistency, amylose content, and alkaline spreading value were affected in the tsg2 grains. The findings elucidated the regulatory mechanisms of the tsg2 traits. This mutant could be used in marker-assisted breeding for high-yield and good-quality rice.
Collapse
Affiliation(s)
- Xiaoli Jin
- Department of Agronomy, The Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| | - Yohannes Tsago
- Department of Agronomy, The Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, 310058, Zhejiang, China
- Department of Biology, Madda Walabu University, Bale Robe, Ethiopia
| | - Yingying Lu
- Department of Agronomy, The Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Mustapha Sunusi
- Department of Agronomy, The Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Asad Ullah Khan
- Department of Agronomy, The Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| |
Collapse
|
25
|
Zhang Y, Zhou Y, Zhu W, Liu J, Cheng F. Non-coding RNAs fine-tune the balance between plant growth and abiotic stress tolerance. FRONTIERS IN PLANT SCIENCE 2022; 13:965745. [PMID: 36311129 PMCID: PMC9597485 DOI: 10.3389/fpls.2022.965745] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 09/26/2022] [Indexed: 05/24/2023]
Abstract
To survive in adverse environmental conditions, plants have evolved sophisticated genetic and epigenetic regulatory mechanisms to balance their growth and abiotic stress tolerance. An increasing number of non-coding RNAs (ncRNAs), including small RNAs (sRNAs) and long non-coding RNAs (lncRNAs) have been identified as essential regulators which enable plants to coordinate multiple aspects of growth and responses to environmental stresses through modulating the expression of target genes at both the transcriptional and posttranscriptional levels. In this review, we summarize recent advances in understanding ncRNAs-mediated prioritization towards plant growth or tolerance to abiotic stresses, especially to cold, heat, drought and salt stresses. We highlight the diverse roles of evolutionally conserved microRNAs (miRNAs) and small interfering RNAs (siRNAs), and the underlying phytohormone-based signaling crosstalk in regulating the balance between plant growth and abiotic stress tolerance. We also review current discoveries regarding the potential roles of ncRNAs in stress memory in plants, which offer their descendants the potential for better fitness. Future ncRNAs-based breeding strategies are proposed to optimize the balance between growth and stress tolerance to maximize crop yield under the changing climate.
Collapse
Affiliation(s)
- Yingying Zhang
- Shanghai Key Laboratory of Protected Horticulture Technology, The Protected Horticulture Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Ye Zhou
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan and Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Weimin Zhu
- Shanghai Key Laboratory of Protected Horticulture Technology, The Protected Horticulture Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Junzhong Liu
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan and Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Fang Cheng
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan and Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| |
Collapse
|
26
|
Huang J, Chen Z, Lin J, Chen J, Wei M, Liu L, Yu F, Zhang Z, Chen F, Jiang L, Zheng J, Wang T, Chen H, Xie W, Huang S, Wang H, Huang Y, Huang R. Natural variation of the BRD2 allele affects plant height and grain size in rice. PLANTA 2022; 256:27. [PMID: 35780402 DOI: 10.1007/s00425-022-03939-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
The zqdm1 identified from a rice mutant is a novel allele of BRD2 and is responsible for regulating rice plant height, grain size and appearance, which has possibilities on improving rice quality. Plant height is an important agronomic trait related to rice yield, and grain size directly determines grain yield in rice (Oryza sativa L.). With the development of molecular biotechnology and genome sequencing technology, more and more key genes associated with plant height and grain size have been cloned and identified in recent years. This study identified the zqdm1 gene from a mutant with reduced plant height and grain size. The zqdm1 gene was revealed to be a new allele of BRASSINOSTEROID DEFICIENT DWARF 2 (BRD2), encoding a FAD-linked oxidoreductase protein involved in the brassinosteroid (BR) biosynthesis pathway, and regulates plant height by reducing cell number of longitudinal sections of the internode and regulates grain size by altering cell expansion. A 369-bp DNA fragment was found inserted at the first exon, resulting in protein-coding termination. This mutation has not been discovered in previous studies. Complementation tests have confirmed that 369-bp insertion in BRD2 was responsible for the plant height and grain size changing in the zqdm1 mutant. Over-expression of BRD2 driven by different promoters into indica rice variety Jiafuzhan (JFZ) results in slender grains, suggesting its function on regulating grain shape. In summary, the current study has identified a new BRD2 allele, which facilitated the further research on the molecular mechanism of this gene on regulating growth and development.
Collapse
Affiliation(s)
- Jinpeng Huang
- School of Life Sciences, Xiamen University, Xiamen, China
| | - Zhiming Chen
- School of Life Sciences, Xiamen University, Xiamen, China
| | - Jiajia Lin
- School of Life Sciences, Xiamen University, Xiamen, China
| | - Jinwen Chen
- Quanzhou Agricultural Science Institute, Quanzhou, 362212, China
| | - Menghao Wei
- School of Life Sciences, Xiamen University, Xiamen, China
| | - Liang Liu
- School of Life Sciences, Xiamen University, Xiamen, China
| | - Feng Yu
- Key Laboratory of Ministry of Education for Genetic Improvement and Comprehensive Utilization of Crops, Fujian Provincial Key Laboratory of Crop Breeding by Design, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zesen Zhang
- School of Life Sciences, Xiamen University, Xiamen, China
| | - Fangyu Chen
- Key Laboratory of Ministry of Education for Genetic Improvement and Comprehensive Utilization of Crops, Fujian Provincial Key Laboratory of Crop Breeding by Design, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | | | | | - Tiansheng Wang
- Quanzhou Agricultural Science Institute, Quanzhou, 362212, China
| | - Huiqing Chen
- Quanzhou Agricultural Science Institute, Quanzhou, 362212, China
| | - Wangyou Xie
- Quanzhou Agricultural Science Institute, Quanzhou, 362212, China
| | - Senhao Huang
- Key Laboratory of Ministry of Education for Genetic Improvement and Comprehensive Utilization of Crops, Fujian Provincial Key Laboratory of Crop Breeding by Design, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Houcong Wang
- School of Life Sciences, Xiamen University, Xiamen, China
| | - Yumin Huang
- School of Life Sciences, Xiamen University, Xiamen, China
| | - Rongyu Huang
- School of Life Sciences, Xiamen University, Xiamen, China.
| |
Collapse
|
27
|
Shaw BP, Sekhar S, Panda BB, Sahu G, Chandra T, Parida AK. Genes determining panicle morphology and grain quality in rice ( Oryza sativa). FUNCTIONAL PLANT BIOLOGY : FPB 2022; 49:673-688. [PMID: 35598893 DOI: 10.1071/fp21346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
The world's increase in rice (Oryza sativa L.) production is not keeping up with the increase in its population. To boost the introduction of new high-yielding cultivars, knowledge is being gained on the genes and quantitative trait loci (QTLs) determining the panicle phenotype. The important are those determining yield of the crop, such as grain numbers per panicle and size and weight of the grains. Biochemical and molecular functions of many of them are understood in some details. Among these, OsCKX2 and OsSPL14 have been shown to increase panicle branching and grain numbers when overexpressed. Furthermore, miRNAs appear to play an important role in determining the panicle morphology by regulating the expressions of the genes like OsSPL14 and GRF4 involved in panicle branching and grain numbers and length. Mutations also greatly influence the grain shape and size. However, the information gained so far on the genetic regulation of grain filling and panicle morphology has not been successfully put into commercial application. Furthermore, the identification of the gene(s)/QTLs regulating panicle compactness is still lacking, which may enable the researchers to convert a compact-panicle cultivar into a lax/open one, and thereby increasing the chances of enhancing the yield of a desired compact-panicle cultivar obtained by the breeding effort.
Collapse
Affiliation(s)
| | - Sudhanshu Sekhar
- Institute of Life Sciences, Nalco Square, Bhubaneswar-751023, Odisha, India
| | | | - Gyanasri Sahu
- Institute of Life Sciences, Nalco Square, Bhubaneswar-751023, Odisha, India
| | - Tilak Chandra
- Institute of Life Sciences, Nalco Square, Bhubaneswar-751023, Odisha, India
| | - Ajay Kumar Parida
- Institute of Life Sciences, Nalco Square, Bhubaneswar-751023, Odisha, India
| |
Collapse
|
28
|
Zhang X, Ren C, Xue Y, Tian Y, Zhang H, Li N, Sheng C, Jiang H, Bai D. Small RNA and Degradome Deep Sequencing Reveals the Roles of microRNAs in Peanut ( Arachis hypogaea L.) Cold Response. FRONTIERS IN PLANT SCIENCE 2022; 13:920195. [PMID: 35720560 PMCID: PMC9203150 DOI: 10.3389/fpls.2022.920195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/06/2022] [Indexed: 05/31/2023]
Abstract
Cold stress is a major environmental factor that affects plant growth and development, as well as fruit postharvest life and quality. MicroRNAs (miRNAs) are a class of non-coding small RNAs that play crucial roles in various abiotic stresses. Peanuts (Arachis hypogaea L.), one of the most important grain legumes and source of edible oils and proteins, are cultivated in the semi-arid tropical and subtropical regions of the world. To date, there has been no report on the role of miRNAs in the response to cold stress in cultivated peanuts. In this study, we profiled cold-responsive miRNAs in peanuts using deep sequencing in cold-sensitive (WQL20) alongside a tolerant variety (WQL30). A total of 407 known miRNAs and 143 novel peanut-specific miRNAs were identified. The expression of selected known and novel miRNAs was validated by northern blotting and six known cold-responsive miRNAs were revealed. Degradome sequencing identified six cold-responsive miRNAs that regulate 12 target genes. The correlative expression patterns of several miRNAs and their target genes were further validated using qRT-PCR. Our data showed that miR160-ARF, miR482-WDRL, miR2118-DR, miR396-GRF, miR162-DCL, miR1511-SRF, and miR1511-SPIRAL1 modules may mediate cold stress responses. Transient expression analysis in Nicotiana benthamiana found that miR160, miR482, and miR2118 may play positive roles, and miR396, miR162, and miR1511 play negative roles in the regulation of peanut cold tolerance. Our results provide a foundation for understanding miRNA-dependent cold stress response in peanuts. The characterized correlations between miRNAs and their response to cold stress could serve as markers in breeding programs or tools for improving cold tolerance of peanuts.
Collapse
Affiliation(s)
- Xin Zhang
- Institute of Industrial Crops, Shanxi Agricultural University, Taiyuan, China
- State Key Laboratory of Sustainable Dryland Agriculture, Shanxi Agricultural University, Taiyuan, China
| | - Chao Ren
- Institute of Industrial Crops, Shanxi Agricultural University, Taiyuan, China
| | - Yunyun Xue
- Institute of Industrial Crops, Shanxi Agricultural University, Taiyuan, China
| | - Yuexia Tian
- Institute of Industrial Crops, Shanxi Agricultural University, Taiyuan, China
| | - Huiqi Zhang
- Institute of Industrial Crops, Shanxi Agricultural University, Taiyuan, China
| | - Na Li
- Institute of Industrial Crops, Shanxi Agricultural University, Taiyuan, China
| | - Cong Sheng
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Laboratory of Bio-interactions and Crop Health, Nanjing Agricultural University, Nanjing, China
| | - Huifang Jiang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Dongmei Bai
- Institute of Industrial Crops, Shanxi Agricultural University, Taiyuan, China
| |
Collapse
|
29
|
Parida AK, Sekhar S, Panda BB, Sahu G, Shaw BP. Effect of Panicle Morphology on Grain Filling and Rice Yield: Genetic Control and Molecular Regulation. Front Genet 2022; 13:876198. [PMID: 35620460 PMCID: PMC9127237 DOI: 10.3389/fgene.2022.876198] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/30/2022] [Indexed: 11/16/2022] Open
Abstract
The demand for rice is likely to increase approximately 1.5 times by the year 2050. In contrast, the rice production is stagnant since the past decade as the ongoing rice breeding program is unable to increase the production further, primarily because of the problem in grain filling. Investigations have revealed several reasons for poor filling of the grains in the inferior spikelets of the compact panicle, which are otherwise genetically competent to develop into well-filled grains. Among these, the important reasons are 1) poor activities of the starch biosynthesizing enzymes, 2) high ethylene production leading to inhibition in expressions of the starch biosynthesizing enzymes, 3) insufficient division of the endosperm cells and endoreduplication of their nuclei, 4) low accumulation of cytokinins and indole-3-acetic acid (IAA) that promote grain filling, and 5) altered expressions of the miRNAs unfavorable for grain filling. At the genetic level, several genes/QTLs linked to the yield traits have been identified, but the information so far has not been put into perspective toward increasing the rice production. Keeping in view the genetic competency of the inferior spikelets to develop into well-filled grains and based on the findings from the recent research studies, improving grain filling in these spikelets seems plausible through the following biotechnological interventions: 1) spikelet-specific knockdown of the genes involved in ethylene synthesis and overexpression of β-CAS (β-cyanoalanine) for enhanced scavenging of CN− formed as a byproduct of ethylene biosynthesis; 2) designing molecular means for increased accumulation of cytokinins, abscisic acid (ABA), and IAA in the caryopses; 3) manipulation of expression of the transcription factors like MYC and OsbZIP58 to drive the expression of the starch biosynthesizing enzymes; 4) spikelet-specific overexpression of the cyclins like CycB;1 and CycH;1 for promoting endosperm cell division; and 5) the targeted increase in accumulation of ABA in the straw during the grain filling stage for increased carbon resource remobilization to the grains. Identification of genes determining panicle compactness could also lead to an increase in rice yield through conversion of a compact-panicle into a lax/open one. These efforts have the ability to increase rice production by as much as 30%, which could be more than the set production target by the year 2050.
Collapse
Affiliation(s)
- Ajay Kumar Parida
- Crop Improvement Group, Institute of Life Sciences, Bhubaneswar, India
| | - Sudhanshu Sekhar
- Crop Improvement Division, ICAR-National Rice Research Institute, Cuttack, India
| | - Binay Bhushan Panda
- Abiotic Stress and Agro-Biotechnology Lab, Institute of Life Sciences, Bhubaneswar, India
| | - Gyanasri Sahu
- Abiotic Stress and Agro-Biotechnology Lab, Institute of Life Sciences, Bhubaneswar, India
| | | |
Collapse
|
30
|
Liu K, Kabir N, Wei Z, Sun Z, Wang J, Qi J, Liu M, Liu J, Zhou K. Genome-wide identification and expression profile of GhGRF gene family in Gossypium hirsutum L.. PeerJ 2022; 10:e13372. [PMID: 35586135 PMCID: PMC9109687 DOI: 10.7717/peerj.13372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 04/12/2022] [Indexed: 01/13/2023] Open
Abstract
Background Cotton is the primary source of renewable natural fiber in the textile industry and an important biodiesel crop. Growth regulating factors (GRFs) are involved in regulating plant growth and development. Methods Using genome-wide analysis, we identified 35 GRF genes in Gossypium hirsutum. Results Chromosomal location information revealed an uneven distribution of GhGRF genes, with maximum genes on chromosomes A02, A05, and A12 from the At sub-genome and their corresponding D05 and D12 from the Dt sub-genome. In the phylogenetic tree, 35 GRF genes were divided into five groups, including G1, G2, G3, G4, and G5. The majority of GhGRF genes have two to three introns and three to four exons, and their deduced proteins contained conserved QLQ and WRC domains in the N-terminal end of GRFs in Arabidopsis and rice. Sequence logos revealed that GRF genes were highly conserved during the long-term evolutionary process. The CDS of the GhGRF gene can complement MiRNA396a. Moreover, most GhGRF genes transcripts developed high levels of ovules and fibers. Analyses of promoter cis-elements and expression patterns indicated that GhGRF genes play an essential role in regulating plant growth and development by coordinating the internal and external environment and multiple hormone signaling pathways. Our analysis indicated that GhGRFs are ideal target genes with significant potential for improving the molecular structure of cotton.
Collapse
Affiliation(s)
- Kun Liu
- Henan Key Laboratory of Crop Molecular Breeding and Bioreactor, Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou, Henan, China
| | - Nosheen Kabir
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Zhenzhen Wei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Zhuojing Sun
- Development Center for Science and Technology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Jian Wang
- Henan Key Laboratory of Crop Molecular Breeding and Bioreactor, Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou, Henan, China
| | - Jing Qi
- Henan Key Laboratory of Crop Molecular Breeding and Bioreactor, Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou, Henan, China
| | - Miaoyang Liu
- Henan Key Laboratory of Crop Molecular Breeding and Bioreactor, Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou, Henan, China
| | - Ji Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Kehai Zhou
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| |
Collapse
|
31
|
Zhang C, Chang W, Li X, Yang B, Zhang L, Xiao Z, Li J, Lu K. Transcriptome and Small RNA Sequencing Reveal the Mechanisms Regulating Harvest Index in Brassica napus. FRONTIERS IN PLANT SCIENCE 2022; 13:855486. [PMID: 35444672 PMCID: PMC9014204 DOI: 10.3389/fpls.2022.855486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
Harvest index (HI), the ratio of harvested seed weight to total aboveground biomass weight, is an economically critical value reflecting the convergence of complex agronomic traits. HI values in rapeseed (Brassica napus) remain much lower than in other major crops, and the underlying regulatory network is largely unknown. In this study, we performed mRNA and small RNA sequencing to reveal the mechanisms shaping HI in B. napus during the seed-filling stage. A total of 8,410 differentially expressed genes (DEGs) between high-HI and low-HI accessions in four tissues (silique pericarp, seed, leaves, and stem) were identified. Combining with co-expression network, 72 gene modules were identified, and a key gene BnaSTY46 was found to participate in retarded establishment of photosynthetic capacity to influence HI. Further research found that the genes involved in circadian rhythms and response to stimulus may play important roles in HI and that their transcript levels were modulated by differentially expressed microRNAs (DEMs), and we identified 903 microRNAs (miRNAs), including 46 known miRNAs and 857 novel miRNAs. Furthermore, transporter activity-related genes were critical to enhancing HI in good cultivation environments. Of 903 miRNAs, we found that the bna-miR396-Bna.A06SRp34a/Bna.A01EMB3119 pair may control the seed development and the accumulation of storage compounds, thus contributing to higher HI. Our findings uncovered the underlying complex regulatory network behind HI and offer potential approaches to rapeseed improvement.
Collapse
Affiliation(s)
- Chao Zhang
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Oil Research Institute of Guizhou Province, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Wei Chang
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Xiaodong Li
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Bo Yang
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Liyuan Zhang
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Zhongchun Xiao
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Jiana Li
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Kun Lu
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| |
Collapse
|
32
|
Karunarathne SD, Han Y, Zhang XQ, Li C. CRISPR/Cas9 gene editing and natural variation analysis demonstrate the potential for HvARE1 in improvement of nitrogen use efficiency in barley. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:756-770. [PMID: 35014191 DOI: 10.1111/jipb.13214] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 12/30/2021] [Indexed: 06/14/2023]
Abstract
Nitrogen is a major determinant of grain yield and quality. As excessive use of nitrogen fertilizer leads to environmental pollution and high production costs, improving nitrogen use efficiency (NUE) is fundamental for a sustainable agriculture. Here, we dissected the role of the barley abnormal cytokinin response1 repressor 1 (HvARE1) gene, a candidate for involvement in NUE previously identified in a genome-wide association study, through natural variation analysis and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9)-mediated gene editing. HvARE1 was predominantly expressed in leaves and shoots, with very low expression in roots under low nitrogen conditions. Agrobacterium-mediated genetic transformation of immature embryos (cv. Golden Promise) with single guide RNAs targeting HvARE1 generated 22 T0 plants, from which four T1 lines harbored missense and/or frameshift mutations based on genotyping. Mutant are1 lines exhibited an increase in plant height, tiller number, grain protein content, and yield. Moreover, we observed a 1.5- to 2.8-fold increase in total chlorophyll content in the flag leaf at the grain filling stage. Delayed senescence by 10-14 d was also observed in mutant lines. Barley are1 mutants had high nitrogen content in shoots under low nitrogen conditions. These findings demonstrate the potential of ARE1 in NUE improvement in barley.
Collapse
Affiliation(s)
- Sakura D Karunarathne
- Western Crop Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, 6150, Australia
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, Perth, WA, 6150, Australia
| | - Yong Han
- Western Crop Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, 6150, Australia
- Department of Primary Industries and Regional Development, Perth, WA, 6151, Australia
| | - Xiao-Qi Zhang
- Western Crop Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, 6150, Australia
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, Perth, WA, 6150, Australia
| | - Chengdao Li
- Western Crop Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, 6150, Australia
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, Perth, WA, 6150, Australia
- Department of Primary Industries and Regional Development, Perth, WA, 6151, Australia
| |
Collapse
|
33
|
Yu S, Ali J, Zhou S, Ren G, Xie H, Xu J, Yu X, Zhou F, Peng S, Ma L, Yuan D, Li Z, Chen D, Zheng R, Zhao Z, Chu C, You A, Wei Y, Zhu S, Gu Q, He G, Li S, Liu G, Liu C, Zhang C, Xiao J, Luo L, Li Z, Zhang Q. From Green Super Rice to green agriculture: Reaping the promise of functional genomics research. MOLECULAR PLANT 2022; 15:9-26. [PMID: 34883279 DOI: 10.1016/j.molp.2021.12.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/30/2021] [Accepted: 12/03/2021] [Indexed: 06/13/2023]
Abstract
Producing sufficient food with finite resources to feed the growing global population while having a smaller impact on the environment has always been a great challenge. Here, we review the concept and practices of Green Super Rice (GSR) that have led to a paradigm shift in goals for crop genetic improvement and models of food production for promoting sustainable agriculture. The momentous achievements and global deliveries of GSR have been fueled by the integration of abundant genetic resources, functional gene discoveries, and innovative breeding techniques with precise gene and whole-genome selection and efficient agronomic management to promote resource-saving, environmentally friendly crop production systems. We also provide perspectives on new horizons in genomic breeding technologies geared toward delivering green and nutritious crop varieties to further enhance the development of green agriculture and better nourish the world population.
Collapse
Affiliation(s)
- Sibin Yu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Jauhar Ali
- International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Shaochuan Zhou
- Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Guangjun Ren
- Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Huaan Xie
- Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Jianlong Xu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xinqiao Yu
- Shanghai Agrobiological Gene Center, Shanghai, China
| | - Fasong Zhou
- China National Seed Group Co., Ltd, Beijing, China
| | - Shaobing Peng
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Liangyong Ma
- China National Rice Research Institute, Hangzhou, China
| | | | - Zefu Li
- Anhui Academy of Agricultural Sciences, Hefei, China
| | - Dazhou Chen
- Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | | | | | - Chengcai Chu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Aiqing You
- Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Yu Wei
- Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Susong Zhu
- Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Qiongyao Gu
- Yunnan Academy of Agricultural Sciences, Kunming, China
| | | | - Shigui Li
- Sichuan Agricultural University, Chengdu, China
| | - Guifu Liu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Changhua Liu
- Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Chaopu Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinghua Xiao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Lijun Luo
- Shanghai Agrobiological Gene Center, Shanghai, China.
| | - Zhikang Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Qifa Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
34
|
Li J, Zhang Z, Chong K, Xu Y. Chilling tolerance in rice: Past and present. JOURNAL OF PLANT PHYSIOLOGY 2022; 268:153576. [PMID: 34875419 DOI: 10.1016/j.jplph.2021.153576] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/21/2021] [Accepted: 11/21/2021] [Indexed: 06/13/2023]
Abstract
Rice is generally sensitive to chilling stress, which seriously affects growth and yield. Since early in the last century, considerable efforts have been made to understand the physiological and molecular mechanisms underlying the response to chilling stress and improve rice chilling tolerance. Here, we review the research trends and advances in this field. The phenotypic and biochemical changes caused by cold stress and the physiological explanations are briefly summarized. Using published data from the past 20 years, we reviewed the past progress and important techniques in the identification of quantitative trait loci (QTL), novel genes, and cellular pathways involved in rice chilling tolerance. The advent of novel technologies has significantly advanced studies of cold tolerance, and the characterization of QTLs, key genes, and molecular modules have sped up molecular design breeding for cold tolerance in rice varieties. In addition to gene function studies based on overexpression or artificially generated mutants, elucidating natural allelic variation in specific backgrounds is emerging as a novel approach for the study of cold tolerance in rice, and the superior alleles identified using this approach can directly facilitate breeding.
Collapse
Affiliation(s)
- Junhua Li
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Zeyong Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Kang Chong
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Yunyuan Xu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
| |
Collapse
|
35
|
Lin Y, Zhu Y, Cui Y, Chen R, Chen Z, Li G, Fan M, Chen J, Li Y, Guo X, Zheng X, Chen L, Wang F. Derepression of specific miRNA-target genes in rice using CRISPR/Cas9. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:7067-7077. [PMID: 34283216 PMCID: PMC8547147 DOI: 10.1093/jxb/erab336] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 07/20/2021] [Indexed: 05/20/2023]
Abstract
MicroRNAs (miRNAs) target specific mRNA molecules based on sequence complementarity for their degradation or repression of translation, thereby regulating various developmental and physiological processes in eukaryotic organisms. Expressing the target mimicry (MIM) and short tandem target mimicry (STTM) can block endogenous activity of mature miRNAs and eliminate the inhibition of their target genes, resulting in phenotypic changes due to higher expression of the target genes. Here, we report a strategy to achieve derepression of interested miRNA-target genes through CRISPR/Cas9-based generation of in-frame mutants within the miRNA-complementary sequence of the target gene. We show that two rice genes, OsGRF4 (GROWTH REGULATING FACTOR 4) and OsGRF8 carrying in-frame mutants with disruption of the miR396 recognition sites, escape from miR396-mediated post-transcriptional silencing, resulting in enlarged grain size and increase in brown planthopper (BPH) resistance, in their respective transgenic rice lines. These results demonstrate that CRISPR/Cas9-mediated disruption of miRNA target sites can be effectively employed to precisely derepress particular target genes of functional importance for trait improvement in plants.
Collapse
Affiliation(s)
- Yarong Lin
- Institute of Biotechnology, Fujian Academy of Agricultural Sciences/Fujian Provincial Key Laboratory of Genetic Engineering for Agriculture, Fuzhou, China
- Xiamen Key Laboratory for Plant Genetics, School of Life Sciences, Xiamen University, Xiamen, China
| | - Yiwang Zhu
- Institute of Biotechnology, Fujian Academy of Agricultural Sciences/Fujian Provincial Key Laboratory of Genetic Engineering for Agriculture, Fuzhou, China
- Xiamen Key Laboratory for Plant Genetics, School of Life Sciences, Xiamen University, Xiamen, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yuchao Cui
- Xiamen Key Laboratory for Plant Genetics, School of Life Sciences, Xiamen University, Xiamen, China
| | - Rui Chen
- Institute of Biotechnology, Fujian Academy of Agricultural Sciences/Fujian Provincial Key Laboratory of Genetic Engineering for Agriculture, Fuzhou, China
| | - Zaijie Chen
- Institute of Biotechnology, Fujian Academy of Agricultural Sciences/Fujian Provincial Key Laboratory of Genetic Engineering for Agriculture, Fuzhou, China
| | - Gang Li
- Institute of Biotechnology, Fujian Academy of Agricultural Sciences/Fujian Provincial Key Laboratory of Genetic Engineering for Agriculture, Fuzhou, China
| | - Meiying Fan
- Institute of Biotechnology, Fujian Academy of Agricultural Sciences/Fujian Provincial Key Laboratory of Genetic Engineering for Agriculture, Fuzhou, China
| | - Jianmin Chen
- Institute of Biotechnology, Fujian Academy of Agricultural Sciences/Fujian Provincial Key Laboratory of Genetic Engineering for Agriculture, Fuzhou, China
| | - Yan Li
- Xiamen Key Laboratory for Plant Genetics, School of Life Sciences, Xiamen University, Xiamen, China
| | - Xinrui Guo
- Institute of Biotechnology, Fujian Academy of Agricultural Sciences/Fujian Provincial Key Laboratory of Genetic Engineering for Agriculture, Fuzhou, China
| | - Xijun Zheng
- Xiamen Key Laboratory for Plant Genetics, School of Life Sciences, Xiamen University, Xiamen, China
| | - Liang Chen
- Xiamen Key Laboratory for Plant Genetics, School of Life Sciences, Xiamen University, Xiamen, China
- Correspondence: or
| | - Feng Wang
- Institute of Biotechnology, Fujian Academy of Agricultural Sciences/Fujian Provincial Key Laboratory of Genetic Engineering for Agriculture, Fuzhou, China
- Correspondence: or
| |
Collapse
|
36
|
Dhaka N, Sharma R. MicroRNA-mediated regulation of agronomically important seed traits: a treasure trove with shades of grey! Crit Rev Biotechnol 2021; 41:594-608. [PMID: 33682533 DOI: 10.1080/07388551.2021.1873238] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Seed development is an intricate process with multiple levels of regulation. MicroRNAs (miRNAs) have emerged as one of the crucial components of molecular networks underlying agronomically important seed traits in diverse plant species. In fact, loss of function of the genes regulating miRNA biogenesis also exhibits defects in seed development. A total of 21 different miRNAs have experimentally been shown to regulate seed size, nutritional content, vigor, and shattering, and have been reviewed here. The mechanism details of the associated regulatory cascades mediated through transcriptional regulators, phytohormones, basic metabolic machinery, and secondary siRNAs are elaborated. Co-localization of miRNAs and their target regions with seed-related QTLs provides new avenues for engineering these traits using conventional breeding programs or biotechnological interventions. While global analysis of miRNAs using small RNA sequencing studies are expanding the repertoire of candidate miRNAs, recent revelations on their inheritance, transport, and mechanism of action would be instrumental in designing better strategies for optimizing agronomically relevant seed traits.
Collapse
Affiliation(s)
- Namrata Dhaka
- Department of Biotechnology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Haryana, India.,Crop Genetics and Informatics Group, School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Rita Sharma
- Crop Genetics and Informatics Group, School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
37
|
Huang X, Liang Y, Zhang B, Song X, Li Y, Qin Z, Li D, Chen R, Zhou Z, Deng Y, Wei J, Wu J. Integration of Transcriptional and Post-transcriptional Analysis Revealed the Early Response Mechanism of Sugarcane to Cold Stress. Front Genet 2021; 11:581993. [PMID: 33569078 PMCID: PMC7868625 DOI: 10.3389/fgene.2020.581993] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 12/11/2020] [Indexed: 11/26/2022] Open
Abstract
Cold stress causes major losses to sugarcane production, yet the precise molecular mechanisms that cause losses due to cold stress are not well-understood. To survey miRNAs and genes involved in cold tolerance, RNA-seq, miRNA-seq, and integration analyses were performed on Saccharum spontaneum. Results showed that a total of 118,015 genes and 6,034 of these differentially expressed genes (DEGs) were screened. Protein–protein interaction (PPI) analyses revealed that ABA signaling via protein phosphatase 2Cs was the most important signal transduction pathway and late embryogenesis abundant protein was the hub protein associated with adaptation to cold stress. Furthermore, a total of 856 miRNAs were identified in this study and 109 of them were differentially expressed in sugarcane responding to cold stress. Most importantly, the miRNA–gene regulatory networks suggested the complex post-transcriptional regulation in sugarcane under cold stress, including 10 miRNAs−42 genes, 16 miRNAs−70 genes, and three miRNAs−18 genes in CT vs. LT0.5, CT vs. LT1, and CT0.5 vs. LT1, respectively. Specifically, key regulators from 16 genes encoding laccase were targeted by novel-Chr4C_47059 and Novel-Chr4A_40498, while five LRR-RLK genes were targeted by Novel-Chr6B_65233 and Novel-Chr5D_60023, 19 PPR repeat proteins by Novel-Chr5C_57213 and Novel-Chr5D_58065. Our findings suggested that these miRNAs and cell wall-related genes played vital regulatory roles in the responses of sugarcane to cold stress. Overall, the results of this study provide insights into the transcriptional and post-transcriptional regulatory network underlying the responses of sugarcane to cold stress.
Collapse
Affiliation(s)
- Xing Huang
- College of Agriculture, Guangxi University, Nanning, China.,Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Ministry of Agriculture, Nanning, China
| | | | - Baoqing Zhang
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Ministry of Agriculture, Nanning, China
| | - Xiupeng Song
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Ministry of Agriculture, Nanning, China
| | - Yangrui Li
- College of Agriculture, Guangxi University, Nanning, China.,Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Ministry of Agriculture, Nanning, China
| | - Zhengqiang Qin
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Ministry of Agriculture, Nanning, China
| | - Dewei Li
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Ministry of Agriculture, Nanning, China
| | - Rongfa Chen
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Ministry of Agriculture, Nanning, China
| | - Zhongfeng Zhou
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Ministry of Agriculture, Nanning, China
| | - Yuchi Deng
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Ministry of Agriculture, Nanning, China
| | - Jiguang Wei
- College of Agriculture, Guangxi University, Nanning, China
| | - Jianming Wu
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Ministry of Agriculture, Nanning, China
| |
Collapse
|
38
|
Guo W, Chen L, Herrera-Estrella L, Cao D, Tran LSP. Altering Plant Architecture to Improve Performance and Resistance. TRENDS IN PLANT SCIENCE 2020; 25:1154-1170. [PMID: 32595089 DOI: 10.1016/j.tplants.2020.05.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/11/2020] [Accepted: 05/26/2020] [Indexed: 06/11/2023]
Abstract
High-stress resistance and yield are major goals in crop cultivation, which can be addressed by modifying plant architecture. Significant progress has been made in recent years to understand how plant architecture is controlled under various growth conditions, recognizing the central role phytohormones play in response to environmental stresses. miRNAs, transcription factors, and other associated proteins regulate plant architecture, mainly via the modulation of hormone homeostasis and signaling. To generate crop plants of ideal architecture, we propose simultaneous editing of multiple genes involved in the regulatory networks associated with plant architecture as a feasible strategy. This strategy can help to address the need to increase grain yield and/or stress resistance under the pressures of the ever-increasing world population and climate change.
Collapse
Affiliation(s)
- Wei Guo
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Limiao Chen
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Luis Herrera-Estrella
- The Unidad de Genomica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Guanajuato, Mexico; Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, TX, USA
| | - Dong Cao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
| | - Lam-Son Phan Tran
- Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang 550000, Vietnam; Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan.
| |
Collapse
|
39
|
Yu S, Ali J, Zhang C, Li Z, Zhang Q. Genomic Breeding of Green Super Rice Varieties and Their Deployment in Asia and Africa. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:1427-1442. [PMID: 31915875 PMCID: PMC7214492 DOI: 10.1007/s00122-019-03516-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 12/17/2019] [Indexed: 05/22/2023]
Abstract
KEY MESSAGE The "Green Super Rice" (GSR) project aims to fundamentally transform crop production techniques and promote the development of green agriculture based on functional genomics and breeding of GSR varieties by whole-genome breeding platforms. Rice (Oryza sativa L.) is one of the leading food crops of the world, and the safe production of rice plays a central role in ensuring food security. However, the conflicts between rice production and environmental resources are becoming increasingly acute. For this reason, scientists in China have proposed the concept of Green Super Rice for promoting resource-saving and environment-friendly rice production, while still achieving a yield increase and quality improvement. GSR is becoming one of the major goals for agricultural research and crop improvement worldwide, which aims to mine and use vital genes associated with superior agronomic traits such as high yield, good quality, nutrient efficiency, and resistance against insects and stresses; establish genomic breeding platforms to breed and apply GSR; and set up resource-saving and environment-friendly cultivation management systems. GSR has been introduced into eight African and eight Asian countries and has contributed significantly to rice cultivation and food security in these countries. This article mainly describes the GSR concept and recent research progress, as well as the significant achievements in GSR breeding and its application.
Collapse
Affiliation(s)
- Sibin Yu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jauhar Ali
- International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Chaopu Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhikang Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
- College of Agronomy, Anhui Agricultural University, Hefei, China.
| | - Qifa Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
40
|
Liebsch D, Palatnik JF. MicroRNA miR396, GRF transcription factors and GIF co-regulators: a conserved plant growth regulatory module with potential for breeding and biotechnology. CURRENT OPINION IN PLANT BIOLOGY 2020; 53:31-42. [PMID: 31726426 DOI: 10.1016/j.pbi.2019.09.008] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/19/2019] [Accepted: 09/23/2019] [Indexed: 05/23/2023]
Abstract
Multicellular life relies on complex regulatory mechanisms ensuring proper growth and development. In plants, these mechanisms construct a body plan that is both reproducible, and highly flexible for adaptation to different environmental conditions. A crucial regulatory module - consisting of microRNA miR396, GROWTH REGULATING FACTORS (GRFs) and GRF-INTERACTING FACTORS (GIFs) - has been shown to control growth of multiple tissues and organs in a variety of species. Especially in the last few years, research has expanded our knowledge of miR396-GRF/GIF function to crops, where it affects agronomically important traits, and highlighted its role in coordinating growth with endogenous and environmental factors. Special properties make the miR396-GRF/GIF system highly efficient in growth regulation and a promising target for improving plant yield.
Collapse
Affiliation(s)
- Daniela Liebsch
- IBR (Instituto de Biologia Molecular y Celular de Rosario), UNR/CONICET, Ocampo y Esmeralda s/n, 2000 Rosario, Argentina.
| | - Javier F Palatnik
- IBR (Instituto de Biologia Molecular y Celular de Rosario), UNR/CONICET, Ocampo y Esmeralda s/n, 2000 Rosario, Argentina; Centro de Estudios Interdisciplinarios, Universidad Nacional de Rosario, Rosario, Argentina.
| |
Collapse
|