1
|
Faizan U, Nair LG, Bou Zerdan M, Jaberi-Douraki M, Anwer F, Raza S. COVID-19 vaccine immune response in patients with plasma cell dyscrasia: a systematic review. Ther Adv Vaccines Immunother 2023; 11:25151355231190497. [PMID: 37645011 PMCID: PMC10461737 DOI: 10.1177/25151355231190497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 07/10/2023] [Indexed: 08/31/2023] Open
Abstract
Background Patients with plasma cell dyscrasia are at a higher risk of developing a severe Coronavirus-2019 (COVID-19) infection. Here we present a systematic review of clinical studies focusing on the immune response to the COVID-19 vaccination in patients with plasma cell dyscrasia. Objectives This study aims to evaluate the immune response to COVID-19 vaccines in patients with plasma cell dyscrasia and to utilize the results to improve day-to-day practice. Design Systematic Review. Methods Online databases (PubMed, CINAHL, Ovid, and Cochrane) were searched following the preferred reporting items for systematic review and meta-analysis (PRISMA) guidelines. Only articles published in the English language were included. Out of 59 studies, nine articles (seven prospective and two retrospective studies) were included in this systematic review. Abstracts, case reports, and case series were excluded. Results In all nine studies (N = 1429), seroconversion post-vaccination was the primary endpoint. Patients with plasma cell disorders had a lower seroconversion rate compared to healthy vaccinated individuals and the overall percentage of seroconversion ranged between 23% and 95.5%. Among patients on active therapy, lower seroconversion rates were seen on an anti-CD38 agent, ranging from 6.5 up to 100%. In addition, a significantly lower percentage was recorded in older patients, especially in those aged equal to or greater than 65 years and those who have been treated with multiple therapies previously. Only one study reported a statistically significant better humoral response rate with the mRNA vaccine compared to ADZ1222/Ad26.Cov.S. Conclusion Variable seropositive rates are seen in patients with plasma cell dyscrasia. Lower rates are reported in patients on active therapy, anti-CD38 therapy, and elderly patients. Hence, we propose patients with plasma cell dyscrasias should receive periodic boosters to maintain clinically significant levels of antibodies against COVID-19. Registration PROSPERO ID: CRD42023404989.
Collapse
Affiliation(s)
- Unaiza Faizan
- Department of Internal Medicine, Rochester General Hospital, 65 Onondaga Road, Apt B, Rochester, NY 14621, USA
| | - Lakshmi G. Nair
- Department of Internal Medicine, Rochester General Hospital, Rochester, NY, USA
| | - Maroun Bou Zerdan
- Department of Internal Medicine, Suny Upstate Medical University, Syracuse, NY, USA
| | | | - Faiz Anwer
- Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, USA
| | - Shahzad Raza
- Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
2
|
Leung WY, Wu HHL, Floyd L, Ponnusamy A, Chinnadurai R. COVID-19 Infection and Vaccination and Its Relation to Amyloidosis: What Do We Know Currently? Vaccines (Basel) 2023; 11:1139. [PMID: 37514955 PMCID: PMC10383215 DOI: 10.3390/vaccines11071139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Amyloidosis is a complex disorder characterized by deposited insoluble fibrillar proteins which misfold into β-pleated sheets. The pathogenesis of amyloidosis can vary but can be the result of immune dysregulation that occurs from sustained high inflammatory states, often known as AA amyloidosis. Multi-organ involvement including hepatic, gastrointestinal, renal, cardiac and immunological pathological manifestations has been observed amongst individuals presenting with amyloidosis. The recent global pandemic of severe acute respiratory syndrome coronavirus 2, also referred to as coronavirus 2019 (COVID-19), has been shown to be associated with multiple health complications, many of which are similar to those seen in amyloidosis. Though COVID-19 is recognized primarily as a respiratory disease, it has since been found to have a range of extra-pulmonary manifestations, many of which are observed in patients with amyloidosis. These include features of oxidative stress, chronic inflammation and thrombotic risks. It is well known that viral illnesses have been associated with the triggering of autoimmune conditions of which amyloidosis is no different. Over the recent months, reports of new-onset and relapsed disease following COVID-19 infection and vaccination have been published. Despite this, the exact pathophysiological associations of COVID-19 and amyloidosis remain unclear. We present a scoping review based on our systematic search of available evidence relating to amyloidosis, COVID-19 infection and COVID-19 vaccination, evaluating current perspectives and providing insight into knowledge gaps that still needs to be addressed going forward.
Collapse
Affiliation(s)
- Wing-Yin Leung
- Department of Renal Medicine, Lancashire Teaching Hospitals NHS Foundation Trust, Preston PR2 9HT, UK
| | - Henry H L Wu
- Renal Research Laboratory, Kolling Institute of Medical Research, Royal North Shore Hospital & The University of Sydney, Sydney, NSW 2065, Australia
| | - Lauren Floyd
- Department of Renal Medicine, Lancashire Teaching Hospitals NHS Foundation Trust, Preston PR2 9HT, UK
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PG, UK
| | - Arvind Ponnusamy
- Department of Renal Medicine, Lancashire Teaching Hospitals NHS Foundation Trust, Preston PR2 9HT, UK
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PG, UK
| | - Rajkumar Chinnadurai
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PG, UK
- Department of Renal Medicine, Salford Royal Hospital, Northern Care Alliance Foundation Trust, Salford M6 8HD, UK
| |
Collapse
|
3
|
Humoral Immune Response after anti-SARS-CoV-2 Vaccine "Booster" Dose in Patients with Monoclonal Gammopathy of Undetermined Significance (MGUS). Mediterr J Hematol Infect Dis 2023; 15:e2023011. [PMID: 36660353 PMCID: PMC9833302 DOI: 10.4084/mjhid.2023.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/21/2022] [Indexed: 01/03/2023] Open
Abstract
Not Applicable.
Collapse
|
4
|
Uaprasert N, Pitakkitnukun P, Tangcheewinsirikul N, Chiasakul T, Rojnuckarin P. Immunogenicity and risks associated with impaired immune responses following SARS-CoV-2 vaccination and booster in hematologic malignancy patients: an updated meta-analysis. Blood Cancer J 2022; 12:173. [PMID: 36550105 PMCID: PMC9780106 DOI: 10.1038/s41408-022-00776-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Patients with hematologic malignancies (HM) have demonstrated impaired immune responses following SARS-CoV-2 vaccination. Factors associated with poor immunogenicity remain largely undetermined. A literature search was conducted using PubMed, EMBASE, Cochrane, and medRxiv databases to identify studies that reported humoral or cellular immune responses (CIR) following complete SARS-CoV-2 vaccination. The primary aim was to estimate the seroconversion rate (SR) following complete SARS-CoV-2 vaccination across various subtypes of HM diseases and treatments. The secondary aims were to determine the rates of development of neutralizing antibodies (NAb) and CIR following complete vaccination and SR following booster doses. A total of 170 studies were included for qualitative and quantitative analysis of primary and secondary outcomes. A meta-analysis of 150 studies including 20,922 HM patients revealed a pooled SR following SARS-CoV-2 vaccination of 67.7% (95% confidence interval [CI], 64.8-70.4%; I2 = 94%). Meta-regression analysis showed that patients with lymphoid malignancies, but not myeloid malignancies, had lower seroconversion rates than those with solid cancers (R2 = 0.52, P < 0.0001). Patients receiving chimeric antigen receptor T-cells (CART), B-cell targeted therapies or JAK inhibitors were associated with poor seroconversion (R2 = 0.39, P < 0.0001). The pooled NAb and CIR rates were 52.8% (95% CI; 45.8-59.7%, I2 = 87%) and 66.6% (95% CI, 57.1-74.9%; I2 = 86%), respectively. Approximately 20.9% (95% CI, 11.4-35.1%, I2 = 90%) of HM patients failed to elicit humoral and cellular immunity. Among non-seroconverted patients after primary vaccination, only 40.5% (95% CI, 33.0-48.4%; I2 = 87%) mounted seroconversion after the booster. In conclusion, HM patients, especially those with lymphoid malignancies and/or receiving CART, B-cell targeted therapies, or JAK inhibitors, showed poor SR after SARS-CoV-2 vaccination. A minority of patients attained seroconversion after booster vaccination. Strategies to improve immune response in these severely immunosuppressed patients are needed.
Collapse
Affiliation(s)
- Noppacharn Uaprasert
- Division of Hematology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand.
- Center of Excellence in Translational Hematology, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand.
| | - Palada Pitakkitnukun
- Division of Hematology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Nuanrat Tangcheewinsirikul
- Division of Hematology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
- Center of Excellence in Translational Hematology, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Thita Chiasakul
- Division of Hematology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
- Center of Excellence in Translational Hematology, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Ponlapat Rojnuckarin
- Division of Hematology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
- Center of Excellence in Translational Hematology, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| |
Collapse
|
5
|
Kratzer B, Trapin D, Gattinger P, Oberhofer T, Sehgal ANA, Waidhofer-Söllner P, Rottal A, Körmöczi U, Grabmeier-Pfistershammer K, Kopetzky GH, Tischer F, Valenta R, Pickl WF. Lack of Induction of RBD-Specific Neutralizing Antibodies despite Repeated Heterologous SARS-CoV-2 Vaccination Leading to Seroconversion and Establishment of T Cell-Specific Memory in a Patient in Remission of Multiple Myeloma. Vaccines (Basel) 2022; 10:vaccines10030374. [PMID: 35335006 PMCID: PMC8949333 DOI: 10.3390/vaccines10030374] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 02/04/2023] Open
Abstract
Background: Prophylactic vaccination against infectious diseases may induce a state of long-term protection in the otherwise healthy host. However, the situation is less predictable in immunocompromised patients and may require adjustment of vaccination schedules and/or basic therapy. Methods: A patient in full remission of multiple myeloma since the last three years and on long-term maintenance therapy with pomalidomide, a drug inhibiting angiogenesis and myeloma cell growth, was vaccinated twice with Comirnaty followed by two vaccinations with Vaxzevria. Seroconversion and SARS-CoV-2-specific cellular responses were monitored. Results: No signs of seroconversion or T cellular memory were observed after the first “full immunization” with Comirnaty. Consequently, long-term-maintenance therapy with Pomalidomide was stopped and two additional shots of Vaxzevria were administered after which the patient seroconverted with Spike(S)-protein specific antibody levels reaching 49 BAU/mL, mild S-peptide pool-specific T cell proliferation, effector cytokine production (IL-2, IL-13), and T cellular activation with increased numbers of CD3+CD4+CD25+ T cells as compared to vaccinated and non-vaccinated control subjects. However, despite suspension of immunosuppression and administration of in total four consecutive heterologous SARS-CoV-2 vaccine shots, the patient did not develop neutralizing RBD-specific antibodies. Conclusions: Despite immunomonitoring-based adjustment of vaccination and/or therapy schedules vaccination success, with clear correlates of protection, the development of RBD-specific antibodies could not be achieved in the immunocompromised patient with current SARS-CoV-2 vaccines. Thus, our report emphasizes the need for improved active and passive immunization strategies for SARS-CoV-2 infections.
Collapse
Affiliation(s)
- Bernhard Kratzer
- Division of Cellular Immunology and Immunohematology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria; (D.T.); (T.O.); (A.N.A.S.); (P.W.-S.); (A.R.); (U.K.); (K.G.-P.)
- Correspondence: (B.K.); (W.F.P.)
| | - Doris Trapin
- Division of Cellular Immunology and Immunohematology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria; (D.T.); (T.O.); (A.N.A.S.); (P.W.-S.); (A.R.); (U.K.); (K.G.-P.)
| | - Pia Gattinger
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090Vienna, Austria; (P.G.); (R.V.)
| | - Teresa Oberhofer
- Division of Cellular Immunology and Immunohematology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria; (D.T.); (T.O.); (A.N.A.S.); (P.W.-S.); (A.R.); (U.K.); (K.G.-P.)
| | - Al Nasar Ahmed Sehgal
- Division of Cellular Immunology and Immunohematology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria; (D.T.); (T.O.); (A.N.A.S.); (P.W.-S.); (A.R.); (U.K.); (K.G.-P.)
| | - Petra Waidhofer-Söllner
- Division of Cellular Immunology and Immunohematology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria; (D.T.); (T.O.); (A.N.A.S.); (P.W.-S.); (A.R.); (U.K.); (K.G.-P.)
| | - Arno Rottal
- Division of Cellular Immunology and Immunohematology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria; (D.T.); (T.O.); (A.N.A.S.); (P.W.-S.); (A.R.); (U.K.); (K.G.-P.)
| | - Ulrike Körmöczi
- Division of Cellular Immunology and Immunohematology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria; (D.T.); (T.O.); (A.N.A.S.); (P.W.-S.); (A.R.); (U.K.); (K.G.-P.)
| | - Katharina Grabmeier-Pfistershammer
- Division of Cellular Immunology and Immunohematology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria; (D.T.); (T.O.); (A.N.A.S.); (P.W.-S.); (A.R.); (U.K.); (K.G.-P.)
| | - Gerhard H. Kopetzky
- 1st Med. Department Hemato-Oncology, Universitätsklinik St. Poelten, 3100 St. Poelten, Austria;
| | - Franz Tischer
- Landesklinikum Lilienfeld, 3180 Lilienfeld, Austria;
| | - Rudolf Valenta
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090Vienna, Austria; (P.G.); (R.V.)
- Laboratory for Immunopathology, Department of Clinical Immunology and Allergology, I. M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
- NRC Institute of Immunology FMBA of Russia, 115478 Moscow, Russia
- Karl Landsteiner University of Health Sciences, 3500 Krems, Austria
| | - Winfried F. Pickl
- Division of Cellular Immunology and Immunohematology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria; (D.T.); (T.O.); (A.N.A.S.); (P.W.-S.); (A.R.); (U.K.); (K.G.-P.)
- Karl Landsteiner University of Health Sciences, 3500 Krems, Austria
- Correspondence: (B.K.); (W.F.P.)
| |
Collapse
|
6
|
French D, Ong CM, Patel P, Zuk M, Wu AHB. OUP accepted manuscript. Lab Med 2022; 53:514-522. [PMID: 35657821 PMCID: PMC9214127 DOI: 10.1093/labmed/lmac038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Objective Three SARS-CoV-2 vaccinations and boosters are available. We determined whether solid organ transplant patients mounted an immune response to the vaccinations and whether the antibodies had neutralizing activity compared to healthcare worker controls and monoclonal gammopathy patients. Methods Remnant plasma was obtained from vaccinated solid organ transplant, allogeneic stem cell transplant, monoclonal gammopathy patients, and healthcare worker controls. Samples positive on a SARS-CoV-2 IgG assay (detects spike protein and nucleocapsid) were run on a SARS-CoV-2 in vitro neutralizing antibody assay and a nucleocapsid-specific SARS-CoV-2 IgG assay. Results Only 25% of solid organ transplant patients produced antibodies to SARS-CoV-2 vaccination. Of these, 90% had neutralizing activity against wild type virus, but reduced activity to the variants compared to monoclonal gammopathy patients and healthcare worker controls, particularly the delta variant, for which only 50% had neutralizing antibody activity. Conclusion Solid organ transplant patients should consider protecting themselves against future SARS-CoV-2 infection.
Collapse
Affiliation(s)
| | - Chui Mei Ong
- Clinical Laboratories, Zuckerberg San Francisco General Hospital, San Francisco, CA, USA
| | | | | | - Alan H B Wu
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
- Clinical Laboratories, Zuckerberg San Francisco General Hospital, San Francisco, CA, USA
| |
Collapse
|