1
|
Qin S, Chi X, Zhu Z, Chen C, Zhang T, He M, Gao M, Zhao T, Zhang J, Zhang L, Zheng W, Chen Z, Wang W, Zhou B, Xia G, Wang C. Oocytes maintain low ROS levels to support the dormancy of primordial follicles. Aging Cell 2025; 24:e14338. [PMID: 39297300 PMCID: PMC11709087 DOI: 10.1111/acel.14338] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/05/2024] [Accepted: 08/28/2024] [Indexed: 01/11/2025] Open
Abstract
Primordial follicles (PFs) function as the long-term reserve for female reproduction, remaining dormant in the ovaries and becoming progressively depleted with age. Oxidative stress plays an important role in promoting female reproductive senescence during aging, but the underlying mechanisms remain unclear. Here, we find that low levels of reactive oxygen species (ROS) are essential for sustaining PF dormancy. Compared to growing follicles, oocytes within PFs were shown to be more susceptible to ROS, which accumulates and damages PFs to promote reproductive senescence. Mechanistically, oocytes within PFs were shown to express high levels of the intracellular antioxidant enzyme superoxide dismutase 1 (SOD1), counteracting ROS accumulation. Decreased SOD1 expression, as a result of aging or through the experimental deletion of the Sod1 gene in oocytes, resulted in increased oxidative stress and triggered ferroptosis within PFs. In conclusion, this study identified antioxidant defense mechanisms protecting PFs in mouse ovaries and characterized cell death mechanisms of oxidative stress-induced PF death.
Collapse
Affiliation(s)
- Shaogang Qin
- State Key Laboratory of Farm Animal Biotech BreedingCollege of Biological Sciences, China Agricultural UniversityBeijingChina
| | - Xinyue Chi
- State Key Laboratory of Farm Animal Biotech BreedingCollege of Biological Sciences, China Agricultural UniversityBeijingChina
| | - Zijian Zhu
- State Key Laboratory of Farm Animal Biotech BreedingCollege of Biological Sciences, China Agricultural UniversityBeijingChina
| | - Chuanhe Chen
- State Key Laboratory of Animal NutritionInstitute of Animal Science, Chinese Academy of Agricultural SciencesBeijingChina
| | - Tuo Zhang
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Department of PhysiologyCollege of Basic Medicine, Guizhou Medical UniversityGuiyangGuizhou ProvinceChina
| | - Meina He
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Department of PhysiologyCollege of Basic Medicine, Guizhou Medical UniversityGuiyangGuizhou ProvinceChina
| | - Meng Gao
- State Key Laboratory of Farm Animal Biotech BreedingCollege of Biological Sciences, China Agricultural UniversityBeijingChina
| | - Ting Zhao
- State Key Laboratory of Farm Animal Biotech BreedingCollege of Biological Sciences, China Agricultural UniversityBeijingChina
| | - Jingwen Zhang
- State Key Laboratory of Farm Animal Biotech BreedingCollege of Biological Sciences, China Agricultural UniversityBeijingChina
| | - Lifan Zhang
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western ChinaCollege of Life Science, Ningxia UniversityYinchuanChina
| | - Wenying Zheng
- State Key Laboratory of Farm Animal Biotech BreedingCollege of Biological Sciences, China Agricultural UniversityBeijingChina
| | - Ziqi Chen
- State Key Laboratory of Farm Animal Biotech BreedingCollege of Biological Sciences, China Agricultural UniversityBeijingChina
| | - Wenji Wang
- School of Life Science, Taizhou UniversityTaizhouChina
| | - Bo Zhou
- State Key Laboratory of Farm Animal Biotech BreedingCollege of Biological Sciences, China Agricultural UniversityBeijingChina
| | - Guoliang Xia
- State Key Laboratory of Farm Animal Biotech BreedingCollege of Biological Sciences, China Agricultural UniversityBeijingChina
| | - Chao Wang
- State Key Laboratory of Farm Animal Biotech BreedingCollege of Biological Sciences, China Agricultural UniversityBeijingChina
| |
Collapse
|
2
|
Qiao YN, Li L, Hu SH, Yang YX, Ma ZZ, Huang L, An YP, Yuan YY, Lin Y, Xu W, Li Y, Lin PC, Cao J, Zhao JY, Zhao SM. Ketogenic diet-produced β-hydroxybutyric acid accumulates brain GABA and increases GABA/glutamate ratio to inhibit epilepsy. Cell Discov 2024; 10:17. [PMID: 38346975 PMCID: PMC10861483 DOI: 10.1038/s41421-023-00636-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 12/06/2023] [Indexed: 02/15/2024] Open
Abstract
Ketogenic diet (KD) alleviates refractory epilepsy and reduces seizures in children. However, the metabolic/cell biologic mechanisms by which the KD exerts its antiepileptic efficacy remain elusive. Herein, we report that KD-produced β-hydroxybutyric acid (BHB) augments brain gamma-aminobutyric acid (GABA) and the GABA/glutamate ratio to inhibit epilepsy. The KD ameliorated pentetrazol-induced epilepsy in mice. Mechanistically, KD-produced BHB, but not other ketone bodies, inhibited HDAC1/HDAC2, increased H3K27 acetylation, and transcriptionally upregulated SIRT4 and glutamate decarboxylase 1 (GAD1). BHB-induced SIRT4 de-carbamylated and inactivated glutamate dehydrogenase to preserve glutamate for GABA synthesis, and GAD1 upregulation increased mouse brain GABA/glutamate ratio to inhibit neuron excitation. BHB administration in mice inhibited epilepsy induced by pentetrazol. BHB-mediated relief of epilepsy required high GABA level and GABA/glutamate ratio. These results identified BHB as the major antiepileptic metabolite of the KD and suggested that BHB may serve as an alternative and less toxic antiepileptic agent than KD.
Collapse
Affiliation(s)
- Ya-Nan Qiao
- The Obstetrics & Gynaecology Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodelling and Health, Institutes of Biomedical Sciences, and Children's Hospital of Fudan University, Fudan University, Shanghai, China
| | - Lei Li
- Department of Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Song-Hua Hu
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Yuan-Xin Yang
- The Obstetrics & Gynaecology Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodelling and Health, Institutes of Biomedical Sciences, and Children's Hospital of Fudan University, Fudan University, Shanghai, China
| | - Zhen-Zhen Ma
- The Obstetrics & Gynaecology Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodelling and Health, Institutes of Biomedical Sciences, and Children's Hospital of Fudan University, Fudan University, Shanghai, China
| | - Lin Huang
- The Obstetrics & Gynaecology Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodelling and Health, Institutes of Biomedical Sciences, and Children's Hospital of Fudan University, Fudan University, Shanghai, China
| | - Yan-Peng An
- The Obstetrics & Gynaecology Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodelling and Health, Institutes of Biomedical Sciences, and Children's Hospital of Fudan University, Fudan University, Shanghai, China
| | - Yi-Yuan Yuan
- The Obstetrics & Gynaecology Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodelling and Health, Institutes of Biomedical Sciences, and Children's Hospital of Fudan University, Fudan University, Shanghai, China
| | - Yan Lin
- The Obstetrics & Gynaecology Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodelling and Health, Institutes of Biomedical Sciences, and Children's Hospital of Fudan University, Fudan University, Shanghai, China
| | - Wei Xu
- The Obstetrics & Gynaecology Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodelling and Health, Institutes of Biomedical Sciences, and Children's Hospital of Fudan University, Fudan University, Shanghai, China
| | - Yao Li
- The Obstetrics & Gynaecology Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodelling and Health, Institutes of Biomedical Sciences, and Children's Hospital of Fudan University, Fudan University, Shanghai, China
| | - Peng-Cheng Lin
- Key Laboratory for Tibet Plateau Phytochemistry of Qinghai Province, College of Pharmacy, Qinghai University for Nationalities, Xining, Qinghai, China
| | - Jing Cao
- Department of Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Jian-Yuan Zhao
- Institute for Developmental and Regenerative Cardiovascular Medicine, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shi-Min Zhao
- The Obstetrics & Gynaecology Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodelling and Health, Institutes of Biomedical Sciences, and Children's Hospital of Fudan University, Fudan University, Shanghai, China.
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
- Key Laboratory for Tibet Plateau Phytochemistry of Qinghai Province, College of Pharmacy, Qinghai University for Nationalities, Xining, Qinghai, China.
| |
Collapse
|
3
|
Andersen OE, Poulsen JV, Farup J, de Morree A. Regulation of adult stem cell function by ketone bodies. Front Cell Dev Biol 2023; 11:1246998. [PMID: 37745291 PMCID: PMC10513036 DOI: 10.3389/fcell.2023.1246998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/14/2023] [Indexed: 09/26/2023] Open
Abstract
Adult stem cells play key roles in tissue homeostasis and regeneration. Recent evidence suggests that dietary interventions can significantly impact adult stem cell function. Some of these effects depend on ketone bodies. Adult stem cells could therefore potentially be manipulated through dietary regimens or exogenous ketone body supplementation, a possibility with significant implications for regenerative medicine. In this review we discuss recent findings of the mechanisms by which ketone bodies could influence adult stem cells, including ketogenesis in adult stem cells, uptake and transport of circulating ketone bodies, receptor-mediated signaling, and changes to cellular metabolism. We also discuss the potential effects of ketone bodies on intracellular processes such as protein acetylation and post-transcriptional control of gene expression. The exploration of mechanisms underlying the effects of ketone bodies on stem cell function reveals potential therapeutic targets for tissue regeneration and age-related diseases and suggests future research directions in the field of ketone bodies and stem cells.
Collapse
Affiliation(s)
- Ole Emil Andersen
- Department of Public Health, Aarhus University, Aarhus, Denmark
- Steno Diabetes Center Aarhus, Aarhus University, Aarhus, Denmark
| | | | - Jean Farup
- Steno Diabetes Center Aarhus, Aarhus University, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | |
Collapse
|