1
|
Neoh CF, Chen SCA, Lanternier F, Tio SY, Halliday CL, Kidd SE, Kong DCM, Meyer W, Hoenigl M, Slavin MA. Scedosporiosis and lomentosporiosis: modern perspectives on these difficult-to-treat rare mold infections. Clin Microbiol Rev 2024; 37:e0000423. [PMID: 38551323 PMCID: PMC11237582 DOI: 10.1128/cmr.00004-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024] Open
Abstract
SUMMARYAlthough Scedosporium species and Lomentospora prolificans are uncommon causes of invasive fungal diseases (IFDs), these infections are associated with high mortality and are costly to treat with a limited armamentarium of antifungal drugs. In light of recent advances, including in the area of new antifungals, the present review provides a timely and updated overview of these IFDs, with a focus on the taxonomy, clinical epidemiology, pathogenesis and host immune response, disease manifestations, diagnosis, antifungal susceptibility, and treatment. An expansion of hosts at risk for these difficult-to-treat infections has emerged over the last two decades given the increased use of, and broader population treated with, immunomodulatory and targeted molecular agents as well as wider adoption of antifungal prophylaxis. Clinical presentations differ not only between genera but also across the different Scedosporium species. L. prolificans is intrinsically resistant to most currently available antifungal agents, and the prognosis of immunocompromised patients with lomentosporiosis is poor. Development of, and improved access to, diagnostic modalities for early detection of these rare mold infections is paramount for timely targeted antifungal therapy and surgery if indicated. New antifungal agents (e.g., olorofim, fosmanogepix) with novel mechanisms of action and less cross-resistance to existing classes, availability of formulations for oral administration, and fewer drug-drug interactions are now in late-stage clinical trials, and soon, could extend options to treat scedosporiosis/lomentosporiosis. Much work remains to increase our understanding of these infections, especially in the pediatric setting. Knowledge gaps for future research are highlighted in the review.
Collapse
Affiliation(s)
- Chin Fen Neoh
- National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, Australia
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia
| | - Sharon C-A Chen
- Centre for Infectious Diseases and Microbiology Laboratory Services, New South Wales Health Pathology, Westmead Hospital, Sydney, Australia
- The University of Sydney, Sydney, Australia
- Department of Infectious Diseases, Westmead Hospital, Sydney, Australia
| | - Fanny Lanternier
- Service de Maladies Infectieuses et Tropicales, Hôpital universitaire Necker-Enfants malades, Paris, France
- National Reference Center for Invasive Mycoses and Antifungals, Translational Mycology research group, Mycology Department, Institut Pasteur, Université Paris Cité, Paris, France
| | - Shio Yen Tio
- National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, Australia
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia
| | - Catriona L. Halliday
- Centre for Infectious Diseases and Microbiology Laboratory Services, New South Wales Health Pathology, Westmead Hospital, Sydney, Australia
| | - Sarah E. Kidd
- National Mycology Reference Centre, SA Pathology, Adelaide, Australia
- School of Biological Sciences, Faculty of Sciences, University of Adelaide, Adelaide, Australia
| | - David C. M. Kong
- National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, Australia
- The National Centre for Antimicrobial Stewardship, The Peter Doherty Institute for Infections and Immunity, Melbourne, Australia
- Centre for Medicine Use and Safety, Monash Institute of Pharmaceutical Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Melbourne, Australia
- School of Medicine, Deakin University, Waurn Ponds, Geelong, Australia
| | - Wieland Meyer
- The University of Sydney, Sydney, Australia
- Westerdijk Fungal Biodiversity Institute, Utrecht, the Netherlands
| | - Martin Hoenigl
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- Translational Medical Mycology Research Group, ECMM Excellence Center for Clinical Mycology, Medical University of Graz, Graz, Austria
| | - Monica A. Slavin
- National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, Australia
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
2
|
Ravenel K, Guegan H, Gastebois A, Bouchara JP, Gangneux JP, Giraud S. Fungal Colonization of the Airways of Patients with Cystic Fibrosis: the Role of the Environmental Reservoirs. Mycopathologia 2024; 189:19. [PMID: 38407729 DOI: 10.1007/s11046-023-00818-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/23/2023] [Indexed: 02/27/2024]
Abstract
Filamentous fungi frequently colonize the airways of patients with cystic fibrosis and may cause severe diseases, such as the allergic bronchopulmonary aspergillosis. The most common filamentous fungi capable to chronically colonize the respiratory tract of the patients are Aspergillus fumigatus and Scedosporium species. Defining the treatment strategy may be challenging, the number of available drugs being limited and some of the causative agents being multiresistant microorganisms. The knowledge of the fungal niches in the outdoor and indoor environment is needed for understanding the origin of the contamination of the patients. In light of the abundance of some of the causative molds in compost, agricultural and flower fields, occupational activities related to such environments should be discouraged for patients with cystic fibrosis (CF). In addition, the microbiological monitoring of their indoor environment, including analysis of air and dust on surfaces, is essential to propose preventive measures aiming to reduce the exposure to environmental molds. Nevertheless, some specific niches were also identified in the indoor environment, in relation with humidity which favors the growth of thermotolerant molds. Potted plants were reported as indoor reservoirs for Scedosporium species. Likewise, Exophiala dermatitidis may be spread in the kitchen via dishwashers. However, genotype studies are still required to establish the link between dishwashers and colonization of the airways of CF patients by this black yeast. Moreover, as nothing is known regarding the other filamentous fungi associated with CF, further studies should be conducted to identify other potential specific niches in the habitat.
Collapse
Affiliation(s)
- Kévin Ravenel
- IRF (Infections Respiratoires Fongiques), SFR ICAT 4208, Univ Angers, Univ Brest, Angers, France
| | - Hélène Guegan
- EHESP, IRSET (Institut de Recherche en Santé Environnement et Travail), UMR_S 1085, CHU Rennes, INSERM, Univ Rennes, 35000, Rennes, France
| | - Amandine Gastebois
- IRF (Infections Respiratoires Fongiques), SFR ICAT 4208, Univ Angers, Univ Brest, Angers, France
| | - Jean-Philippe Bouchara
- IRF (Infections Respiratoires Fongiques), SFR ICAT 4208, Univ Angers, Univ Brest, Angers, France
| | - Jean-Pierre Gangneux
- EHESP, IRSET (Institut de Recherche en Santé Environnement et Travail), UMR_S 1085, CHU Rennes, INSERM, Univ Rennes, 35000, Rennes, France
| | - Sandrine Giraud
- IRF (Infections Respiratoires Fongiques), SFR ICAT 4208, Univ Angers, Univ Brest, Angers, France.
| |
Collapse
|
3
|
Kurbessoian T, Murante D, Crocker A, Hogan DA, Stajich JE. In host evolution of Exophiala dermatitidis in cystic fibrosis lung micro-environment. G3 (BETHESDA, MD.) 2023; 13:jkad126. [PMID: 37293838 PMCID: PMC10484061 DOI: 10.1093/g3journal/jkad126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 09/26/2022] [Accepted: 05/18/2023] [Indexed: 06/10/2023]
Abstract
Individuals with cystic fibrosis (CF) are susceptible to chronic lung infections that lead to inflammation and irreversible lung damage. While most respiratory infections that occur in CF are caused by bacteria, some are dominated by fungi such as the slow-growing black yeast Exophiala dermatitidis. Here, we analyze isolates of E. dermatitidis cultured from two samples, collected from a single subject 2 years apart. One isolate genome was sequenced using long-read Nanopore technology as an in-population reference to use in comparative single nucleotide polymorphism and insertion-deletion variant analyses of 23 isolates. We then used population genomics and phylo-genomics to compare the isolates to each other as well as the reference genome strain E. dermatitidis NIH/UT8656. Within the CF lung population, three E. dermatitidis clades were detected, each with varying mutation rates. Overall, the isolates were highly similar suggesting that they were recently diverged. All isolates were MAT 1-1, which was consistent with their high relatedness and the absence of evidence for mating or recombination between isolates. Phylogenetic analysis grouped sets of isolates into clades that contained isolates from both early and late time points indicating there are multiple persistent lineages. Functional assessment of variants unique to each clade identified alleles in genes that encode transporters, cytochrome P450 oxidoreductases, iron acquisition, and DNA repair processes. Consistent with the genomic heterogeneity, isolates showed some stable phenotype heterogeneity in melanin production, subtle differences in antifungal minimum inhibitory concentrations, and growth on different substrates. The persistent population heterogeneity identified in lung-derived isolates is an important factor to consider in the study of chronic fungal infections, and the analysis of changes in fungal pathogens over time may provide important insights into the physiology of black yeasts and other slow-growing fungi in vivo.
Collapse
Affiliation(s)
- Tania Kurbessoian
- Department of Microbiology and Plant Pathology and Institute of Integrative Genome Biology, University of California Riverside, Riverside, CA 92521, USA
| | - Daniel Murante
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA
| | - Alex Crocker
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA
| | - Deborah A Hogan
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA
| | - Jason E Stajich
- Department of Microbiology and Plant Pathology and Institute of Integrative Genome Biology, University of California Riverside, Riverside, CA 92521, USA
| |
Collapse
|
4
|
Brackin AP, Hemmings SJ, Fisher MC, Rhodes J. Fungal Genomics in Respiratory Medicine: What, How and When? Mycopathologia 2021; 186:589-608. [PMID: 34490551 PMCID: PMC8421194 DOI: 10.1007/s11046-021-00573-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/14/2021] [Indexed: 12/20/2022]
Abstract
Respiratory infections caused by fungal pathogens present a growing global health concern and are a major cause of death in immunocompromised patients. Worryingly, coronavirus disease-19 (COVID-19) resulting in acute respiratory distress syndrome has been shown to predispose some patients to airborne fungal co-infections. These include secondary pulmonary aspergillosis and mucormycosis. Aspergillosis is most commonly caused by the fungal pathogen Aspergillus fumigatus and primarily treated using the triazole drug group, however in recent years, this fungus has been rapidly gaining resistance against these antifungals. This is of serious clinical concern as multi-azole resistant forms of aspergillosis have a higher risk of mortality when compared against azole-susceptible infections. With the increasing numbers of COVID-19 and other classes of immunocompromised patients, early diagnosis of fungal infections is critical to ensuring patient survival. However, time-limited diagnosis is difficult to achieve with current culture-based methods. Advances within fungal genomics have enabled molecular diagnostic methods to become a fast, reproducible, and cost-effective alternative for diagnosis of respiratory fungal pathogens and detection of antifungal resistance. Here, we describe what techniques are currently available within molecular diagnostics, how they work and when they have been used.
Collapse
Affiliation(s)
- Amelie P. Brackin
- MRC Centre for Global Disease Analysis, Imperial College London, London, UK
| | - Sam J. Hemmings
- Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| | - Matthew C. Fisher
- Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| | - Johanna Rhodes
- Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| |
Collapse
|
5
|
Fungal Infection and Inflammation in Cystic Fibrosis. Pathogens 2021; 10:pathogens10050618. [PMID: 34069863 PMCID: PMC8157353 DOI: 10.3390/pathogens10050618] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 12/14/2022] Open
Abstract
Fungi are frequently recovered from lower airway samples from people with cystic fibrosis (CF), yet the role of fungi in the progression of lung disease is debated. Recent studies suggest worsening clinical outcomes associated with airway fungal detection, although most studies to date are retrospective or observational. The presence of fungi can elicit a T helper cell type 2 (Th-2) mediated inflammatory reaction known as allergic bronchopulmonary aspergillosis (ABPA), particularly in those with a genetic atopic predisposition. In this review, we discuss the epidemiology of fungal infections in people with CF, risk factors associated with development of fungal infections, and microbiologic approaches for isolation and identification of fungi. We review the spectrum of fungal disease presentations, clinical outcomes after isolation of fungi from airway samples, and the importance of considering airway co-infections. Finally, we discuss the association between fungi and airway inflammation highlighting gaps in knowledge and future research questions that may further elucidate the role of fungus in lung disease progression.
Collapse
|
6
|
Renner S, Nachbaur E, Jaksch P, Dehlink E. Update on Respiratory Fungal Infections in Cystic Fibrosis Lung Disease and after Lung Transplantation. J Fungi (Basel) 2020; 6:381. [PMID: 33371198 PMCID: PMC7766476 DOI: 10.3390/jof6040381] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/08/2020] [Accepted: 12/16/2020] [Indexed: 12/19/2022] Open
Abstract
Cystic fibrosis is the most common autosomal-recessive metabolic disease in the Western world. Impaired trans-membrane chloride transport via the cystic fibrosis transmembrane conductance regulator (CFTR) protein causes thickened body fluids. In the respiratory system, this leads to chronic suppurative cough and recurrent pulmonary infective exacerbations, resulting in progressive lung damage and respiratory failure. Whilst the impact of bacterial infections on CF lung disease has long been recognized, our understanding of pulmonary mycosis is less clear. The range and detection rates of fungal taxa isolated from CF airway samples are expanding, however, in the absence of consensus criteria and univocal treatment protocols for most respiratory fungal conditions, interpretation of laboratory reports and the decision to treat remain challenging. In this review, we give an overview on fungal airway infections in CF and CF-lung transplant recipients and focus on the most common fungal taxa detected in CF, Aspergillus fumigatus, Candida spp., Scedosporium apiospermum complex, Lomentospora species, and Exophiala dermatitidis, their clinical presentations, common treatments and prophylactic strategies, and clinical challenges from a physician's point of view.
Collapse
Affiliation(s)
- Sabine Renner
- Division of Pediatric Pulmonology, Allergology and Endocrinology, Department of Pediatrics and Adolescent Medicine, Associated National Center in the European Reference Network on Rare Respiratory Diseases ERN-LUNG and the European Reference Network on Transplantation in Children, ERN TRANSPLANT-CHILD, Medical University of Vienna, 1090 Vienna, Austria; (S.R.); (E.N.)
| | - Edith Nachbaur
- Division of Pediatric Pulmonology, Allergology and Endocrinology, Department of Pediatrics and Adolescent Medicine, Associated National Center in the European Reference Network on Rare Respiratory Diseases ERN-LUNG and the European Reference Network on Transplantation in Children, ERN TRANSPLANT-CHILD, Medical University of Vienna, 1090 Vienna, Austria; (S.R.); (E.N.)
| | - Peter Jaksch
- Division of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria;
| | - Eleonora Dehlink
- Division of Pediatric Pulmonology, Allergology and Endocrinology, Department of Pediatrics and Adolescent Medicine, Associated National Center in the European Reference Network on Rare Respiratory Diseases ERN-LUNG and the European Reference Network on Transplantation in Children, ERN TRANSPLANT-CHILD, Medical University of Vienna, 1090 Vienna, Austria; (S.R.); (E.N.)
| |
Collapse
|
7
|
Comparative transcriptome analysis unveils the adaptative mechanisms of Scedosporium apiospermum to the microenvironment encountered in the lungs of patients with cystic fibrosis. Comput Struct Biotechnol J 2020; 18:3468-3483. [PMID: 33294141 PMCID: PMC7691682 DOI: 10.1016/j.csbj.2020.10.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/30/2020] [Accepted: 10/30/2020] [Indexed: 11/21/2022] Open
Abstract
Scedosporium species rank second among the filamentous fungi colonizing the lungs of patients with cystic fibrosis (CF). Apart from the context of immunodeficiency (lung transplantation), the colonization of the CF airways by these fungi usually remains asymptomatic. Why the colonization of the lower airways by Scedosporium species is fairly tolerated by CF patients while these fungi are able to induce a marked inflammatory reaction in other clinical contexts remains questionable. In this regards, we were interested here in exploring the transcriptional reprogramming that accompanies the adaptation of these fungi to the particular microenvironment encountered in the airways of CF patients. Cultivation of Scedosporium apiospermum in conditions mimicking the microenvironment in the CF lungs was shown to induce marked transcriptional changes. This includes notably the down-regulation of enzymes involved in the synthesis of some major components of the plasma membrane which may reflect the ability of the fungus to evade the host immune response by lowering the biosynthesis of some major antigenic determinants or inhibiting their targeting to the cell surface through alterations of the membrane fluidity. In addition, this analysis revealed that some genes encoding enzymes involved in the biosynthesis of some mycotoxins were down-regulated suggesting that, during the colonization process, S. apiospermum reduces the production of some toxic secondary metabolites to prevent exacerbation of the immune system response. Finally, a strong up-regulation of many genes encoding enzymes involved in the degradation of aromatic compounds was observed, suggesting that these catabolic properties would predispose the fungus to particular patterns of human pathogenicity. Together these data provide new insights into the adaptative mechanisms developed by S. apiospermum in the CF lungs, which should be considered for identification of potential targets for drug development, but also for the experimental conditions to be used in in vitro susceptibility testing of clinical isolates to current antifungals.
Collapse
|
8
|
Fun(gi)omics: Advanced and Diverse Technologies to Explore Emerging Fungal Pathogens and Define Mechanisms of Antifungal Resistance. mBio 2020; 11:mBio.01020-20. [PMID: 33024032 PMCID: PMC7542357 DOI: 10.1128/mbio.01020-20] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The landscape of infectious fungal agents includes previously unidentified or rare pathogens with the potential to cause unprecedented casualties in biodiversity, food security, and human health. The influences of human activity, including the crisis of climate change, along with globalized transport, are underlying factors shaping fungal adaptation to increased temperature and expanded geographical regions. Furthermore, the emergence of novel antifungal-resistant strains linked to excessive use of antifungals (in the clinic) and fungicides (in the field) offers an additional challenge to protect major crop staples and control dangerous fungal outbreaks. The landscape of infectious fungal agents includes previously unidentified or rare pathogens with the potential to cause unprecedented casualties in biodiversity, food security, and human health. The influences of human activity, including the crisis of climate change, along with globalized transport, are underlying factors shaping fungal adaptation to increased temperature and expanded geographical regions. Furthermore, the emergence of novel antifungal-resistant strains linked to excessive use of antifungals (in the clinic) and fungicides (in the field) offers an additional challenge to protect major crop staples and control dangerous fungal outbreaks. Hence, the alarming frequency of fungal infections in medical and agricultural settings requires effective research to understand the virulent nature of fungal pathogens and improve the outcome of infection in susceptible hosts. Mycology-driven research has benefited from a contemporary and unified approach of omics technology, deepening the biological, biochemical, and biophysical understanding of these emerging fungal pathogens. Here, we review the current state-of-the-art multi-omics technologies, explore the power of data integration strategies, and highlight discovery-based revelations of globally important and taxonomically diverse fungal pathogens. This information provides new insight for emerging pathogens through an in-depth understanding of well-characterized fungi and provides alternative therapeutic strategies defined through novel findings of virulence, adaptation, and resistance.
Collapse
|
9
|
Bouchara JP, Le Govic Y, Kabbara S, Cimon B, Zouhair R, Hamze M, Papon N, Nevez G. Advances in understanding and managing Scedosporium respiratory infections in patients with cystic fibrosis. Expert Rev Respir Med 2019; 14:259-273. [PMID: 31868041 DOI: 10.1080/17476348.2020.1705787] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Considered for a long time to be exclusively responsible for chronic localized infections, fungi of the genus Scedosporium have recently received a renewed interest because of their recognition as common colonizing agents of the respiratory tract of patients with cystic fibrosis, and of the description of severe disseminated infections in patients undergoing lung transplantation. Recently, several studies have been carried out on these opportunistic pathogens, which led to some advances in the understanding of their pathogenic mechanisms and in the biological diagnosis of the airway colonization/respiratory infections caused by these fungi.Areas covered: From a bibliographic search on the Pubmed database, we summarize the current knowledge about the taxonomy of Scedosporium species, the epidemiology of these fungi and their pathogenic mechanisms, and present the improvements in the detection of the airway colonization and diagnosis of Scedosporium respiratory infections, the difficulties in their therapeutic management, and the antifungal drugs in development.Expert opinion: As described in this review, many advances have been made regarding the taxonomy and ecology of Scedosporium species or the molecular determinants of their pathogenicity, but also in the management of Scedosporium infections, particularly by improving the biological diagnostic and publishing evidence for the efficacy of combined therapy.
Collapse
Affiliation(s)
- Jean-Philippe Bouchara
- Groupe d'Etude des Interactions Hôte-Pathogène (GEIHP, EA 3142), UNIV Angers, UNIV Brest, SFR 4208 ICAT, Angers, France
| | - Yohann Le Govic
- Groupe d'Etude des Interactions Hôte-Pathogène (GEIHP, EA 3142), UNIV Angers, UNIV Brest, SFR 4208 ICAT, Angers, France
| | - Samar Kabbara
- Groupe d'Etude des Interactions Hôte-Pathogène (GEIHP, EA 3142), UNIV Angers, UNIV Brest, SFR 4208 ICAT, Angers, France
| | - Bernard Cimon
- Groupe d'Etude des Interactions Hôte-Pathogène (GEIHP, EA 3142), UNIV Angers, UNIV Brest, SFR 4208 ICAT, Angers, France
| | - Rachid Zouhair
- Groupe d'Etude des Interactions Hôte-Pathogène (GEIHP, EA 3142), UNIV Angers, UNIV Brest, SFR 4208 ICAT, Angers, France
| | - Monzer Hamze
- Laboratoire Microbiologie Santé et Environnement (LMSE), Ecole Doctorale des Sciences et de Technologie, Faculté de Santé Publique, Université Libanaise, Tripoli, Liban
| | - Nicolas Papon
- Groupe d'Etude des Interactions Hôte-Pathogène (GEIHP, EA 3142), UNIV Angers, UNIV Brest, SFR 4208 ICAT, Angers, France
| | - Gilles Nevez
- Groupe d'Etude des Interactions Hôte-Pathogène (GEIHP, EA 3142), UNIV Angers, UNIV Brest, Brest, France
| |
Collapse
|
10
|
Thornton CR. Detection of the 'Big Five' mold killers of humans: Aspergillus, Fusarium, Lomentospora, Scedosporium and Mucormycetes. ADVANCES IN APPLIED MICROBIOLOGY 2019; 110:1-61. [PMID: 32386603 DOI: 10.1016/bs.aambs.2019.10.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Fungi are an important but frequently overlooked cause of morbidity and mortality in humans. Life-threatening fungal infections mainly occur in immunocompromised patients, and are typically caused by environmental opportunists that take advantage of a weakened immune system. The filamentous fungus Aspergillus fumigatus is the most important and well-documented mold pathogen of humans, causing a number of complex respiratory diseases, including invasive pulmonary aspergillosis, an often fatal disease in patients with acute leukemia or in immunosuppressed bone marrow or solid organ transplant recipients. However, non-Aspergillus molds are increasingly reported as agents of disseminated diseases, with Fusarium, Scedosporium, Lomentospora and mucormycete species now firmly established as pathogens of immunosuppressed and immunocompetent individuals. Despite well-documented risk factors for invasive fungal diseases, and increased awareness of the risk factors for life-threatening infections, the number of deaths attributable to molds is likely to be severely underestimated driven, to a large extent, by the lack of readily accessible, cheap, and accurate tests that allow detection and differentiation of infecting species. Early diagnosis is critical to patient survival but, unlike Aspergillus diseases, where a number of CE-marked or FDA-approved biomarker tests are now available for clinical diagnosis, similar tests for fusariosis, scedosporiosis and mucormycosis remain experimental, with detection reliant on insensitive and slow culture of pathogens from invasive bronchoalveolar lavage fluid, tissue biopsy, or from blood. This review examines the ecology, epidemiology, and contemporary methods of detection of these mold pathogens, and the obstacles to diagnostic test development and translation of novel biomarkers to the clinical setting.
Collapse
|
11
|
Hong G, Lechtzin N, Hadjiliadis D, Kawut SM. Inhaled antibiotic use is associated with Scedosporium/Lomentospora species isolation in cystic fibrosis. Pediatr Pulmonol 2019; 54:133-140. [PMID: 30549449 PMCID: PMC8115015 DOI: 10.1002/ppul.24210] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 10/19/2018] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Prevalence of fungi has been rising in the cystic fibrosis (CF) population. Scedosporium species (spp) is the second most common mold seen in the CF respiratory tract. However, the characteristics associated with Scedosporium isolation and its clinical implications are poorly understood. The goal of this study was to determine clinical factors associated with Scedosporium spp to better understand the mechanisms that may contribute to the emergence of filamentous fungi in CF. METHODS We conducted a retrospective cohort study of subjects followed in the CF Foundation Patient Registry between January 1, 2010 and December 31, 2012. Patients under 6 years of age, history of solid organ transplantation, and insufficient respiratory culture data were excluded. We used a multivariable logistic regression model to determine demographic data and baseline disease characteristics, medications and co-infections associated with Scedosporium spp recovery in CF sputum. RESULTS Among 19 023 subjects, prevalence of Scedosporium spp was 615 (3.2%). Older age (odds ratio [OR] 1.16, 95% confidence interval [CI] 1.07, 1.26) and white race (OR 1.69, 95% CI 1.09, 2.63) were the demographic factors associated with Scedosporium spp isolation. Inhaled antibiotic use had a significant association with Scedosporium isolation (OR 2.01, 95% CI 1.61, 2.52). For every additional course of intravenous antibiotics, the odds of Scedosporium isolation increased by 8% (OR 1.08, 95% CI 1.03, 1.14). CONCLUSIONS The association between inhaled antibiotics and Scedosporium informs us that chronic inhaled antibiotics may be playing a role in Scedosporium isolation. Further investigation to better characterize this relationship is necessary.
Collapse
Affiliation(s)
- Gina Hong
- Department of Medicine, Pulmonary, Allergy, and Critical Care Division, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Noah Lechtzin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Denis Hadjiliadis
- Department of Medicine, Pulmonary, Allergy, and Critical Care Division, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Steven M Kawut
- Department of Medicine, Pulmonary, Allergy, and Critical Care Division, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania.,Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
12
|
Mello TP, Bittencourt VCB, Liporagi-Lopes LC, Aor AC, Branquinha MH, Santos AL. Insights into the social life and obscure side of Scedosporium/Lomentospora species: ubiquitous, emerging and multidrug-resistant opportunistic pathogens. FUNGAL BIOL REV 2019. [DOI: 10.1016/j.fbr.2018.07.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
13
|
Le Govic Y, Papon N, Le Gal S, Lelièvre B, Bouchara JP, Vandeputte P. Genomic Organization and Expression of Iron Metabolism Genes in the Emerging Pathogenic Mold Scedosporium apiospermum. Front Microbiol 2018; 9:827. [PMID: 29755443 PMCID: PMC5932178 DOI: 10.3389/fmicb.2018.00827] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/11/2018] [Indexed: 12/11/2022] Open
Abstract
The ubiquitous mold Scedosporium apiospermum is increasingly recognized as an emerging pathogen, especially among patients with underlying disorders such as immunodeficiency or cystic fibrosis (CF). Indeed, it ranks the second among the filamentous fungi colonizing the respiratory tract of CF patients. However, our knowledge about virulence factors of this fungus is still limited. The role of iron-uptake systems may be critical for establishment of Scedosporium infections, notably in the iron-rich environment of the CF lung. Two main strategies are employed by fungi to efficiently acquire iron from their host or from their ecological niche: siderophore production and reductive iron assimilation (RIA) systems. The aim of this study was to assess the existence of orthologous genes involved in iron metabolism in the recently sequenced genome of S. apiospermum. At first, a tBLASTn analysis using A. fumigatus iron-related proteins as query revealed orthologs of almost all relevant loci in the S. apiospermum genome. Whereas the genes putatively involved in RIA were randomly distributed, siderophore biosynthesis and transport genes were organized in two clusters, each containing a non-ribosomal peptide synthetase (NRPS) whose orthologs in A. fumigatus have been described to catalyze hydroxamate siderophore synthesis. Nevertheless, comparative genomic analysis of siderophore-related clusters showed greater similarity between S. apiospermum and phylogenetically close molds than with Aspergillus species. The expression level of these genes was then evaluated by exposing conidia to iron starvation and iron excess. The expression of several orthologs of A. fumigatus genes involved in siderophore-based iron uptake or RIA was significantly induced during iron starvation, and conversely repressed in iron excess conditions. Altogether, these results indicate that S. apiospermum possesses the genetic information required for efficient and competitive iron uptake. They also suggest an important role of the siderophore production system in iron uptake by S. apiospermum.
Collapse
Affiliation(s)
- Yohann Le Govic
- Groupe d'Etude des Interactions Hôte-Pathogène (EA 3142), SFR ICAT 4208, UNIV Angers, UNIV Brest, Angers, France
- Laboratoire de Parasitologie-Mycologie, Centre Hospitalier Universitaire, Angers, France
| | - Nicolas Papon
- Groupe d'Etude des Interactions Hôte-Pathogène (EA 3142), SFR ICAT 4208, UNIV Angers, UNIV Brest, Angers, France
| | - Solène Le Gal
- Groupe d'Etude des Interactions Hôte-Pathogène (EA 3142), SFR ICAT 4208, UNIV Angers, UNIV Brest, Brest, France
- Laboratoire de Parasitologie-Mycologie, Centre Hospitalier Universitaire, Brest, France
| | - Bénédicte Lelièvre
- Groupe d'Etude des Interactions Hôte-Pathogène (EA 3142), SFR ICAT 4208, UNIV Angers, UNIV Brest, Angers, France
- Laboratoire de Pharmacologie-Toxicologie, Centre Hospitalier Universitaire, Angers, France
| | - Jean-Philippe Bouchara
- Groupe d'Etude des Interactions Hôte-Pathogène (EA 3142), SFR ICAT 4208, UNIV Angers, UNIV Brest, Angers, France
- Laboratoire de Parasitologie-Mycologie, Centre Hospitalier Universitaire, Angers, France
| | - Patrick Vandeputte
- Groupe d'Etude des Interactions Hôte-Pathogène (EA 3142), SFR ICAT 4208, UNIV Angers, UNIV Brest, Angers, France
- Laboratoire de Parasitologie-Mycologie, Centre Hospitalier Universitaire, Angers, France
| |
Collapse
|