1
|
Larionova D, Huysseune A. Differential retinoic acid sensitivity of oral and pharyngeal teeth in medaka (Oryzias latipes) supports the importance of pouch-cleft contacts in pharyngeal tooth initiation. Dev Dyn 2024; 253:1094-1105. [PMID: 38940489 DOI: 10.1002/dvdy.723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/23/2024] [Accepted: 06/13/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND Previous studies have claimed that pharyngeal teeth in medaka (Oryzias latipes) are induced independent of retinoic acid (RA) signaling, unlike in zebrafish (Danio rerio). In zebrafish, pharyngeal tooth formation depends on a proper physical contact between the embryonic endodermal pouch anterior to the site of tooth formation, and the adjacent ectodermal cleft, an RA-dependent process. Here, we test the hypothesis that a proper pouch-cleft contact is required for pharyngeal tooth formation in embryonic medaka, as it is in zebrafish. We used 4-[diethylamino]benzaldehyde (DEAB) to pharmacologically inhibit RA production, and thus pouch-cleft contacts, in experiments strictly controlled in time, and analyzed these using high-resolution imaging. RESULTS Pharyngeal teeth in medaka were present only when the corresponding anterior pouch had reached the ectoderm (i.e., a physical pouch-cleft contact established), similar to the situation in zebrafish. Oral teeth were present even when the treatment started approximately 4 days before normal oral tooth appearance. CONCLUSIONS RA dependency for pharyngeal tooth formation is not different between zebrafish and medaka. We propose that the differential response to DEAB of oral versus pharyngeal teeth in medaka could be ascribed to the distinct germ layer origin of the epithelia involved in tooth formation in these two regions.
Collapse
Affiliation(s)
- D Larionova
- Research Group Evolutionary Developmental Biology, Biology Department, Ghent University, Ghent, Belgium
| | - A Huysseune
- Research Group Evolutionary Developmental Biology, Biology Department, Ghent University, Ghent, Belgium
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
2
|
Huysseune A, Witten PE. Continuous tooth replacement: what can teleost fish teach us? Biol Rev Camb Philos Soc 2024; 99:797-819. [PMID: 38151229 DOI: 10.1111/brv.13045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 12/29/2023]
Abstract
Most tooth-bearing non-mammalian vertebrates have the capacity to replace their teeth throughout life. This capacity was lost in mammals, which replace their teeth only once at most. Not surprisingly, continuous tooth replacement has attracted much attention. Classical morphological studies (e.g. to analyse patterns of replacement) are now being complemented by molecular studies that investigate the expression of genes involved in tooth formation. This review focuses on ray-finned fish (actinopterygians), which have teeth often distributed throughout the mouth and pharynx, and more specifically on teleost fish, the largest group of extant vertebrates. First we highlight the diversity in tooth distribution and in tooth replacement patterns. Replacement tooth formation can start from a distinct (usually discontinuous and transient) dental lamina, but also in the absence of a successional lamina, e.g. from the surface epithelium of the oropharynx or from the outer dental epithelium of a predecessor tooth. The relationship of a replacement tooth to its predecessor is closely related to whether replacement is the result of a prepattern or occurs on demand. As replacement teeth do not necessarily have the same molecular signature as first-generation teeth, the question of the actual trigger for tooth replacement is discussed. Much emphasis has been laid in the past on the potential role of epithelial stem cells in initiating tooth replacement. The outcome of such studies has been equivocal, possibly related to the taxa investigated, and the permanent or transient nature of the dental lamina. Alternatively, replacement may result from local proliferation of undifferentiated progenitors, stimulated by hitherto unknown, perhaps mesenchymal, factors. So far, the role of the neurovascular link in continuous tooth replacement has been poorly investigated, despite the presence of a rich vascularisation surrounding actinopterygian (as well as chondrichthyan) teeth and despite a complete arrest of tooth replacement after nerve resection. Lastly, tooth replacement is possibly co-opted as a process to expand the number of teeth in a dentition ontogenetically whilst conserving features of the primary dentition. That neither a dental lamina, nor stem cells appear to be required for tooth replacement places teleosts in an advantageous position as models for tooth regeneration in humans, where the dental lamina regresses and epithelial stem cells are considered lost.
Collapse
Affiliation(s)
- Ann Huysseune
- Research Group Evolutionary Developmental Biology, Biology Department, Ghent University, K.L. Ledeganckstraat 35, Ghent, B-9000, Belgium
- Department of Zoology, Faculty of Science, Charles University, Vinicna 7, Prague, 128 44, Czech Republic
| | - P Eckhard Witten
- Research Group Evolutionary Developmental Biology, Biology Department, Ghent University, K.L. Ledeganckstraat 35, Ghent, B-9000, Belgium
| |
Collapse
|
3
|
Morita T, Matsumoto S, Baba O. Expression of secretory calcium-binding phosphoprotein (scpp) genes in medaka during the formation and replacement of pharyngeal teeth. BMC Oral Health 2023; 23:744. [PMID: 37821862 PMCID: PMC10568847 DOI: 10.1186/s12903-023-03498-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 10/06/2023] [Indexed: 10/13/2023] Open
Abstract
BACKGROUND Analyses of tooth families and tooth-forming units in medaka with regard to tooth replacement cycles and the localization of odontogenic stem cell niches in the pharyngeal dentition clearly indicate that continuous tooth replacement is maintained. The secretory calcium-binding phosphoprotein (scpp) gene cluster is involved in the formation of mineralized tissues, such as dental and bone tissues, and the genes encoding multiple SCPPs are conserved in fish, amphibians, reptiles, and mammals. In the present study, we examined the expression patterns of several scpp genes in the pharyngeal teeth of medaka to elucidate their roles during tooth formation and replacement. METHODS Himedaka (Japanese medaka, Oryzias latipes) of both sexes (body length: 28 to 33 mm) were used in this study. Real-time quantitative reverse transcription-polymerase chain reaction (PCR) (qPCR) data were evaluated using one-way analysis of variance for multi-group comparisons, and the significance of differences was determined by Tukey's comparison test. The expression of scpp genes was examined using in situ hybridization (ISH) with a digoxigenin-labeled, single-stranded antisense probe. RESULTS qPCR results showed that several scpp genes were strongly expressed in pharyngeal tissues. ISH analysis revealed specific expression of scpp1, scpp5, and sparc in tooth germ, and scpp5 was continually expressed in the odontoblasts of teeth attached to pedicles, but not in the osteoblasts of pedicles. In addition, many scpp genes were expressed in inner dental epithelium (ide), but not in odontoblasts, and scpp2 consistently showed epithelial-specific expression in the functional teeth. Taken together, these data indicate that specific expression of scpp2 and scpp5 may play a critical role in pharyngeal tooth formation in medaka. CONCLUSION We characterized changes in the expression patterns of scpp genes in medaka during the formation and replacement of pharyngeal teeth.
Collapse
Affiliation(s)
- Tsuyoshi Morita
- Department of Oral and Maxillofacial Anatomy, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15, Kuramoto-cho, Tokushima-shi, Tokushima, 770-8504, Japan.
| | - Shin Matsumoto
- Oral Surgery Department, St. Luke's International Hospital, 9-1, Akashi-cho, Chuo-ku, Tokyo, 104-8560, Japan
| | - Otto Baba
- Department of Oral and Maxillofacial Anatomy, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15, Kuramoto-cho, Tokushima-shi, Tokushima, 770-8504, Japan
| |
Collapse
|
4
|
Qu M, Zhang Y, Gao Z, Zhang Z, Liu Y, Wan S, Wang X, Yu H, Zhang H, Liu Y, Schneider R, Meyer A, Lin Q. The genetic basis of the leafy seadragon's unique camouflage morphology and avenues for its efficient conservation derived from habitat modeling. SCIENCE CHINA. LIFE SCIENCES 2023:10.1007/s11427-022-2317-6. [PMID: 37204606 DOI: 10.1007/s11427-022-2317-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/03/2023] [Indexed: 05/20/2023]
Abstract
The leafy seadragon certainly is among evolution's most "beautiful and wonderful" species aptly named for its extraordinary camouflage mimicking its coastal seaweed habitat. However, limited information is known about the genetic basis of its phenotypes and conspicuous camouflage. Here, we revealed genomic signatures of rapid evolution and positive selection in core genes related to its camouflage, which allowed us to predict population dynamics for this species. Comparative genomic analysis revealed that seadragons have the smallest olfactory repertoires among all ray-finned fishes, suggesting adaptations to the highly specialized habitat. Other positively selected and rapidly evolving genes that serve in bone development and coloration are highly expressed in the leaf-like appendages, supporting a recent adaptive shift in camouflage appendage formation. Knock-out of bmp6 results in dysplastic intermuscular bones with a significantly reduced number in zebrafish, implying its important function in bone formation. Global climate change-induced loss of seagrass beds now severely threatens the continued existence of this enigmatic species. The leafy seadragon has a historically small population size likely due to its specific habitat requirements that further exacerbate its vulnerability to climate change. Therefore, taking climate change-induced range shifts into account while developing future protection strategies.
Collapse
Affiliation(s)
- Meng Qu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Southern Marine Science and Engineering Guangdong Laboratory (GML, Guangzhou), Guangzhou, 511458, China
- Sanya Institute of Oceanology, SCSIO, Sanya, 572000, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yingyi Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Southern Marine Science and Engineering Guangdong Laboratory (GML, Guangzhou), Guangzhou, 511458, China
- Sanya Institute of Oceanology, SCSIO, Sanya, 572000, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zexia Gao
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhixin Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Southern Marine Science and Engineering Guangdong Laboratory (GML, Guangzhou), Guangzhou, 511458, China
- Sanya Institute of Oceanology, SCSIO, Sanya, 572000, China
- Global Ocean and Climate Research Center, South China Sea Institute of Oceanology, Guangzhou, 510301, China
| | - Yali Liu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Southern Marine Science and Engineering Guangdong Laboratory (GML, Guangzhou), Guangzhou, 511458, China
- Sanya Institute of Oceanology, SCSIO, Sanya, 572000, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shiming Wan
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xin Wang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Southern Marine Science and Engineering Guangdong Laboratory (GML, Guangzhou), Guangzhou, 511458, China
- Sanya Institute of Oceanology, SCSIO, Sanya, 572000, China
| | - Haiyan Yu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Southern Marine Science and Engineering Guangdong Laboratory (GML, Guangzhou), Guangzhou, 511458, China
- Sanya Institute of Oceanology, SCSIO, Sanya, 572000, China
| | - Huixian Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Southern Marine Science and Engineering Guangdong Laboratory (GML, Guangzhou), Guangzhou, 511458, China
- Sanya Institute of Oceanology, SCSIO, Sanya, 572000, China
| | - Yuhong Liu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Southern Marine Science and Engineering Guangdong Laboratory (GML, Guangzhou), Guangzhou, 511458, China
- Sanya Institute of Oceanology, SCSIO, Sanya, 572000, China
| | - Ralf Schneider
- Marine Evolutionary Ecology, Zoological Institute, Kiel University, 24118, Kiel, Germany
| | - Axel Meyer
- Department of Biology, University of Konstanz, 78464, Konstanz, Germany.
| | - Qiang Lin
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Southern Marine Science and Engineering Guangdong Laboratory (GML, Guangzhou), Guangzhou, 511458, China.
- Sanya Institute of Oceanology, SCSIO, Sanya, 572000, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
5
|
Martínez Sosa F, Pilot M. Molecular Mechanisms Underlying Vertebrate Adaptive Evolution: A Systematic Review. Genes (Basel) 2023; 14:416. [PMID: 36833343 PMCID: PMC9957108 DOI: 10.3390/genes14020416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/24/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
Adaptive evolution is a process in which variation that confers an evolutionary advantage in a specific environmental context arises and is propagated through a population. When investigating this process, researchers have mainly focused on describing advantageous phenotypes or putative advantageous genotypes. A recent increase in molecular data accessibility and technological advances has allowed researchers to go beyond description and to make inferences about the mechanisms underlying adaptive evolution. In this systematic review, we discuss articles from 2016 to 2022 that investigated or reviewed the molecular mechanisms underlying adaptive evolution in vertebrates in response to environmental variation. Regulatory elements within the genome and regulatory proteins involved in either gene expression or cellular pathways have been shown to play key roles in adaptive evolution in response to most of the discussed environmental factors. Gene losses were suggested to be associated with an adaptive response in some contexts. Future adaptive evolution research could benefit from more investigations focused on noncoding regions of the genome, gene regulation mechanisms, and gene losses potentially yielding advantageous phenotypes. Investigating how novel advantageous genotypes are conserved could also contribute to our knowledge of adaptive evolution.
Collapse
Affiliation(s)
| | - Małgorzata Pilot
- Museum and Institute of Zoology, Polish Academy of Sciences, 80-680 Gdańsk, Poland
- Faculty of Biology, University of Gdańsk, 80-308 Gdańsk, Poland
| |
Collapse
|
6
|
Gu Q, Yuan H, Zhong H, Wei Z, Shu Y, Wang J, Ren L, Gong D, Liu S. Spatiotemporal characteristics of the pharyngeal teeth in interspecific distant hybrids of cyprinid fish: Phylogeny and expression of the initiation marker genes. Front Genet 2022; 13:983444. [PMID: 36051700 PMCID: PMC9424816 DOI: 10.3389/fgene.2022.983444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 07/19/2022] [Indexed: 11/17/2022] Open
Abstract
As an important feeding organ and taxonomical characteristic, the pharyngeal teeth of cyprinid fish have very high morphological diversity and exhibit species-specific numbers and arrangements. Many genes have been verified to regulate the pharyngeal teeth development and act as the initiation marker for teeth. Six initiation marker genes for pharyngeal teeth were used as RNA probes to investigate the expression pattern, and these genes were further used to construct a phylogenetic tree for cyprinid fish including some distant hybrids. The results from in situ hybridization showed that similarities and differences existed in the expression of dlx2b, dlx4b, dlx5a, pitx2, fth1b, and scpp5 in the pharyngeal region of the hybrids (BT) by the crosses of blunt snout bream (BSB, ♀) × topmouth culter (TC, ♂). Particularly, we found a high specificity marker gene scpp5 for the early development of pharyngeal teeth. The Scpp5 expression pattern established a clear graphic representation on the spatiotemporal characteristics of the early morphogenesis of pharyngeal teeth in BT and BSB. Our results suggested that the scpp5 expression in 4V1, 3V1, and 5V1 in BT occurred earlier than that in BSB, while the replacement rate of pharyngeal teeth (4V2, 3V2, and 5V2) was faster in BSB. Phylogenetic analysis revealed that the six marker genes were highly conserved and could be used as the molecular marker for identifying the parents of the distant hybrids in cyprinid fish. The expression patterns of the scpp5 gene was examined in various tissues, including the brain, gill, heart, liver, muscle, skin, fins, gonad, eye, and kidney, showing that the scpp5 gene was ubiquitously expressed, indicating its important role in cyprinid fish.
Collapse
Affiliation(s)
- Qianhong Gu
- The State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Hui Yuan
- The State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Hui Zhong
- The State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Zehong Wei
- The State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yuqin Shu
- The State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Jing Wang
- The State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Li Ren
- The State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Dingbin Gong
- The State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Shaojun Liu
- The State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- *Correspondence: Shaojun Liu,
| |
Collapse
|
7
|
Rosa JT, Witten PE, Huysseune A. Cells at the Edge: The Dentin-Bone Interface in Zebrafish Teeth. Front Physiol 2021; 12:723210. [PMID: 34690799 PMCID: PMC8526719 DOI: 10.3389/fphys.2021.723210] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/08/2021] [Indexed: 11/13/2022] Open
Abstract
Bone-producing osteoblasts and dentin-producing odontoblasts are closely related cell types, a result from their shared evolutionary history in the ancient dermal skeleton. In mammals, the two cell types can be distinguished based on histological characters and the cells’ position in the pulp cavity or in the tripartite periodontal complex. Different from mammals, teleost fish feature a broad diversity in tooth attachment modes, ranging from fibrous attachment to firm ankylosis to the underlying bone. The connection between dentin and jaw bone is often mediated by a collar of mineralized tissue, a part of the dental unit that has been termed “bone of attachment”. Its nature (bone, dentin, or an intermediate tissue type) is still debated. Likewise, there is a debate about the nature of the cells secreting this tissue: osteoblasts, odontoblasts, or yet another (intermediate) type of scleroblast. Here, we use expression of the P/Q rich secretory calcium-binding phosphoprotein 5 (scpp5) to characterize the cells lining the so-called bone of attachment in the zebrafish dentition. scpp5 is expressed in late cytodifferentiation stage odontoblasts but not in the cells depositing the “bone of attachment”. nor in bona fide osteoblasts lining the supporting pharyngeal jaw bone. Together with the presence of the osteoblast marker Zns-5, and the absence of covering epithelium, this links the cells depositing the “bone of attachment” to osteoblasts rather than to odontoblasts. The presence of dentinal tubule-like cell extensions and the near absence of osteocytes, nevertheless distinguishes the “bone of attachment” from true bone. These results suggest that the “bone of attachment” in zebrafish has characters intermediate between bone and dentin, and, as a tissue, is better termed “dentinous bone”. In other teleosts, the tissue may adopt different properties. The data furthermore support the view that these two tissues are part of a continuum of mineralized tissues. Expression of scpp5 can be a valuable tool to investigate how differentiation pathways diverge between osteoblasts and odontoblasts in teleost models and help resolving the evolutionary history of tooth attachment structures in actinopterygians.
Collapse
Affiliation(s)
- Joana T Rosa
- Research Group Evolutionary Developmental Biology, Biology Department, Ghent University, Ghent, Belgium.,Comparative, Adaptive and Functional Skeletal Biology (BIOSKEL), Centre of Marine Sciences (CCMAR), University of Algarve, Campus Gambelas, Faro, Portugal
| | - Paul Eckhard Witten
- Research Group Evolutionary Developmental Biology, Biology Department, Ghent University, Ghent, Belgium
| | - Ann Huysseune
- Research Group Evolutionary Developmental Biology, Biology Department, Ghent University, Ghent, Belgium
| |
Collapse
|
8
|
Qu M, Liu Y, Zhang Y, Wan S, Ravi V, Qin G, Jiang H, Wang X, Zhang H, Zhang B, Gao Z, Huysseune A, Zhang Z, Zhang H, Chen Z, Yu H, Wu Y, Tang L, Li C, Zhong J, Ma L, Wang F, Zheng H, Yin J, Witten PE, Meyer A, Venkatesh B, Lin Q. Seadragon genome analysis provides insights into its phenotype and sex determination locus. SCIENCE ADVANCES 2021; 7:eabg5196. [PMID: 34407945 PMCID: PMC8373133 DOI: 10.1126/sciadv.abg5196] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 07/01/2021] [Indexed: 05/29/2023]
Abstract
The iconic phenotype of seadragons includes leaf-like appendages, a toothless tubular mouth, and male pregnancy involving incubation of fertilized eggs on an open "brood patch." We de novo-sequenced male and female genomes of the common seadragon (Phyllopteryx taeniolatus) and its closely related species, the alligator pipefish (Syngnathoides biaculeatus). Transcription profiles from an evolutionary novelty, the leaf-like appendages, show that a set of genes typically involved in fin development have been co-opted as well as an enrichment of transcripts for potential tissue repair and immune defense genes. The zebrafish mutants for scpp5, which is lost in all syngnathids, were found to lack or have deformed pharyngeal teeth, supporting the hypothesis that the loss of scpp5 has contributed to the loss of teeth in syngnathids. A putative sex-determining locus encoding a male-specific amhr2y gene shared by common seadragon and alligator pipefish was identified.
Collapse
Affiliation(s)
- Meng Qu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301 Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 511458 Guangzhou, China
| | - Yali Liu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301 Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 511458 Guangzhou, China
| | - Yanhong Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301 Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 511458 Guangzhou, China
| | - Shiming Wan
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301 Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 511458 Guangzhou, China
| | - Vydianathan Ravi
- Institute of Molecular and Cell Biology, A*STAR, 138673 Biopolis, Singapore
| | - Geng Qin
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301 Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 511458 Guangzhou, China
| | - Han Jiang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301 Guangzhou, China
- University of Chinese Academy of Sciences, 100101 Beijing, China
| | - Xin Wang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301 Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 511458 Guangzhou, China
| | - Huixian Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301 Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 511458 Guangzhou, China
| | - Bo Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301 Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 511458 Guangzhou, China
| | - Zexia Gao
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, 430070 Wuhan, China
| | - Ann Huysseune
- Department of Biology, Ghent University, Ledeganckstraat 35, B-9000 Ghent, Belgium
| | - Zhixin Zhang
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Minato, Tokyo, Japan
| | - Hao Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301 Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 511458 Guangzhou, China
| | - Zelin Chen
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301 Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 511458 Guangzhou, China
| | - Haiyan Yu
- Biomarker Technologies Corporation, 101300 Beijing, China
| | - Yongli Wu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301 Guangzhou, China
- University of Chinese Academy of Sciences, 100101 Beijing, China
| | - Lu Tang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301 Guangzhou, China
- University of Chinese Academy of Sciences, 100101 Beijing, China
| | - Chunyan Li
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301 Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 511458 Guangzhou, China
| | - Jia Zhong
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301 Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 511458 Guangzhou, China
| | - Liming Ma
- Biomarker Technologies Corporation, 101300 Beijing, China
| | - Fengling Wang
- Biomarker Technologies Corporation, 101300 Beijing, China
| | - Hongkun Zheng
- Biomarker Technologies Corporation, 101300 Beijing, China
| | - Jianping Yin
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301 Guangzhou, China
| | - Paul Eckhard Witten
- Department of Biology, Ghent University, Ledeganckstraat 35, B-9000 Ghent, Belgium
| | - Axel Meyer
- Department of Biology, University of Konstanz, 78464 Konstanz, Germany.
| | - Byrappa Venkatesh
- Institute of Molecular and Cell Biology, A*STAR, 138673 Biopolis, Singapore.
| | - Qiang Lin
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301 Guangzhou, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 511458 Guangzhou, China
- University of Chinese Academy of Sciences, 100101 Beijing, China
| |
Collapse
|
9
|
Xiong P, Hulsey CD, Fruciano C, Wong WY, Nater A, Kautt AF, Simakov O, Pippel M, Kuraku S, Meyer A, Franchini P. The comparative genomic landscape of adaptive radiation in crater lake cichlid fishes. Mol Ecol 2021; 30:955-972. [PMID: 33305470 PMCID: PMC8607476 DOI: 10.1111/mec.15774] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 11/21/2020] [Accepted: 11/30/2020] [Indexed: 12/13/2022]
Abstract
Factors ranging from ecological opportunity to genome composition might explain why only some lineages form adaptive radiations. While being rare, particular systems can provide natural experiments within an identical ecological setting where species numbers and phenotypic divergence in two closely related lineages are notably different. We investigated one such natural experiment using two de novo assembled and 40 resequenced genomes and asked why two closely related Neotropical cichlid fish lineages, the Amphilophus citrinellus species complex (Midas cichlids; radiating) and Archocentrus centrarchus (Flyer cichlid; nonradiating), have resulted in such disparate evolutionary outcomes. Although both lineages inhabit many of the same Nicaraguan lakes, whole-genome inferred demography suggests that priority effects are not likely to be the cause of the dissimilarities. Also, genome-wide levels of selection, transposable element dynamics, gene family expansion, major chromosomal rearrangements and the number of genes under positive selection were not markedly different between the two lineages. To more finely investigate particular subsets of the genome that have undergone adaptive divergence in Midas cichlids, we also examined if there was evidence for 'molecular pre-adaptation' in regions identified by QTL mapping of repeatedly diverging adaptive traits. Although most of our analyses failed to pinpoint substantial genomic differences, we did identify functional categories containing many genes under positive selection that provide candidates for future studies on the propensity of Midas cichlids to radiate. Our results point to a disproportionate role of local, rather than genome-wide factors underlying the propensity for these cichlid fishes to adaptively radiate.
Collapse
Affiliation(s)
- Peiwen Xiong
- Department of BiologyUniversity of KonstanzKonstanzGermany
| | - C. Darrin Hulsey
- Department of BiologyUniversity of KonstanzKonstanzGermany
- School of Biology and Environmental ScienceUniversity College DublinDublinIreland
| | - Carmelo Fruciano
- Department of BiologyUniversity of KonstanzKonstanzGermany
- National Research Council (CNR) – IRBIMMessinaItaly
| | - Wai Y. Wong
- Department of Molecular Evolution and DevelopmentUniversity of ViennaViennaAustria
| | | | - Andreas F. Kautt
- Department of BiologyUniversity of KonstanzKonstanzGermany
- Department of Organismic and Evolutionary BiologyHarvard UniversityCambridgeMAUSA
| | - Oleg Simakov
- Department of Molecular Evolution and DevelopmentUniversity of ViennaViennaAustria
| | - Martin Pippel
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
| | - Shigehiro Kuraku
- Laboratory for PhyloinformaticsRIKEN Center for Biosystems Dynamics Research (BDR)KobeJapan
| | - Axel Meyer
- Department of BiologyUniversity of KonstanzKonstanzGermany
| | | |
Collapse
|
10
|
Hulsey CD, Cohen KE, Johanson Z, Karagic N, Meyer A, Miller CT, Sadier A, Summers AP, Fraser GJ. Grand Challenges in Comparative Tooth Biology. Integr Comp Biol 2020; 60:563-580. [PMID: 32533826 PMCID: PMC7821850 DOI: 10.1093/icb/icaa038] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Teeth are a model system for integrating developmental genomics, functional morphology, and evolution. We are at the cusp of being able to address many open issues in comparative tooth biology and we outline several of these newly tractable and exciting research directions. Like never before, technological advances and methodological approaches are allowing us to investigate the developmental machinery of vertebrates and discover both conserved and excitingly novel mechanisms of diversification. Additionally, studies of the great diversity of soft tissues, replacement teeth, and non-trophic functions of teeth are providing new insights into dental diversity. Finally, we highlight several emerging model groups of organisms that are at the forefront of increasing our appreciation of the mechanisms underlying tooth diversification.
Collapse
Affiliation(s)
- C Darrin Hulsey
- Department of Biology, University of Konstanz, Konstanz, 78464, Germany
| | - Karly E Cohen
- Friday Harbor Laboratories, School of Aquatic and Fishery Sciences, Department of Biology, University of Washington, WA 98195, USA
| | - Zerina Johanson
- Department of Earth Sciences, Natural History Museum, London SW7 5HD, UK
| | - Nidal Karagic
- Department of Biology, University of Konstanz, Konstanz, 78464, Germany
| | - Axel Meyer
- Department of Biology, University of Konstanz, Konstanz, 78464, Germany
| | - Craig T Miller
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Alexa Sadier
- Department of Ecology and Evolution, University of California Los Angeles, Los Angeles, CA 90032, USA
| | - Adam P Summers
- Friday Harbor Laboratories, School of Aquatic and Fishery Sciences, Department of Biology, University of Washington, WA 98195, USA
| | - Gareth J Fraser
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
11
|
Fraser GJ, Hulsey CD. Biology at the Cusp: Teeth as a Model Phenotype for Integrating Developmental Genomics, Biomechanics, and Ecology. Integr Comp Biol 2020. [DOI: 10.1093/icb/icaa104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Gareth J Fraser
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - C Darrin Hulsey
- Department of Biology, University of Konstanz, Konstanz 78457, Germany
| |
Collapse
|