1
|
Ahmed M, Kim DR. Life history dynamics of evolving tumors: insights into task specialization, trade-offs, and tumor heterogeneity. Cancer Cell Int 2024; 24:364. [PMID: 39506763 PMCID: PMC11539310 DOI: 10.1186/s12935-024-03538-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 10/17/2024] [Indexed: 11/08/2024] Open
Abstract
The evolution of cancer cells parallels species evolution in numerous ways. Variations arise and spread under the pressure of competition between cancer cells. Current investigations of tumor evolution echo earlier debates between biologists. These include the role of non-Darwinian mechanisms, the contribution of neutral evolution, and life history dynamics. The trade-off between proliferation and metastasis is the most well-studied application of life history theory to cancer evolution. This article briefly introduces some parallels between cancer and species evolution, focusing on the life history of evolving tumors. Next, we review evidence from simulation and experimental studies supporting task specialization and trade-offs in cancer. We also cover recent work on inferring tumor tasks from data. We then turn to the implications of multi-tasking and the utility of the theory in explaining critical aspects of tumor heterogeneity. Finally, we discuss some of the criticism and future directions of this research topic.
Collapse
Affiliation(s)
- Mahmoud Ahmed
- Department of Biochemistry and Convergence Medical Sciences and Institute of Medical Science, Gyeongsang National University,College of Medicine, Jinju, South Korea
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Deok Ryong Kim
- Department of Biochemistry and Convergence Medical Sciences and Institute of Medical Science, Gyeongsang National University,College of Medicine, Jinju, South Korea.
| |
Collapse
|
2
|
Weistuch C, Murgas KA, Zhu J, Norton L, Dill KA, Tannenbaum AR, Deasy JO. Functional transcriptional signatures for tumor-type-agnostic phenotype prediction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.04.12.536595. [PMID: 37090606 PMCID: PMC10120658 DOI: 10.1101/2023.04.12.536595] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Cancer transcriptional patterns exhibit both shared and unique features across diverse cancer types, but whether these patterns are sufficient to characterize the full breadth of tumor phenotype heterogeneity remains an open question. We hypothesized that cancer transcriptional diversity mirrors patterns in normal tissues optimized for distinct functional tasks. Starting with normal tissue transcriptomic profiles, we use non-negative matrix factorization to derive six distinct transcriptomic phenotypes, called archetypes, which combine to describe both normal tissue patterns and variations across a broad spectrum of malignancies. We show that differential enrichment of these signatures correlates with key tumor characteristics, including overall patient survival and drug sensitivity, independent of clinically actionable DNA alterations. Additionally, we show that in HR+/HER2- breast cancers, metastatic tumors adopt transcriptomic signatures consistent with the invaded tissue. Broadly, our findings suggest that cancer often arrogates normal tissue transcriptomic characteristics as a component of both malignant progression and drug response. This quantitative framework provides a strategy for connecting the diversity of cancer phenotypes and could potentially help manage individual patients.
Collapse
Affiliation(s)
- Corey Weistuch
- Memorial Sloan Kettering Cancer Center, Department of Medical
Physics
| | - Kevin A. Murgas
- Stony Brook University, Department of Biomedical
Informatics
| | - Jiening Zhu
- Stony Brook University, Department of Applied Mathematics and
Statistics
| | - Larry Norton
- Memorial Sloan Kettering Cancer Center, Department of
Medicine
| | - Ken A. Dill
- Stony Brook University, Laufer Center for Physical and
Quantitative Biology
| | - Allen R. Tannenbaum
- Stony Brook University, Department of Applied Mathematics and
Statistics
- Stony Brook University, Department of Computer Science
| | - Joseph O. Deasy
- Memorial Sloan Kettering Cancer Center, Department of Medical
Physics
| |
Collapse
|
3
|
Propagating uncertainty about molecular evolution models and prior distributions to phylogenetic trees. Mol Phylogenet Evol 2023; 180:107689. [PMID: 36587884 DOI: 10.1016/j.ympev.2022.107689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 10/21/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022]
Abstract
Phylogenetic trees constructed from molecular sequence data rely on largely arbitrary assumptions about the substitution model, the distribution of substitution rates across sites, the version of the molecular clock, and, in the case of Bayesian inference, the prior distribution. Those assumptions affect results reported in the form of clade probabilities and error bars on divergence times and substitution rates. Overlooking the uncertainty in the assumptions leads to overly confident conclusions in the form of inflated clade probabilities and short confidence intervals or credible intervals. This paper demonstrates how to propagate that uncertainty by combining the models considered along with all of their assumptions, including their prior distributions. The combined models incorporate much more of the uncertainty than Bayesian model averages since the latter tend to settle on a single model due to the higher-level assumption that one of the models is true. Nucleotide sequence data illustrates the proposed model combination method.
Collapse
|
4
|
Jedlicka P, Bird AD, Cuntz H. Pareto optimality, economy-effectiveness trade-offs and ion channel degeneracy: improving population modelling for single neurons. Open Biol 2022; 12:220073. [PMID: 35857898 PMCID: PMC9277232 DOI: 10.1098/rsob.220073] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Neurons encounter unavoidable evolutionary trade-offs between multiple tasks. They must consume as little energy as possible while effectively fulfilling their functions. Cells displaying the best performance for such multi-task trade-offs are said to be Pareto optimal, with their ion channel configurations underpinning their functionality. Ion channel degeneracy, however, implies that multiple ion channel configurations can lead to functionally similar behaviour. Therefore, instead of a single model, neuroscientists often use populations of models with distinct combinations of ionic conductances. This approach is called population (database or ensemble) modelling. It remains unclear, which ion channel parameters in the vast population of functional models are more likely to be found in the brain. Here we argue that Pareto optimality can serve as a guiding principle for addressing this issue by helping to identify the subpopulations of conductance-based models that perform best for the trade-off between economy and functionality. In this way, the high-dimensional parameter space of neuronal models might be reduced to geometrically simple low-dimensional manifolds, potentially explaining experimentally observed ion channel correlations. Conversely, Pareto inference might also help deduce neuronal functions from high-dimensional Patch-seq data. In summary, Pareto optimality is a promising framework for improving population modelling of neurons and their circuits.
Collapse
Affiliation(s)
- Peter Jedlicka
- ICAR3R - Interdisciplinary Centre for 3Rs in Animal Research, Faculty of Medicine, Justus-Liebig-University, Giessen, Germany,Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe University, Frankfurt/Main, Germany,Frankfurt Institute for Advanced Studies, Frankfurt am Main, Germany
| | - Alexander D. Bird
- ICAR3R - Interdisciplinary Centre for 3Rs in Animal Research, Faculty of Medicine, Justus-Liebig-University, Giessen, Germany,Frankfurt Institute for Advanced Studies, Frankfurt am Main, Germany,Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Frankfurt am Main, Germany
| | - Hermann Cuntz
- Frankfurt Institute for Advanced Studies, Frankfurt am Main, Germany,Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Frankfurt am Main, Germany
| |
Collapse
|
5
|
Adler M, Tendler A, Hausser J, Korem Y, Szekely P, Bossel N, Hart Y, Karin O, Mayo A, Alon U. Controls for Phylogeny and Robust Analysis in Pareto Task Inference. Mol Biol Evol 2022; 39:msab297. [PMID: 34633456 PMCID: PMC8763096 DOI: 10.1093/molbev/msab297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Understanding the tradeoffs faced by organisms is a major goal of evolutionary biology. One of the main approaches for identifying these tradeoffs is Pareto task inference (ParTI). Two recent papers claim that results obtained in ParTI studies are spurious due to phylogenetic dependence (Mikami T, Iwasaki W. 2021. The flipping t-ratio test: phylogenetically informed assessment of the Pareto theory for phenotypic evolution. Methods Ecol Evol. 12(4):696-706) or hypothetical p-hacking and population-structure concerns (Sun M, Zhang J. 2021. Rampant false detection of adaptive phenotypic optimization by ParTI-based Pareto front inference. Mol Biol Evol. 38(4):1653-1664). Here, we show that these claims are baseless. We present a new method to control for phylogenetic dependence, called SibSwap, and show that published ParTI inference is robust to phylogenetic dependence. We show how researchers avoided p-hacking by testing for the robustness of preprocessing choices. We also provide new methods to control for population structure and detail the experimental tests of ParTI in systems ranging from ammonites to cancer gene expression. The methods presented here may help to improve future ParTI studies.
Collapse
Affiliation(s)
- Miri Adler
- Klarman Cell Observatory, Eli and Edythe L. Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Avichai Tendler
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Jean Hausser
- Department of Cellular and Molecular Biology Stockholm, Karolinska Institute and SciLifeLab, Stockholm, Sweden
| | - Yael Korem
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Pablo Szekely
- Department of Biology, Duke University, Durham, NC, USA
| | - Noa Bossel
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Yuval Hart
- Department of Psychology Jerusalem, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Omer Karin
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Avi Mayo
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Uri Alon
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
6
|
Bickel DR. Propagating clade and model uncertainty to confidence intervals of divergence times and branch lengths. Mol Phylogenet Evol 2021; 167:107357. [PMID: 34785383 DOI: 10.1016/j.ympev.2021.107357] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/01/2021] [Accepted: 11/08/2021] [Indexed: 12/01/2022]
Abstract
Confidence intervals of divergence times and branch lengths do not reflect uncertainty about their clades or about the prior distributions and other model assumptions on which they are based. Uncertainty about the clade may be propagated to a confidence interval by multiplying its confidence level by the bootstrap proportion of its clade or by another probability that the clade is correct. (If the confidence level is 95% and the bootstrap proportion is 90%, then the uncertainty-adjusted confidence level is (0.95)(0.90) = 86%.) Uncertainty about the model can be propagated to the confidence interval by reporting the union of the confidence intervals from all the plausible models. Unless there is no overlap between the confidence intervals, that results in an uncertainty-adjusted interval that has as its lower and upper limits the most extreme limits of the models. The proposed methods of uncertainty quantification may be used together.
Collapse
Affiliation(s)
- David R Bickel
- Informatics and Analytics, University of North Carolina at Greensboro, The Graduate School, 241 Mossman Building, CAMPUS Greensboro, NC 27402-6170, USA.
| |
Collapse
|
7
|
Neural optimization: Understanding trade-offs with Pareto theory. Curr Opin Neurobiol 2021; 71:84-91. [PMID: 34688051 DOI: 10.1016/j.conb.2021.08.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/26/2021] [Indexed: 11/21/2022]
Abstract
Nervous systems, like any organismal structure, have been shaped by evolutionary processes to increase fitness. The resulting neural 'bauplan' has to account for multiple objectives simultaneously, including computational function, as well as additional factors such as robustness to environmental changes and energetic limitations. Oftentimes these objectives compete, and quantification of the relative impact of individual optimization targets is non-trivial. Pareto optimality offers a theoretical framework to decipher objectives and trade-offs between them. We, therefore, highlight Pareto theory as a useful tool for the analysis of neurobiological systems from biophysically detailed cells to large-scale network structures and behavior. The Pareto approach can help to assess optimality, identify relevant objectives and their respective impact, and formulate testable hypotheses.
Collapse
|