1
|
He Y, Zhang X, Peng MS, Li YC, Liu K, Zhang Y, Mao L, Guo Y, Ma Y, Zhou B, Zheng W, Yue T, Liao Y, Liang SA, Chen L, Zhang W, Chen X, Tang B, Yang X, Ye K, Gao S, Lu Y, Wang Y, Wan S, Hao R, Wang X, Mao Y, Dai S, Gao Z, Yang LQ, Guo J, Li J, Liu C, Wang J, Sovannary T, Bunnath L, Kampuansai J, Inta A, Srikummool M, Kutanan W, Ho HQ, Pham KD, Singthong S, Sochampa S, Kyaing UW, Pongamornkul W, Morlaeku C, Rattanakrajangsri K, Kong QP, Zhang YP, Su B. Genome diversity and signatures of natural selection in mainland Southeast Asia. Nature 2025:10.1038/s41586-025-08998-w. [PMID: 40369069 DOI: 10.1038/s41586-025-08998-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/09/2025] [Indexed: 05/16/2025]
Abstract
Mainland Southeast Asia (MSEA) has rich ethnic and cultural diversity with a population of nearly 300 million1,2. However, people from MSEA are underrepresented in the current human genomic databases. Here we present the SEA3K genome dataset (phase I), generated by deep short-read whole-genome sequencing of 3,023 individuals from 30 MSEA populations, and long-read whole-genome sequencing of 37 representative individuals. We identified 79.59 million small variants and 96,384 structural variants, among which 22.83 million small variants and 24,622 structural variants are unique to this dataset. We observed a high genetic heterogeneity across MSEA populations, reflected by the varied combinations of genetic components. We identified 44 genomic regions with strong signatures of Darwinian positive selection, covering 89 genes involved in varied physiological systems such as physical traits and immune response. Furthermore, we observed varied patterns of archaic Denisovan introgression in MSEA populations, supporting the proposal of at least two distinct instances of Denisovan admixture into modern humans in Asia3. We also detected genomic regions that suggest adaptive archaic introgressions in MSEA populations. The large number of novel genomic variants in MSEA populations highlight the necessity of studying regional populations that can help answer key questions related to prehistory, genetic adaptation and complex diseases.
Collapse
Affiliation(s)
- Yaoxi He
- State Key Laboratory of Genetic Evolution and Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Yunnan Key Laboratory of Integrative Anthropology, Kunming, China
| | - Xiaoming Zhang
- State Key Laboratory of Genetic Evolution and Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Yunnan Key Laboratory of Integrative Anthropology, Kunming, China
| | - Min-Sheng Peng
- State Key Laboratory of Genetic Evolution and Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yu-Chun Li
- State Key Laboratory of Genetic Evolution and Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, China
- Kunming Key Laboratory of Healthy Aging Study, Kunming, China
| | - Kai Liu
- State Key Laboratory of Genetic Evolution and Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yu Zhang
- State Key Laboratory of Genetic Evolution and Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Leyan Mao
- State Key Laboratory of Genetic Evolution and Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yongbo Guo
- State Key Laboratory of Genetic Evolution and Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Yujie Ma
- State Key Laboratory of Genetic Evolution and Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bin Zhou
- State Key Laboratory of Genetic Evolution and Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wangshan Zheng
- State Key Laboratory of Genetic Evolution and Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tian Yue
- State Key Laboratory of Genetic Evolution and Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuwen Liao
- State Key Laboratory of Genetic Evolution and Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shen-Ao Liang
- State Key Laboratory of Genetic Engineering, Center for Evolutionary Biology, School of Life Science, Fudan University, Shanghai, China
| | - Lu Chen
- State Key Laboratory of Genetic Engineering, Center for Evolutionary Biology, School of Life Science, Fudan University, Shanghai, China
| | - Weijie Zhang
- State Key Laboratory of Genetic Evolution and Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoning Chen
- National Genomics Data Center, China National Center for Bioinformation, Beijing, China
| | - Bixia Tang
- National Genomics Data Center, China National Center for Bioinformation, Beijing, China
| | - Xiaofei Yang
- School of Computer Science and Technology, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, China
- MOE Key Lab for Intelligent Networks & Networks Security, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, China
- Center for Mathematical Medical, the First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Kai Ye
- MOE Key Lab for Intelligent Networks & Networks Security, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, China
- Center for Mathematical Medical, the First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
- School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, China
- Genome Institute, the First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
- Faculty of Science, Leiden University, Leiden, The Netherlands
| | - Shenghan Gao
- School of Computer Science and Technology, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, China
- MOE Key Lab for Intelligent Networks & Networks Security, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, China
- School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Yurun Lu
- CEMS, NCMIS, HCMS, MADIS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China
| | - Yong Wang
- CEMS, NCMIS, HCMS, MADIS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China
| | - Shijie Wan
- School of Computer Science and Technology, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Rushan Hao
- School of Medicine, Yunnan University, Kunming, China
| | - Xuankai Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Yafei Mao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
- Center for Genomic Research, International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University, Yiwu, China
| | - Shanshan Dai
- State Key Laboratory of Genetic Evolution and Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Zongliang Gao
- State Key Laboratory of Genetic Evolution and Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
- Kunming Key Laboratory of Healthy Aging Study, Kunming, China
| | - Li-Qin Yang
- State Key Laboratory of Genetic Evolution and Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Yunnan Key Laboratory of Integrative Anthropology, Kunming, China
- Kunming Key Laboratory of Healthy Aging Study, Kunming, China
| | - Jianxin Guo
- State Key Laboratory of Genetic Evolution and Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Jiangguo Li
- State Key Laboratory of Genetic Evolution and Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chao Liu
- Laboratory Animal Center, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, China
- National Resource Center for Non-Human Primates, Kunming, China
| | - Jianhua Wang
- Department of Anthropology, School of Sociology, Yunnan Minzu University, Kunming, China
| | - Tuot Sovannary
- Department of Geography and Land Management, Royal University of Phnom Penh, Phnom Penh, Cambodia
| | - Long Bunnath
- Department of Geography and Land Management, Royal University of Phnom Penh, Phnom Penh, Cambodia
| | - Jatupol Kampuansai
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Angkhana Inta
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Metawee Srikummool
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Wibhu Kutanan
- Department of Biology, Faculty of Science, Naresuan University, Phitsanulok, Thailand
| | - Huy Quang Ho
- Department of Immunology, Ha Noi Medical University, Ha Noi, Vietnam
| | - Khoa Dang Pham
- Department of Immunology, Ha Noi Medical University, Ha Noi, Vietnam
| | | | | | - U Win Kyaing
- Field School of Archaeology, Paukkhaung, Myanmar
| | - Wittaya Pongamornkul
- Queen Sirikit Botanic Garden (QSBG), The Botanical Garden Organization, Chiang Mai, Thailand
| | - Chutima Morlaeku
- Inter Mountain Peoples Education and Culture in Thailand Association (IMPECT), Sansai, Thailand
| | | | - Qing-Peng Kong
- State Key Laboratory of Genetic Evolution and Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.
- KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, China.
- Kunming Key Laboratory of Healthy Aging Study, Kunming, China.
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China.
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Evolution and Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.
- KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, China.
- University of Chinese Academy of Sciences, Beijing, China.
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, China.
| | - Bing Su
- State Key Laboratory of Genetic Evolution and Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.
- Yunnan Key Laboratory of Integrative Anthropology, Kunming, China.
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China.
| |
Collapse
|
2
|
Perez Palomeque G, Khacha-ananda S, Monum T, Wunnapuk K. Prediction of Skin Color Using Forensic DNA Phenotyping in Asian Populations: A Focus on Thailand. Biomolecules 2025; 15:548. [PMID: 40305359 PMCID: PMC12024907 DOI: 10.3390/biom15040548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/03/2025] [Accepted: 04/04/2025] [Indexed: 05/02/2025] Open
Abstract
Forensic DNA phenotyping (FDP) has emerged as an essential tool in criminal investigations, enabling the prediction of physical traits based on genetic information. This review explores the genetic factors influencing skin pigmentation, particularly within Asian populations, with a focus on Thailand. Key genes such as Oculocutaneous Albinism II (OCA2), Dopachrome Tautomerase (DCT), KIT Ligand (KITLG), and Solute Carrier Family 24 Member 2 (SLC24A2) are examined for their roles in melanin production and variations that lead to different skin tones. The OCA2 gene is highlighted for its role in transporting ions that help stabilize melanosomes, while specific variants in the DCT gene, including single nucleotide polymorphisms (SNPs) rs2031526 and rs3782974, are discussed for their potential effects on pigmentation in Asian groups. The KITLG gene, crucial for developing melanocytes, includes the SNP rs642742, which is linked to lighter skin in East Asians. Additionally, recent findings on the SLC24A2 gene are presented, emphasizing its connection to pigmentation through calcium regulation in melanin production. Finally, the review addresses the ethical considerations of using FDP in Thailand, where advances in genetic profiling raise concerns about privacy, consent, and discrimination. Establishing clear guidelines is vital to balancing the benefits of forensic DNA applications with the protection of individual rights.
Collapse
Affiliation(s)
- Gabriel Perez Palomeque
- PhD Program in Medical Sciences, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Supakit Khacha-ananda
- Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (T.M.); (K.W.)
| | - Tawachai Monum
- Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (T.M.); (K.W.)
| | - Klintean Wunnapuk
- Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (T.M.); (K.W.)
| |
Collapse
|
3
|
Jaisamut K, Rasmeepaisarn K, Pitiwararom R, Sukawutthiya P, Sathirapatya T, Noh H, Worrapitirungsi W, Vongpaisarnsin K. Paternal genetic landscape of contemporary Thai populations in the borderland provinces of Thailand and Myanmar. Sci Rep 2025; 15:6300. [PMID: 39984560 PMCID: PMC11845464 DOI: 10.1038/s41598-025-90398-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 02/12/2025] [Indexed: 02/23/2025] Open
Abstract
This study investigates the genetic structure and demographic history of contemporary Thai populations from Tak and Ranong, two border provinces between Thailand and Myanmar with complex immigration histories. We analyzed 20 Y-SNP markers (327 samples) and 24 Y-STR profiles (241 samples), along with published datasets, and observed significant genetic differentiation between these regions. Tak is dominated by O2a2b1a1a (44.53%) and O1b1a1a (21.17%). The presence of NO1 (14.6%) suggests genetic contributions from nearby populations such as the Karen, Lawa, and Khuen. Notably, Tak shows low gene diversity (GD) at the DYS391 (0.2208), contrasting with Ranong (0.5247) and the overall Thailand population (0.4708). Ranong exhibits a more diverse haplogroup distribution, with prominent frequencies of O1b1a1a (20.75%), F (16.98%) and O2a2b1a1a (13.21%). The presence of haplogroups K (11.32%) and R* (7.55%) reflects a genetic connection with the Maniq or other mainland Negrito groups, as well as historical gene flow from South Asia. These findings enhance our understanding of the genetic landscape shaped by migration and localized admixture. We also expanded the Thailand Y-chromosome database with novel Y-STR haplotypes, updated forensic parameters and Y-haplogroup frequencies, providing valuable resources for paternal ancestry inference and kinship verification in both forensic science and population genetics.
Collapse
Affiliation(s)
- Kitipong Jaisamut
- Center of Excellence in Forensic Genetics, Department of Forensic Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Kawin Rasmeepaisarn
- Center of Excellence in Forensic Genetics, Department of Forensic Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Forensic Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Rachtipan Pitiwararom
- Forensic Serology and DNA, King Chulalongkorn Memorial Hospital and Thai Red Cross Society, Bangkok, Thailand
| | - Poonyapat Sukawutthiya
- Center of Excellence in Forensic Genetics, Department of Forensic Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Forensic Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Tikumphorn Sathirapatya
- Center of Excellence in Forensic Genetics, Department of Forensic Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Forensic Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Hasnee Noh
- Center of Excellence in Forensic Genetics, Department of Forensic Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Forensic Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Wikanda Worrapitirungsi
- Center of Excellence in Forensic Genetics, Department of Forensic Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Forensic Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Kornkiat Vongpaisarnsin
- Center of Excellence in Forensic Genetics, Department of Forensic Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
- Department of Forensic Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
- Forensic Serology and DNA, King Chulalongkorn Memorial Hospital and Thai Red Cross Society, Bangkok, Thailand.
| |
Collapse
|
4
|
Kampuansai J, Seetaraso T, Dansawan M, Sathupak S, Kutanan W, Srikummool M, Inta A. Under the name of "Lua": revisiting genetic heterogeneity and population ancestry of Austroasiatic speakers in northern Thailand through genomic analysis. BMC Genomics 2024; 25:956. [PMID: 39402436 PMCID: PMC11472482 DOI: 10.1186/s12864-024-10865-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 10/03/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Austroasiatic (AA)-speaking populations in northern Thailand are of significant interest due to their status as indigenous descendants and their location at the crossroads of AA prehistoric distribution across Southern China, the Indian Subcontinent, and Mainland Southeast Asia. However, the complexity of ethnic identification can result in inaccuracies regarding the origin and migration history of these populations. To address this, we have conducted a genome-wide SNP analysis of 89 individuals from two Lavue and three Lwa-endonym populations. We then combined our outcomes with previously published data to elucidate the genetic diversity and clustering of AA groups in northern Thailand. RESULTS Our findings align with existing linguistic classifications, revealing different genetic compositions among the three branches of the Mon-Khmer subfamily within the AA family: Monic, Khmuic, and Palaungic. Although the term "Lua" ethnicity is confusingly used to identify ethnic groups belonging to both Khmuic and Palaungic branches, our genomic data indicate that the Khmuic-speaking Lua living on the eastern side of the region are relatively distant from the Palaungic-speaking Lavue and Lwa populations living on the western side. The Lavue populations, primarily inhabiting mountainous areas, exhibit a genetic makeup unique to the AA family, with a close genetic relationship to the Karenic subgroup of the Sino-Tibetan language family. Conversely, the Lwa and Blang populations, residing in lowland river valleys, display genetic signatures resulting from admixture with Tai-Kadai-speaking ethnic groups. CONCLUSION Utilizing genome-wide SNP markers, our findings indicate genetic heterogeneity among the Lua, Lavue, and Lwa ethnic groups. The intricate interplay of genetics, cultural heritage, and historical influences has shaped these ethnic communities. Our study underscores the importance of accurate ethnic classifications, emphasizing the use of self-identified endonyms, names created and used by the ethnic groups themselves. This approach respects the AA communities in northern Thailand and acknowledges their significant contributions to advancing our understanding of genetic anthropology.
Collapse
Affiliation(s)
- Jatupol Kampuansai
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand.
| | - Tanapon Seetaraso
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Maneesawan Dansawan
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Suwapat Sathupak
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Wibhu Kutanan
- Department of Biology, Faculty of Science, Naresuan University, Phitsanulok, Thailand
- Center of Excellence for Innovation and Technology for Detection and Advanced Materials (ITDAM), Naresuan University, Phitsanulok, Thailand
| | - Metawee Srikummool
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
- Center of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Angkana Inta
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
5
|
Cengnata A, Deng L, Yap WS, Lim LHR, Leong CO, Xu S, Hoh BP. A genotype imputation reference panel specific for native Southeast Asian populations. NPJ Genom Med 2024; 9:47. [PMID: 39368969 PMCID: PMC11455956 DOI: 10.1038/s41525-024-00435-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 09/24/2024] [Indexed: 10/07/2024] Open
Abstract
We report the development of a "Southeast Asian Specific (SEA-specific) Reference Panel" through a "Cross-panel Imputation" approach, consisting of 2550 samples derived from the GA100K, SG10K, and the Peninsular Malaysia Orang Asli (OA) datasets, covering 113,851,450 variants. The SEA-specific panel produced more high confidence variants than 1000 Genomes Project (1KGP) when imputing the OA (8.9 million SEA-specific vs 8.1 million 1KGP) and the Singapore Genome Variation Project (SGVP) (12.5 million SEA-specific vs 11.8 million 1KGP) genotyping datasets. Further, the SEA-specific panel imputed SNPs with better estimated quality scores (INFO, DR2 and R2) on the OA genotyping dataset when comparing with TOPMED and the Human Genome Diversity Project, but performed similarly on SGVP dataset. This panel also exhibited higher recall and non-reference disconcordance rates, indicating the influence of ancestry closeness of the reference panel. However, we note that the imputation accuracy may be compromised by the size of the reference panel.
Collapse
Affiliation(s)
- Alvin Cengnata
- Faculty of Applied Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Lian Deng
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
- Ministry of Education Key Laboratory of Contemporary Anthropology, Fudan University, Shanghai, China
| | - Wai-Sum Yap
- Faculty of Applied Sciences, UCSI University, Kuala Lumpur, Malaysia
| | | | - Chee-Onn Leong
- Advanced Genomics Technology Center, AGTC Genomics Inc., Kuala Lumpur, Malaysia
| | - Shuhua Xu
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
- Ministry of Education Key Laboratory of Contemporary Anthropology, Fudan University, Shanghai, China
- Department of Liver Surgery and Transplantation Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Boon-Peng Hoh
- Division of Applied Biomedical Sciences and Biotechnology, School of Health Sciences, IMU University, Kuala Lumpur, Malaysia.
| |
Collapse
|
6
|
Prakhun N, Muisuk K, Kampuansai J, Srikummool M, Pittayaporn P, Ruangchai S, Kutanan W, Tungpairojwong N. Genetic variability of 23 autosomal STRs in Austroasiatic-speaking populations from Thailand. Mol Genet Genomics 2024; 299:80. [PMID: 39172145 DOI: 10.1007/s00438-024-02175-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 08/02/2024] [Indexed: 08/23/2024]
Abstract
Austroasiatic (AA) speakers constitute around 4% of the population of Thailand, while the majority (89.4%) speak Kra-Dai (KD) languages. Previous forensic and population genetic studies in various Thai populations have employed a limited number of short tandem repeats (STRs). This study aims to expand the investigation of the genetic makeup of AA populations in Thailand and their relationship to KD populations using a larger number of autosomal STRs with the VeriFiler™ Plus PCR Amplification Kit. We generated 593 new genotypes from AA-speaking groups and combined them with previously reported data from AA and KD groups. A total of 1,129 genotypes across 23 STR loci were used to construct the largest allelic frequency profile for Thai and Lao populations. However, several loci deviated from Hardy-Weinberg equilibrium, likely due to the reduced genetic diversity in some highland populations, which should be considered in forensic investigations. Beyond forensic applications, our findings reveal genetic differences between AA-speaking groups in Northern and Northeastern Thailand. The AA groups from Northeastern Thailand exhibit greater genetic homogeneity and diversity, likely due to population interactions. In contrast, reduced diversity and increased heterogeneity in AA groups from Northern Thailand are possibly driven by genetic drift and cultural and geographic isolation. In conclusion, we emphasize the usefulness of increasing the number of autosomal STRs in forensic and anthropological genetic studies. Additional Y-STR and X-STR data from various AA-speaking groups in Thailand would further enhance and strengthen forensic STR databases in the region.
Collapse
Grants
- the Institute of Suvarnabhumi Studies, Thailand Academy of Social Sciences, Humanities and Arts (TASSHA), Ministry of Higher Education, Science, Research, and Innovation the Institute of Suvarnabhumi Studies, Thailand Academy of Social Sciences, Humanities and Arts (TASSHA), Ministry of Higher Education, Science, Research, and Innovation
- R2566C051 the Global and Frontier Research University Fund, Naresuan University
Collapse
Affiliation(s)
- Nonglak Prakhun
- Department of Biology, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Kanha Muisuk
- Department of Forensic Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Jatupol Kampuansai
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Metawee Srikummool
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Pittayawat Pittayaporn
- Department of Linguistics & Center of Excellence in Southeast Asian Linguistics, Faculty of Arts, Chulalongkorn University, Bangkok, Thailand
| | - Sukhum Ruangchai
- Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Wibhu Kutanan
- Department of Biology, Faculty of Science, Naresuan University, Phitsanulok, Thailand.
| | | |
Collapse
|
7
|
Xia ZY, Chen X, Wang CC, Deng Q. Tracing the fine-scale demographic history and recent admixture in Hmong-Mien speakers. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2024; 184:e24945. [PMID: 38708925 DOI: 10.1002/ajpa.24945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 03/11/2024] [Accepted: 04/02/2024] [Indexed: 05/07/2024]
Abstract
The linguistic, historical, and subsistent uniqueness of Hmong-Mien (HM) speakers offers a wonderful opportunity to investigate how these factors impact the genetic structure. The genetic differentiation among HM speakers and their population history are not well characterized. Here, we generate genome-wide data from 65 Yao ethnicity samples and analyze them with published data, particularly by leveraging haplotype-based methods. We determined that the fine-scale genetic substructure of HM speakers corresponds better with linguistic classification than with geography. Particularly, parallels between serial founder events and language differentiations can be observed in West Hmongic speakers. Multiple lines of evidence indicate that ~500-year-old GaoHuaHua individuals are most closely related to West Hmongic-speaking Bunu. The strong genetic bottleneck of some HM-speaking groups, especially Bunu, could potentially be associated with their long-term practice of swidden agriculture to some degree. The inferred admixture dates for most of the HM speakers overlap with the reign of the Ming dynasty (1368-1644 CE). Besides a common genetic origin for HM speakers, their genetic ancestry is shared primarily with neighboring Han Chinese and Tai-Kadai speakers in south China. In conclusion, our analyses reveal that recent isolation and admixture events have contributed to the genetic population history of present-day HM speakers.
Collapse
Affiliation(s)
- Zi-Yang Xia
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
- Department of Computational Biology, Cornell University, Ithaca, New York, USA
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Xingcai Chen
- Department of Human Anatomy, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, Nanning, China
| | - Chuan-Chao Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China
- Department of Anthropology and Ethnology, Institute of Anthropology, Fujian Provincial Key Laboratory of Philosophy and Social Sciences in Bioanthropology, School of Sociology and Anthropology, Xiamen University, Xiamen, China
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Qiongying Deng
- Department of Human Anatomy, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, Nanning, China
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
- Key Laboratory of Human Development and Disease Research, Guangxi Medical University, Education Department of Guangxi Zhuang Autonomous Region, Nanning, China
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
8
|
Sun Y, Wang M, Sun Q, Liu Y, Duan S, Wang Z, Zhou Y, Zhong J, Huang Y, Huang X, Yang Q, Li X, Su H, Cai Y, Jiang X, Chen J, Yan J, Nie S, Hu L, Yang J, Tang R, Wang CC, Liu C, Deng X, Yun L, He G. Distinguished biological adaptation architecture aggravated population differentiation of Tibeto-Burman-speaking people. J Genet Genomics 2024; 51:517-530. [PMID: 37827489 DOI: 10.1016/j.jgg.2023.10.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/28/2023] [Accepted: 10/04/2023] [Indexed: 10/14/2023]
Abstract
Tibeto-Burman (TB) people have endeavored to adapt to the hypoxic, cold, and high-UV high-altitude environments in the Tibetan Plateau and complex disease exposures in lowland rainforests since the late Paleolithic period. However, the full landscape of genetic history and biological adaptation of geographically diverse TB-speaking people, as well as their interaction mechanism, remain unknown. Here, we generate a whole-genome meta-database of 500 individuals from 39 TB-speaking populations and present a comprehensive landscape of genetic diversity, admixture history, and differentiated adaptative features of geographically different TB-speaking people. We identify genetic differentiation related to geography and language among TB-speaking people, consistent with their differentiated admixture process with incoming or indigenous ancestral source populations. A robust genetic connection between the Tibetan-Yi corridor and the ancient Yellow River people supports their Northern China origin hypothesis. We finally report substructure-related differentiated biological adaptative signatures between highland Tibetans and Loloish speakers. Adaptative signatures associated with the physical pigmentation (EDAR and SLC24A5) and metabolism (ALDH9A1) are identified in Loloish people, which differed from the high-altitude adaptative genetic architecture in Tibetan. TB-related genomic resources provide new insights into the genetic basis of biological adaptation and better reference for the anthropologically informed sampling design in biomedical and genomic cohort research.
Collapse
Affiliation(s)
- Yuntao Sun
- West China School of Basic Science & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China; Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, Sichuan 610000, China; Center for Archaeological Science, Sichuan University, Chengdu, Sichuan 610000, China
| | - Mengge Wang
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, Sichuan 610000, China; Center for Archaeological Science, Sichuan University, Chengdu, Sichuan 610000, China; Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510275, China; Guangzhou Forensic Science Institute, Guangzhou, Guangdong 510055, China.
| | - Qiuxia Sun
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, Sichuan 610000, China; Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing 400331, China
| | - Yan Liu
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, Sichuan 610000, China; School of Clinical Medical Sciences, North Sichuan Medical College, Nanchong, Sichuan 637100, China
| | - Shuhan Duan
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, Sichuan 610000, China; School of Basic Medical Sciences, North Sichuan Medical College, Nanchong, Sichuan 637100, China
| | - Zhiyong Wang
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, Sichuan 610000, China; School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Yunyu Zhou
- School of Stomatology, North Sichuan Medical College, Nanchong, Sichuan 637100, China
| | - Jun Zhong
- School of Basic Medical Sciences, North Sichuan Medical College, Nanchong, Sichuan 637100, China
| | - Yuguo Huang
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, Sichuan 610000, China
| | - Xinyu Huang
- West China School of Basic Science & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qingxin Yang
- School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Xiangping Li
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, Sichuan 610000, China; School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Haoran Su
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, Sichuan 610000, China; School of Basic Medical Sciences, North Sichuan Medical College, Nanchong, Sichuan 637100, China
| | - Yan Cai
- School of Basic Medical Sciences, North Sichuan Medical College, Nanchong, Sichuan 637100, China; Department of Medical Laboratory, North Sichuan Medical College, Nanchong, Sichuan 637007, China
| | - Xiucheng Jiang
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, Sichuan 610000, China; School of Basic Medical Sciences, North Sichuan Medical College, Nanchong, Sichuan 637100, China
| | - Jing Chen
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, Sichuan 610000, China; School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi, 030600, China
| | - Jiangwei Yan
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi, 030600, China
| | - Shengjie Nie
- School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Liping Hu
- School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Junbao Yang
- School of Clinical Medical Sciences, North Sichuan Medical College, Nanchong, Sichuan 637100, China
| | - Renkuan Tang
- Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing 400331, China
| | - Chuan-Chao Wang
- School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Chao Liu
- Anti-Drug Technology Center of Guangdong Province, Guangzhou, Guangdong 510230, China
| | - Xiaohui Deng
- West China School of Basic Science & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Libing Yun
- West China School of Basic Science & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China; Center for Archaeological Science, Sichuan University, Chengdu, Sichuan 610000, China.
| | - Guanglin He
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, Sichuan 610000, China; Center for Archaeological Science, Sichuan University, Chengdu, Sichuan 610000, China.
| |
Collapse
|
9
|
Duan S, Wang M, Wang Z, Liu Y, Jiang X, Su H, Cai Y, Sun Q, Sun Y, Li X, Chen J, Zhang Y, Yan J, Nie S, Hu L, Tang R, Yun L, Wang CC, Liu C, Yang J, He G. Malaria resistance-related biological adaptation and complex evolutionary footprints inferred from one integrative Tai-Kadai-related genomic resource. Heliyon 2024; 10:e29235. [PMID: 38665582 PMCID: PMC11043949 DOI: 10.1016/j.heliyon.2024.e29235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
Pathogen‒host adaptative interactions and complex population demographical processes, including admixture, drift, and Darwen selection, have considerably shaped the Neolithic-to-Modern Western Eurasian population structure and genetic susceptibility to modern human diseases. However, the genetic footprints of evolutionary events in East Asia remain unknown due to the underrepresentation of genomic diversity and the design of large-scale population studies. We reported one aggregated database of genome-wide SNP variations from 796 Tai-Kadai (TK) genomes, including that of Bouyei first reported here, to explore the genetic history, population structure, and biological adaptative features of TK people from southern China and Southeast Asia. We found geography-related population substructure among TK people using the state-of-the-art population genetic structure reconstruction techniques based on the allele frequency spectrum and haplotype-resolved phased fragments. We found that the northern TK people from Guizhou harbored one TK-dominant ancestry maximized in the Bouyei people, and the southern TK people from Thailand were more influenced by Southeast Asians and indigenous people. We reconstructed fitted admixture models and demographic graphs, which showed that TK people received gene flow from ancient southern rice farmer-related lineages related to the Hmong-Mien and Austroasiatic people and from northern millet farmers associated with the Sino-Tibetan people. Biological adaptation focused on our identified unique TK lineages related to Bouyei, which showed many adaptive signatures conferring Malaria resistance and low-rate lipid metabolism. Further gene enrichment, the allele frequency distribution of derived alleles, and their correlation with the incidence of Malaria further confirmed that CR1 played an essential role in the resistance of Malaria in the ancient "Baiyue" tribes.
Collapse
Affiliation(s)
- Shuhan Duan
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College and Center for Genetics and Prenatal Diagnosis, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637007, China
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
| | - Mengge Wang
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
- Center for Archaeological Science, Sichuan University, Chengdu, 610000, China
| | - Zhiyong Wang
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
- School of Forensic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Yan Liu
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College and Center for Genetics and Prenatal Diagnosis, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637007, China
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
| | - Xiucheng Jiang
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College and Center for Genetics and Prenatal Diagnosis, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637007, China
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
| | - Haoran Su
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College and Center for Genetics and Prenatal Diagnosis, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637007, China
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
| | - Yan Cai
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College and Center for Genetics and Prenatal Diagnosis, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637007, China
- Research Center for Genomic Medicine, North Sichuan Medical College, Nanchong, 637100, China
| | - Qiuxia Sun
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
- Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing, 400331, China
| | - Yuntao Sun
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
- West China School of Basic Science & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Xiangping Li
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
- School of Forensic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Jing Chen
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030001, China
| | - Yijiu Zhang
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
- Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing, 400331, China
| | - Jiangwei Yan
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030001, China
| | - Shengjie Nie
- School of Forensic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Liping Hu
- School of Forensic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Renkuan Tang
- Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing, 400331, China
| | - Libing Yun
- West China School of Basic Science & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Chuan-Chao Wang
- State Key Laboratory of Cellular Stress Biology, National Institute for Data Science in Health and Medicine, School of Life Sciences, Xiamen University, Xiamen, 361005, Fujian, China
| | - Chao Liu
- Anti-Drug Technology Center of Guangdong Province, Guangzhou, 510230, China
| | - Junbao Yang
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College and Center for Genetics and Prenatal Diagnosis, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637007, China
- Research Center for Genomic Medicine, North Sichuan Medical College, Nanchong, 637100, China
| | - Guanglin He
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College and Center for Genetics and Prenatal Diagnosis, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637007, China
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
- Research Center for Genomic Medicine, North Sichuan Medical College, Nanchong, 637100, China
- Center for Archaeological Science, Sichuan University, Chengdu, 610000, China
| |
Collapse
|
10
|
Srithawong S, Muisuk K, Prakhun N, Tungpairojwong N, Kutanan W. Forensic efficiency and genetic polymorphisms of 12 X-chromosomal STR loci in Northeastern Thai populations. Mol Genet Genomics 2024; 299:42. [PMID: 38568251 DOI: 10.1007/s00438-024-02134-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 03/07/2024] [Indexed: 04/05/2024]
Abstract
Northeastern Thailand comprises one-third of the country and is home to various populations, with Lao Isan constituting the majority, while others are considered minority groups. Previous studies on forensic short tandem repeats (STRs) in Thailand predominantly focused on autosomal STRs but there was a paucity of X-STRs, exclusively reported from the North and Central regions of the country. In this study, we have newly established a 12 X-STRs from a total of 896 samples from Northeastern Thailand, encompassing Lao Isan as the major group in the region, alongside nine minor populations (Khmer, Mon, Nyahkur, Bru, Kuy, Phutai, Kalueang, Nyaw, and Saek). Across all ten populations, the combined powers of discrimination in both genders were high and the combined mean exclusion chance (MEC) indices calculated for deficiency, normal trio and duo cases were also high (> 0.99999). DXS10148 emerged as the most informative marker, while DXS7423 was identified as the least informative. Genetic comparison based on X-STRs frequency supported genetic distinction of cerain minor groups such as Kuy, Saek and Nyahkur from other northeastern Thai groups as well as genetic differences according to the geographic region of Thai groups (Northeast, North and Central). In sum, the overall results on population genetics are in agreement with earlier reports on other genetic systems, indicating the informativeness of X-STRs for use in anthropological genetics studies. From a forensic perspective, despite the limitations of small sample sizes for minority groups, the present results contribute to filling the gap in the reference X-STRs database of the major group Lao Isan, providing valuable frequency data for forensic applications in Thailand and neighboring countries.
Collapse
Affiliation(s)
- Suparat Srithawong
- Department of Biology, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Kanha Muisuk
- Department of Forensic Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Nonglak Prakhun
- Department of Biology, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | | | - Wibhu Kutanan
- Department of Biology, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand.
- Department of Biology, Faculty of Science, Naresuan University, Pitsanulok, Thailand.
| |
Collapse
|
11
|
He G, Wang P, Chen J, Liu Y, Sun Y, Hu R, Duan S, Sun Q, Tang R, Yang J, Wang Z, Yun L, Hu L, Yan J, Nie S, Wei L, Liu C, Wang M. Differentiated genomic footprints suggest isolation and long-distance migration of Hmong-Mien populations. BMC Biol 2024; 22:18. [PMID: 38273256 PMCID: PMC10809681 DOI: 10.1186/s12915-024-01828-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 01/12/2024] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND The underrepresentation of Hmong-Mien (HM) people in Asian genomic studies has hindered our comprehensive understanding of the full landscape of their evolutionary history and complex trait architecture. South China is a multi-ethnic region and indigenously settled by ethnolinguistically diverse HM, Austroasiatic (AA), Tai-Kadai (TK), Austronesian (AN), and Sino-Tibetan (ST) people, which is regarded as East Asia's initial cradle of biodiversity. However, previous fragmented genetic studies have only presented a fraction of the landscape of genetic diversity in this region, especially the lack of haplotype-based genomic resources. The deep characterization of demographic history and natural-selection-relevant genetic architecture of HM people was necessary. RESULTS We reported one HM-specific genomic resource and comprehensively explored the fine-scale genetic structure and adaptative features inferred from the genome-wide SNP data of 440 HM individuals from 33 ethnolinguistic populations, including previously unreported She. We identified solid genetic differentiation between HM people and Han Chinese at 7.64‒15.86 years ago (kya) and split events between southern Chinese inland (Miao/Yao) and coastal (She) HM people in the middle Bronze Age period and the latter obtained more gene flow from Ancient Northern East Asians. Multiple admixture models further confirmed that extensive gene flow from surrounding ST, TK, and AN people entangled in forming the gene pool of Chinese coastal HM people. Genetic findings of isolated shared unique ancestral components based on the sharing alleles and haplotypes deconstructed that HM people from the Yungui Plateau carried the breadth of previously unknown genomic diversity. We identified a direct and recent genetic connection between Chinese inland and Southeast Asian HM people as they shared the most extended identity-by-descent fragments, supporting the long-distance migration hypothesis. Uniparental phylogenetic topology and network-based phylogenetic relationship reconstruction found ancient uniparental founding lineages in southwestern HM people. Finally, the population-specific biological adaptation study identified the shared and differentiated natural selection signatures among inland and coastal HM people associated with physical features and immune functions. The allele frequency spectrum of cancer susceptibility alleles and pharmacogenomic genes showed significant differences between HM and northern Chinese people. CONCLUSIONS Our extensive genetic evidence combined with the historical documents supported the view that ancient HM people originated from the Yungui regions associated with ancient "Three-Miao tribes" descended from the ancient Daxi-Qujialing-Shijiahe people. Then, some have recently migrated rapidly to Southeast Asia, and some have migrated eastward and mixed respectively with Southeast Asian indigenes, Liangzhu-related coastal ancient populations, and incoming southward ST people. Generally, complex population migration, admixture, and adaptation history contributed to the complicated patterns of population structure of geographically diverse HM people.
Collapse
Affiliation(s)
- Guanglin He
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610041, China.
- Center for Archaeological Science, Sichuan University, Chengdu, 610000, China.
- Anti-Drug Technology Center of Guangdong Province, Guangzhou, 510230, China.
- Research Center for Genomic Medicine, North Sichuan Medical College, Nanchong, 637100, China.
| | - Peixin Wang
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610041, China
- School of Medical Information, Chongqing Medical University, Chongqing, 400331, China
| | - Jing Chen
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610041, China
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030001, China
| | - Yan Liu
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610041, China
- School of Basic Medical Sciences, North Sichuan Medical College, Nanchong, 637000, China
- Research Center for Genomic Medicine, North Sichuan Medical College, Nanchong, 637100, China
| | - Yuntao Sun
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610041, China
- Institute of Forensic Medicine, West China School of Basic Science & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Rong Hu
- School of Sociology and Anthropology, Xiamen University, Xiamen, 361005, China
| | - Shuhan Duan
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610041, China
- School of Basic Medical Sciences, North Sichuan Medical College, Nanchong, 637000, China
- Research Center for Genomic Medicine, North Sichuan Medical College, Nanchong, 637100, China
| | - Qiuxia Sun
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610041, China
- Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing, 400331, China
| | - Renkuan Tang
- Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing, 400331, China
| | - Junbao Yang
- School of Basic Medical Sciences, North Sichuan Medical College, Nanchong, 637000, China
- Research Center for Genomic Medicine, North Sichuan Medical College, Nanchong, 637100, China
| | - Zhiyong Wang
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610041, China
- School of Forensic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Libing Yun
- Institute of Forensic Medicine, West China School of Basic Science & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Liping Hu
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610041, China
- School of Forensic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Jiangwei Yan
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030001, China
| | - Shengjie Nie
- School of Forensic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Lanhai Wei
- School of Ethnology and Anthropology, Inner Mongolia Normal University, Inner Mongolia, 010028, China
| | - Chao Liu
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510275, China.
- Anti-Drug Technology Center of Guangdong Province, Guangzhou, 510230, China.
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Mengge Wang
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610041, China.
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510275, China.
- Anti-Drug Technology Center of Guangdong Province, Guangzhou, 510230, China.
- Research Center for Genomic Medicine, North Sichuan Medical College, Nanchong, 637100, China.
| |
Collapse
|
12
|
Carlhoff S, Kutanan W, Rohrlach AB, Posth C, Stoneking M, Nägele K, Shoocongdej R, Krause J. Genomic portrait and relatedness patterns of the Iron Age Log Coffin culture in northwestern Thailand. Nat Commun 2023; 14:8527. [PMID: 38135688 PMCID: PMC10746721 DOI: 10.1038/s41467-023-44328-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
The Iron Age of highland Pang Mapha, northwestern Thailand, is characterised by a mortuary practice known as Log Coffin culture. Dating between 2300 and 1000 years ago, large coffins carved from individual teak trees have been discovered in over 40 caves and rock shelters. While previous studies focussed on the cultural development of the Log Coffin-associated sites, the origins of the practice, connections with other wooden coffin-using groups in Southeast Asia, and social structure within the region remain understudied. Here, we present genome-wide data from 33 individuals from five Log Coffin culture sites to study genetic ancestry profiles and genetic interconnectedness. The Log Coffin-associated genomes can be modelled as an admixture between Hòabìnhian hunter-gatherer-, Yangtze River farmer-, and Yellow River farmer-related ancestry. This indicates different influence spheres from Bronze and Iron Age individuals from northeastern Thailand as reflected by cultural practices. Our analyses also identify close genetic relationships within the sites and more distant connections between sites in the same and different river valleys. In combination with high mitochondrial haplogroup diversity and genome-wide homogeneity, the Log Coffin-associated groups from northwestern Thailand seem to have been a large, well-connected community, where genetic relatedness played a significant role in the mortuary ritual.
Collapse
Affiliation(s)
- Selina Carlhoff
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
| | - Wibhu Kutanan
- Department of Biology, Faculty of Science, Naresuan University, Phitsanulok, Thailand
| | - Adam B Rohrlach
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- School of Computer and Mathematical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Cosimo Posth
- Institute for Archaeological Sciences, Archaeo- and Palaeogenetics, University of Tübingen, Tübingen, Germany
- Senckenberg Centre for Human Evolution and Palaeoenvironment, University of Tübingen, Tübingen, Germany
| | - Mark Stoneking
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, Villeurbanne, France
| | - Kathrin Nägele
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Rasmi Shoocongdej
- Department of Archaeology, Silpakorn University, Bangkok, Thailand.
- The Prehistoric Population and Cultural Dynamics in Highland Pang Mapha Project, Princess Maha Chakri Sirindhorn Anthropology Centre, Bangkok, Thailand.
| | - Johannes Krause
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
| |
Collapse
|
13
|
Jaisamut K, Pitiwararom R, Sukawutthiya P, Sathirapatya T, Noh H, Worrapitirungsi W, Vongpaisarnsin K. Unraveling the mitochondrial phylogenetic landscape of Thailand reveals complex admixture and demographic dynamics. Sci Rep 2023; 13:20396. [PMID: 37990137 PMCID: PMC10663463 DOI: 10.1038/s41598-023-47762-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/17/2023] [Indexed: 11/23/2023] Open
Abstract
The evolutionary dynamics of mitochondrial DNA within the Thai population were comprehensively explored with a specific focus on the influence of South Asian admixture. A total of 166 samples were collected through randomized sampling, ensuring a diverse representation. Our findings unveil substantial genetic and haplogroup diversity within the Thai population. We have identified 164 haplotypes categorized into 97 haplogroups, with a notable inclusion of 20 novel haplogroups. The distribution of haplogroups exhibited variations across different populations and countries. The central Thai population displayed a high diversity of haplogroups from both the M and N clades. Maternal lineage affinities were discerned between several Mainland Southeast Asia (MSEA) and South Asian populations, implying ancestral genetic connections and a substantial influence of South Asian women in establishing these relationships. f4-statistics indicates the presence of a Tibeto-Burman genetic component within the Mon population from Thailand. New findings demonstrate two phases of population expansion occurring 22,000-26,000 and 2500-3800 years ago, coinciding with the Last Glacial Maximum, and Neolithic demographic transition, respectively. This research significantly enhances our understanding of the maternal genetic history of Thailand and MSEA, emphasizing the influence of South Asian admixture. Moreover, it underscores the critical role of prior information, such as mutation rates, within the Bayesian framework for accurate estimation of coalescence times and inferring demographic history.
Collapse
Affiliation(s)
- Kitipong Jaisamut
- Forensic Genetics Research Unit, Department of Forensic Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Forensic Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Rachtipan Pitiwararom
- Forensic Genetics Research Unit, Department of Forensic Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Forensic Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Poonyapat Sukawutthiya
- Forensic Genetics Research Unit, Department of Forensic Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Forensic Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Tikumphorn Sathirapatya
- Forensic Genetics Research Unit, Department of Forensic Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Forensic Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Hasnee Noh
- Forensic Genetics Research Unit, Department of Forensic Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Forensic Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Wikanda Worrapitirungsi
- Forensic Genetics Research Unit, Department of Forensic Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Forensic Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Kornkiat Vongpaisarnsin
- Forensic Genetics Research Unit, Department of Forensic Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
- Department of Forensic Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
- Forensic Serology and DNA, King Chulalongkorn Memorial Hospital and Thai Red Cross Society, Bangkok, Thailand.
| |
Collapse
|
14
|
Kampuansai J, Wongkomonched R, Kutanan W, Srikummool M, Seetaraso T, Sathupak S, Thongkumkoon P, Sangphukieo A. Genetic diversity and ancestry of the Khmuic-speaking ethnic groups in Thailand: a genome-wide perspective. Sci Rep 2023; 13:15710. [PMID: 37735611 PMCID: PMC10514191 DOI: 10.1038/s41598-023-43060-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/19/2023] [Indexed: 09/23/2023] Open
Abstract
The Khmuic-speaking populations are believed to be the descendants of one of the earliest groups to settle in Mainland Southeast Asia. In Thailand, there are two agricultural Khmuic-speaking ethnic groups, the Khamu and Lua (Htin). These peoples primarily reside in scattered locations along the mountainous Thailand-Laos border in Nan province. In this study, we conducted genome-wide SNP analysis on 81 individuals from three Khamu and two Lua villages in northern Thailand. Our findings revealed that both the Khamu and Lua groups possess genetic structures that are distinct from other ethnicities in Southeast Asia, indicating a unique history of migration and settlement. Within the Khmuic group, the Khamu populations living in different locations exhibited similar genetic structures and displayed genetic affinities only with some hill-tribes and Tai-Kadai (Kra-Dai)-speaking groups in Thailand, suggesting potential intermixing or cultural exchange. Furthermore, the Lua people displayed a distinctive population structure, which could be attributed to the founder effect and endogamous marriage practices. Additionally, we discovered a relationship between the Khmuic-speaking populations in Thailand and a Neolithic ancient sample obtained from the Tham Pha Ling archaeological site in Laos. This study provides new insight into genetic substructure within the Khmuic-speaking people and their potential relationship to the indigenous inhabitants of Mainland Southeast Asia.
Collapse
Affiliation(s)
- Jatupol Kampuansai
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand.
| | - Rattanasak Wongkomonched
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Department of Biology, Faculty of Science, Naresuan University, Phitsanulok, Thailand
| | - Wibhu Kutanan
- Department of Biology, Faculty of Science, Naresuan University, Phitsanulok, Thailand
| | - Metawee Srikummool
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Tanapon Seetaraso
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Suwapat Sathupak
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Patcharawadee Thongkumkoon
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Apiwat Sangphukieo
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
15
|
Woravatin W, Stoneking M, Srikummool M, Kampuansai J, Arias L, Kutanan W. South Asian maternal and paternal lineages in southern Thailand and the role of sex-biased admixture. PLoS One 2023; 18:e0291547. [PMID: 37708147 PMCID: PMC10501589 DOI: 10.1371/journal.pone.0291547] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/31/2023] [Indexed: 09/16/2023] Open
Abstract
Previous genome-wide studies have reported South Asian (SA) ancestry in several Mainland Southeast Asian (MSEA) populations; however, additional details concerning population history, in particular the role of sex-specific aspects of the SA admixture in MSEA populations can be addressed with uniparental markers. Here, we generated ∼2.3 mB sequences of the male-specific portions of the Y chromosome (MSY) of a Tai-Kadai (TK)-speaking Southern Thai group (SouthernThai_TK), and complete mitochondrial (mtDNA) genomes of the SouthernThai_TK and an Austronesian (AN)-speaking Southern Thai (SouthernThai_AN) group. We identified new mtDNA haplogroups, e.g. Q3, E1a1a1, B4a1a and M7c1c3 that have not previously reported in Thai populations, but are frequent in Island Southeast Asia and Oceania, suggesting interactions between MSEA and these regions. SA prevalent mtDNA haplogroups were observed at frequencies of ~35-45% in the Southern Thai groups; both of them showed more genetic relatedness to Austroasiatic (AA) speaking Mon than to any other group. For MSY, SouthernThai_TK had ~35% SA prevalent haplogroups and exhibited closer genetic affinity to Central Thais. We also analyzed published data from other MSEA populations and observed SA ancestry in some additional MSEA populations that also reflects sex-biased admixture; in general, most AA- and AN-speaking groups in MSEA were closer to SA than to TK groups based on mtDNA, but the opposite pattern was observed for the MSY. Overall, our results of new genetic lineages and sex-biased admixture from SA to MSEA groups attest to the additional value that uniparental markers can add to studies of genome-wide variation.
Collapse
Affiliation(s)
- Wipada Woravatin
- Department of Biology, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Mark Stoneking
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Biométrie et Biologie Évolutive, UMR 5558, CNRS & Université de Lyon, Lyon, France
| | - Metawee Srikummool
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Jatupol Kampuansai
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Research Center in Bioresources for Agriculture, Industry and Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Leonardo Arias
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Centre for Linguistics, Faculty of Humanities, Leiden University, Leiden, The Netherlands
| | - Wibhu Kutanan
- Department of Biology, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
- Department of Biology, Faculty of Science, Naresuan University, Phitsanulok, Thailand
| |
Collapse
|
16
|
Wang J, Wu J, Sun Q, Wu Q, Li Y, Duan S, Yang L, Wu W, Wang Z, Liu Y, Tang R, Yang J, Wang C, Liu C, Xu J, Wang M, He G. Extensive genetic admixture between Tai-Kadai-speaking people and their neighbours in the northeastern region of the Yungui Plateau inferred from genome-wide variations. BMC Genomics 2023; 24:317. [PMID: 37308851 DOI: 10.1186/s12864-023-09412-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 05/27/2023] [Indexed: 06/14/2023] Open
Abstract
BACKGROUND Yungui Plateau in Southwest China is characterized by multi-language and multi-ethnic communities and is one of the regions with the wealthiest ethnolinguistic, cultural and genetic diversity in East Asia. There are numerous Tai-Kadai (TK)-speaking populations, but their detailed evolutionary history and biological adaptations are still unclear. RESULTS Here, we genotyped genome-wide SNP data of 77 unrelated TK-speaking Zhuang and Dong individuals from the Yungui Plateau and explored their detailed admixture history and adaptive features using clustering patterns, allele frequency differentiation and sharing haplotype patterns. TK-speaking Zhuang and Dong people in Guizhou are closely related to geographically close TK and Hmong-Mien (HM)-speaking populations. Besides, we identified that Guizhou TK-speaking people have a close genetic relationship with Austronesian (AN)-speaking Atayal and Paiwan people, which is supported by the common origin of the ancient Baiyue tribe. We additionally found subtle genetic differences among the newly studied TK people and previously reported Dais via the fine-scale genetic substructure analysis based on the shared haplotype chunks. Finally, we identified specific selection candidate signatures associated with several essential human immune systems and neurological disorders, which could provide evolutionary evidence for the allele frequency distribution pattern of genetic risk loci. CONCLUSIONS Our comprehensive genetic characterization of TK people suggested the strong genetic affinity within TK groups and extensive gene flow with geographically close HM and Han people. We also provided genetic evidence that supported the common origin hypothesis of TK and AN people. The best-fitted admixture models further suggested that ancestral sources from northern millet farmers and southern inland and coastal people contributed to the formation of the gene pool of the Zhuang and Dong people.
Collapse
Affiliation(s)
- Jiawen Wang
- School of Forensic Medicine, Guizhou Medical University, Guiyang, 550004, China.
| | - Jun Wu
- School of Forensic Medicine, Guizhou Medical University, Guiyang, 550004, China
| | - Qiuxia Sun
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
- Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing, 400331, China
| | - Qian Wu
- Qiannan Prefecture People's Hospital, Buyi and Miao Autonomous Prefecture of QianNan, Buyi and Miao Autonomous Prefecture of QianNan, 558000, China
| | - Youjing Li
- Congjiang People's Hospital, Congjiang, 557499, China
| | - Shuhan Duan
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
- School of Basic Medical Sciences, North Sichuan Medical College, Nanchong, 637000, China
| | - Lin Yang
- School of Forensic Medicine, Guizhou Medical University, Guiyang, 550004, China
| | - Wenxin Wu
- School of Forensic Medicine, Guizhou Medical University, Guiyang, 550004, China
| | - Zheng Wang
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Yan Liu
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
- School of Basic Medical Sciences, North Sichuan Medical College, Nanchong, 637000, China
| | - Renkuan Tang
- Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing, 400331, China
| | - Junbao Yang
- School of Basic Medical Sciences, North Sichuan Medical College, Nanchong, 637000, China
| | - Chuanchao Wang
- Department of Anthropology and Ethnology, School of Sociology and Anthropology, Institute of Anthropology, Xiamen University, Xiamen, 361000, China
| | - Chao Liu
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Jianwei Xu
- Department of Pharmacology, School of Basic Medicine, Guizhou Medical University, Guiyang, 550004, China.
| | - Mengge Wang
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Guanglin He
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China.
- Center for Archaeological Science, Sichuan University, Chengdu, 610000, China.
| |
Collapse
|
17
|
Changmai P, Phongbunchoo Y, Kočí J, Flegontov P. Reanalyzing the genetic history of Kra-Dai speakers from Thailand and new insights into their genetic interactions beyond Mainland Southeast Asia. Sci Rep 2023; 13:8371. [PMID: 37225753 DOI: 10.1038/s41598-023-35507-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 05/19/2023] [Indexed: 05/26/2023] Open
Abstract
Thailand is a country where over 60 languages from five language families (Austroasiatic, Austronesian, Hmong-Mien, Kra-Dai, and Sino-Tibetan) are spoken. The Kra-Dai language family is the most prevalent, and Thai, the official language of the country, belongs to it. Previous genome-wide studies on Thailand populations revealed a complex population structure and put some hypotheses forward concerning the population history of the country. However, many published populations have not been co-analyzed, and some aspects of population history were not explored adequately. In this study, we employ new methods to re-analyze published genome-wide genetic data on Thailand populations, with a focus on 14 Kra-Dai-speaking groups. Our analyses reveal South Asian ancestry in Kra-Dai-speaking Lao Isan and Khonmueang, and in Austroasiatic-speaking Palaung, in contrast to a previous study in which the data were generated. We support the admixture scenario for the formation of Kra-Dai-speaking groups from Thailand who harbor both Austroasiatic-related ancestry and Kra-Dai-related ancestry from outside of Thailand. We also provide evidence of bidirectional admixture between Southern Thai and Nayu, an Austronesian-speaking group from Southern Thailand. Challenging some previously reported genetic analyses, we reveal a close genetic relationship between Nayu and Austronesian-speaking groups from Island Southeast Asia (ISEA).
Collapse
Affiliation(s)
- Piya Changmai
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic.
| | - Yutthaphong Phongbunchoo
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Jan Kočí
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Pavel Flegontov
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic.
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA.
- Kalmyk Research Center of the Russian Academy of Sciences, Elista, Kalmykia, Russia.
| |
Collapse
|
18
|
Liu D, Ko AMS, Stoneking M. The genomic diversity of Taiwanese Austronesian groups: Implications for the "Into- and Out-of-Taiwan" models. PNAS NEXUS 2023; 2:pgad122. [PMID: 37200801 PMCID: PMC10187666 DOI: 10.1093/pnasnexus/pgad122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 05/20/2023]
Abstract
The origin and dispersal of the Austronesian language family, one of the largest and most widespread in the world, have long attracted the attention of linguists, archaeologists, and geneticists. Even though there is a growing consensus that Taiwan is the source of the spread of Austronesian languages, little is known about the migration patterns of the early Austronesians who settled in and left Taiwan, i.e. the "Into-Taiwan" and "out-of-Taiwan" events. In particular, the genetic diversity and structure within Taiwan and how this relates to the into-/out-of-Taiwan events are largely unexplored, primarily because most genomic studies have largely utilized data from just two of the 16 recognized Highland Austronesian groups in Taiwan. In this study, we generated the largest genome-wide data set of Taiwanese Austronesians to date, including six Highland groups and one Lowland group from across the island and two Taiwanese Han groups. We identified fine-scale genomic structure in Taiwan, inferred the ancestry profile of the ancestors of Austronesians, and found that the southern Taiwanese Austronesians show excess genetic affinities with the Austronesians outside of Taiwan. Our findings thus shed new light on the Into- and Out-of-Taiwan dispersals.
Collapse
Affiliation(s)
- Dang Liu
- To whom correspondence should be addressed: ;
| | | | | |
Collapse
|
19
|
He G, Wang M, Miao L, Chen J, Zhao J, Sun Q, Duan S, Wang Z, Xu X, Sun Y, Liu Y, Liu J, Wang Z, Wei L, Liu C, Ye J, Wang L. Multiple founding paternal lineages inferred from the newly-developed 639-plex Y-SNP panel suggested the complex admixture and migration history of Chinese people. Hum Genomics 2023; 17:29. [PMID: 36973821 PMCID: PMC10045532 DOI: 10.1186/s40246-023-00476-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/15/2023] [Indexed: 03/29/2023] Open
Abstract
BACKGROUND Non-recombining regions of the Y-chromosome recorded the evolutionary traces of male human populations and are inherited haplotype-dependently and male-specifically. Recent whole Y-chromosome sequencing studies have identified previously unrecognized population divergence, expansion and admixture processes, which promotes a better understanding and application of the observed patterns of Y-chromosome genetic diversity. RESULTS Here, we developed one highest-resolution Y-chromosome single nucleotide polymorphism (Y-SNP) panel targeted for uniparental genealogy reconstruction and paternal biogeographical ancestry inference, which included 639 phylogenetically informative SNPs. We genotyped these loci in 1033 Chinese male individuals from 33 ethnolinguistically diverse populations and identified 256 terminal Y-chromosomal lineages with frequency ranging from 0.0010 (singleton) to 0.0687. We identified six dominant common founding lineages associated with different ethnolinguistic backgrounds, which included O2a2b1a1a1a1a1a1a1-M6539, O2a1b1a1a1a1a1a1-F17, O2a2b1a1a1a1a1b1a1b-MF15397, O2a2b2a1b1-A16609, O1b1a1a1a1b2a1a1-F2517, and O2a2b1a1a1a1a1a1-F155. The AMOVA and nucleotide diversity estimates revealed considerable differences and high genetic diversity among ethnolinguistically different populations. We constructed one representative phylogenetic tree among 33 studied populations based on the haplogroup frequency spectrum and sequence variations. Clustering patterns in principal component analysis and multidimensional scaling results showed a genetic differentiation between Tai-Kadai-speaking Li, Mongolic-speaking Mongolian, and other Sinitic-speaking Han Chinese populations. Phylogenetic topology inferred from the BEAST and Network relationships reconstructed from the popART further showed the founding lineages from culturally/linguistically diverse populations, such as C2a/C2b was dominant in Mongolian people and O1a/O1b was dominant in island Li people. We also identified many lineages shared by more than two ethnolinguistically different populations with a high proportion, suggesting their extensive admixture and migration history. CONCLUSIONS Our findings indicated that our developed high-resolution Y-SNP panel included major dominant Y-lineages of Chinese populations from different ethnic groups and geographical regions, which can be used as the primary and powerful tool for forensic practice. We should emphasize the necessity and importance of whole sequencing of more ethnolinguistically different populations, which can help identify more unrecognized population-specific variations for the promotion of Y-chromosome-based forensic applications.
Collapse
Affiliation(s)
- Guanglin He
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610041, China.
| | - Mengge Wang
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Lei Miao
- National Engineering Laboratory for Forensic Science, Key Laboratory of Forensic Genetics of Ministry of Public Security, Institute of Forensic Science, Ministry of Public Security, Beijing, 100038, China
| | - Jing Chen
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030001, China
| | - Jie Zhao
- National Engineering Laboratory for Forensic Science, Key Laboratory of Forensic Genetics of Ministry of Public Security, Institute of Forensic Science, Ministry of Public Security, Beijing, 100038, China
| | - Qiuxia Sun
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610041, China
- Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing, 400331, China
| | - Shuhan Duan
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610041, China
- School of Basic Medical Sciences, North Sichuan Medical College, Nanchong, 637000, China
| | - Zhiyong Wang
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610041, China
- School of Forensic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Xiaofei Xu
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610041, China
| | - Yuntao Sun
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610041, China
- Institute of Forensic Medicine, West China School of Basic Science and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Yan Liu
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610041, China
- School of Basic Medical Sciences, North Sichuan Medical College, Nanchong, 637000, China
| | - Jing Liu
- Institute of Forensic Medicine, West China School of Basic Science and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Zheng Wang
- Institute of Forensic Medicine, West China School of Basic Science and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Lanhai Wei
- School of Ethnology and Anthropology, Inner Mongolia Normal University, Hohhot, 010028, Inner Mongolia, China
| | - Chao Liu
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510275, China
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Jian Ye
- National Engineering Laboratory for Forensic Science, Key Laboratory of Forensic Genetics of Ministry of Public Security, Institute of Forensic Science, Ministry of Public Security, Beijing, 100038, China.
| | - Le Wang
- National Engineering Laboratory for Forensic Science, Key Laboratory of Forensic Genetics of Ministry of Public Security, Institute of Forensic Science, Ministry of Public Security, Beijing, 100038, China.
| |
Collapse
|
20
|
Arias L, Emlen NQ, Norder S, Julmi N, Lemus Serrano M, Chacon T, Wiegertjes J, Howard A, Azevedo MCBC, Caine A, Dunn S, Stoneking M, Van Gijn R. Interpreting mismatches between linguistic and genetic patterns among speakers of Tanimuka (Eastern Tukanoan) and Yukuna (Arawakan). Interface Focus 2023; 13:20220056. [PMID: 36655193 PMCID: PMC9732642 DOI: 10.1098/rsfs.2022.0056] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/15/2022] [Indexed: 12/13/2022] Open
Abstract
Northwestern Amazonia is home to a great degree of linguistic diversity, and the human societies in that region are part of complex networks of interaction that predate the arrival of Europeans. This study investigates the population and language contact dynamics between two languages found within this region, Yukuna and Tanimuka, which belong to the Arawakan and Tukanoan language families, respectively. We use evidence from linguistics, ethnohistory, ethnography and population genetics to provide new insights into the contact dynamics between these and other human groups in NWA. Our results show that the interaction between these groups intensified in the last 500 years, to the point that it is difficult to differentiate between them genetically. However, this close interaction has led to more substantial contact-induced language changes in Tanimuka than in Yukuna, consistent with a scenario of language shift and asymmetrical power relations.
Collapse
Affiliation(s)
- Leonardo Arias
- Leiden University Centre for Linguistics, Leiden, The Netherlands
- Department of Evolutionary Genetics, Max-Planck-Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Nicholas Q. Emlen
- Leiden University Centre for Linguistics, Leiden, The Netherlands
- University of Groningen (Campus Fryslân), Groningen, The Netherlands
| | - Sietze Norder
- Leiden University Centre for Linguistics, Leiden, The Netherlands
- Copernicus Institute of Sustainable Development, Environmental Science Group, Utrecht University, Princetonlaan 8a, 3584 CB Utrecht, The Netherlands
| | - Nora Julmi
- Leiden University Centre for Linguistics, Leiden, The Netherlands
| | | | | | | | - Austin Howard
- Leiden University Centre for Linguistics, Leiden, The Netherlands
| | | | - Allison Caine
- Leiden University Centre for Linguistics, Leiden, The Netherlands
- University of Wyoming, Laramie, WY, USA
| | - Saskia Dunn
- Leiden University Centre for Linguistics, Leiden, The Netherlands
| | - Mark Stoneking
- Department of Evolutionary Genetics, Max-Planck-Institute for Evolutionary Anthropology, Leipzig, Germany
- Laboratoire de Biométrie et Biologie Evolutive, Université Lyon 1, CNRS, UMR 5558, Villeurbanne, France
| | - Rik Van Gijn
- Leiden University Centre for Linguistics, Leiden, The Netherlands
| |
Collapse
|
21
|
Liu C, Wang T, Chen H, Ma X, Jiao C, Cui D, Han B, Li X, Jiao A, Ruan R, Xue D, Wang Y, Han L. Genomic footprints of Kam Sweet Rice domestication indicate possible migration routes of the Dong people in China and provide resources for future rice breeding. MOLECULAR PLANT 2023; 16:415-431. [PMID: 36578210 DOI: 10.1016/j.molp.2022.12.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 11/22/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
The Dong people are one of China's 55 recognized ethnic minorities, but there has been a long-standing debate about their origins. In this study, we performed whole-genome resequencing of Kam Sweet Rice (KSR), a valuable, rare, and ancient rice landrace unique to the Dong people. Through comparative genomic analyses of KSR and other rice landraces from south of the Yangtze River Basin in China, we provide evidence that the ancestors of the Dong people likely originated from the southeast coast of China at least 1000 years ago. Alien introgression and admixture in KSR demonstrated multiple migration events in the history of the Dong people. Genomic footprints of domestication demonstrated characteristics of KSR that arose from artificial selection and geographical adaptation by the Dong people. The key genes GS3, Hd1, and DPS1 (related to agronomic traits) and LTG1 and MYBS3 (related to cold tolerance) were identified as domestication targets, reflecting crop improvement and changes in the geographical environment of the Dong people during migration. A genome-wide association study revealed a candidate yield-associated gene, Os01g0923300, a specific haplotype in KSR that is important for regulating grain number per panicle. RNA-sequencing and quantitative reverse transcription-PCR results showed that this gene was more highly expressed in KSR than in ancestral populations, indicating that it may have great value in increasing yield potential in other rice accessions. In summary, our work develops a novel approach for studying human civilization and migration patterns and provides valuable genomic datasets and resources for future breeding of high-yield and climate-resilient rice varieties.
Collapse
Affiliation(s)
- Chunhui Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Tianyi Wang
- Smartgenomics Technology Institute, Tianjin 301700, China
| | - Huicha Chen
- Institute of Crop Germplasm Resources, Guizhou Academy of Agricultural Sciences, Guiyang 550025, China
| | - Xiaoding Ma
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chengzhi Jiao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Di Cui
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Bing Han
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaobing Li
- Institute of Crop Germplasm Resources, Guizhou Academy of Agricultural Sciences, Guiyang 550025, China
| | - Aixia Jiao
- Institute of Crop Germplasm Resources, Guizhou Academy of Agricultural Sciences, Guiyang 550025, China
| | - Renchao Ruan
- Institute of Crop Germplasm Resources, Guizhou Academy of Agricultural Sciences, Guiyang 550025, China
| | - Dayuan Xue
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Yanjie Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Longzhi Han
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
22
|
Van Gijn R, Norder S, Arias L, Emlen NQ, Azevedo MCBC, Caine A, Dunn S, Howard A, Julmi N, Krasnoukhova O, Stoneking M, Wiegertjes J. The social lives of isolates (and small language families): the case of the Northwest Amazon. Interface Focus 2023; 13:20220054. [PMID: 36655194 PMCID: PMC9732644 DOI: 10.1098/rsfs.2022.0054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/09/2022] [Indexed: 12/13/2022] Open
Abstract
The Americas are home to patches of extraordinary linguistic (genealogical) diversity. These high-diversity areas are particularly unexpected given the recent population of the Americas. In this paper, we zoom in on one such area, the Northwest Amazon, and address the question of how the diversity in this area has persisted to the present. We contrast two hypotheses that claim opposite mechanisms for the maintenance of diversity: the isolation hypothesis suggests that isolation facilitates the preservation of diversity, while the integration hypothesis proposes that conscious identity preservation in combination with contact drives diversity maintenance. We test predictions for both hypotheses across four disciplines: biogeography, cultural anthropology, population genetics and linguistics. Our results show signs of both isolation and integration, but they mainly suggest considerable diversity in how groups of speakers have interacted with their surroundings.
Collapse
Affiliation(s)
- Rik Van Gijn
- Leiden University Centre for Linguistics, Leiden 2311 BE, The Netherlands
| | - Sietze Norder
- Leiden University Centre for Linguistics, Leiden 2311 BE, The Netherlands
- Copernicus Institute of Sustainable Development, Environmental Science Group, Utrecht University, Utrecht 3584 CB, The Netherlands
| | - Leonardo Arias
- Leiden University Centre for Linguistics, Leiden 2311 BE, The Netherlands
- Department of Evolutionary Genetics, Max-Planck-Institute for Evolutionary Anthropology, Leipzig 04103, Germany
| | - Nicholas Q. Emlen
- Leiden University Centre for Linguistics, Leiden 2311 BE, The Netherlands
- University of Groningen, Campus Fryslân 8911 CE, The Netherlands
| | | | - Allison Caine
- Leiden University Centre for Linguistics, Leiden 2311 BE, The Netherlands
- Department of Anthropology, University of Wyoming, 82071, Laramie, WY, USA
| | - Saskia Dunn
- Leiden University Centre for Linguistics, Leiden 2311 BE, The Netherlands
| | - Austin Howard
- Leiden University Centre for Linguistics, Leiden 2311 BE, The Netherlands
| | - Nora Julmi
- Leiden University Centre for Linguistics, Leiden 2311 BE, The Netherlands
| | - Olga Krasnoukhova
- Leiden University Centre for Linguistics, Leiden 2311 BE, The Netherlands
| | - Mark Stoneking
- Department of Evolutionary Genetics, Max-Planck-Institute for Evolutionary Anthropology, Leipzig 04103, Germany
- Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, Villeurbanne, France
| | | |
Collapse
|
23
|
Wang J, Yang L, Duan S, Sun Q, Li Y, Wu J, Wu W, Wang Z, Liu Y, Tang R, Yang J, Liu C, Yuan B, Wang D, Xu J, Wang M, He G. Genome-wide allele and haplotype-sharing patterns suggested one unique Hmong-Mein-related lineage and biological adaptation history in Southwest China. Hum Genomics 2023; 17:3. [PMID: 36721228 PMCID: PMC9887792 DOI: 10.1186/s40246-023-00452-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/22/2023] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Fine-scale genetic structure of ethnolinguistically diverse Chinese populations can fill the gap in the missing diversity and evolutionary landscape of East Asians, particularly for anthropologically informed Chinese minorities. Hmong-Mien (HM) people were one of the most significant indigenous populations in South China and Southeast Asia, which were suggested to be the descendants of the ancient Yangtze rice farmers based on linguistic and archeological evidence. However, their deep population history and biological adaptative features remained to be fully characterized. OBJECTIVES To explore the evolutionary and adaptive characteristics of the Miao people, we genotyped genome-wide SNP data in Guizhou HM-speaking populations and merged it with modern and ancient reference populations via a comprehensive population genetic analysis and evolutionary admixture modeling. RESULTS The overall genetic admixture landscape of Guizhou Miao showed genetic differentiation between them and other linguistically diverse Guizhou populations. Admixture models further confirmed that Miao people derived their primary ancestry from geographically close Guangxi Gaohuahua people. The estimated identity by descent and effective population size confirmed a plausible population bottleneck, contributing to their unique genetic diversity and population structure patterns. We finally identified several natural selection candidate genes associated with several biological pathways. CONCLUSIONS Guizhou Miao possessed a specific genetic structure and harbored a close genetic relationship with geographically close southern Chinese indigenous populations and Guangxi historical people. Miao people derived their major ancestry from geographically close Guangxi Gaohuahua people and experienced a plausible population bottleneck which contributed to the unique pattern of their genetic diversity and structure. Future ancient DNA from Shijiahe and Qujialing will provide new insights into the origin of the Miao people.
Collapse
Affiliation(s)
- Jiawen Wang
- grid.413458.f0000 0000 9330 9891College of Forensic Medicine, Guizhou Medical University, Guiyang, 550004 China
| | - Lin Yang
- grid.413458.f0000 0000 9330 9891College of Forensic Medicine, Guizhou Medical University, Guiyang, 550004 China
| | - Shuhan Duan
- grid.449525.b0000 0004 1798 4472School of Basic Medical Sciences, North Sichuan Medical College, Nanchong, 637000 China
| | - Qiuxia Sun
- grid.203458.80000 0000 8653 0555Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing, 400331 China
| | - Youjing Li
- grid.411634.50000 0004 0632 4559Congjiang People’s Hospital, Congjiang, 557499 China
| | - Jun Wu
- grid.413458.f0000 0000 9330 9891College of Forensic Medicine, Guizhou Medical University, Guiyang, 550004 China
| | - Wenxin Wu
- grid.413458.f0000 0000 9330 9891College of Forensic Medicine, Guizhou Medical University, Guiyang, 550004 China
| | - Zheng Wang
- grid.13291.380000 0001 0807 1581Institute of Forensic Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610000 China
| | - Yan Liu
- grid.13291.380000 0001 0807 1581Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610041 China ,grid.449525.b0000 0004 1798 4472School of Basic Medical Sciences, North Sichuan Medical College, Nanchong, 637000 China
| | - Renkuan Tang
- grid.203458.80000 0000 8653 0555Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing, 400331 China
| | - Junbao Yang
- grid.449525.b0000 0004 1798 4472School of Basic Medical Sciences, North Sichuan Medical College, Nanchong, 637000 China
| | - Chao Liu
- grid.12981.330000 0001 2360 039XFaculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510275 China
| | - Buhong Yuan
- Longli People’s Hospital, Longli, 551299 China
| | - Daoyong Wang
- Nayong Guohua Yixin Hospital, Nayong, 553306 China
| | - Jianwei Xu
- Department of Pharmacology, School of Basic Medicine, Guizhou Medical University, Guiyang, 550004, China.
| | - Mengge Wang
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Guanglin He
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
24
|
Khamphikham P, Hanmanoviriya O, Wongpalee SP, Munkongdee T, Paiboonsukwong K, Jopang Y, Wangchauy C, Sancharernsook C, Jinorose N, Pornprasert S. Development of molecular diagnostic platform for α 0 -thalassemia 44.6 kb (Chiang Rai, -- CR ) deletion in individuals with microcytic red blood cells across Thailand. Ann Hum Genet 2023; 87:137-145. [PMID: 36709419 DOI: 10.1111/ahg.12496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 01/07/2023] [Accepted: 01/09/2023] [Indexed: 01/30/2023]
Abstract
INTRODUCTION The α0 -thalassemia 44.6 kb or Chiang Rai (--CR ) deletion has been reported in northern Thailand and is capable of causing hemoglobin (Hb) H disease and a lethal α-thalassemia genotype, Hb Bart's hydrops fetalis, in this region. However, there are no current data regarding the frequency of --CR nationwide due to a lack of effective diagnostic assay. Therefore, this study aimed to develop a reliable platform for simultaneous genotyping of --CR and two common α0 -thalassemias in Thailand (--SEA and --THAI ) and investigate the frequency of --CR across Thailand. METHODS Multiplex gap-PCR assay and five renewable plasmid DNA controls for --CR , --SEA , --THAI , α2-globin (HBA2), and β-actin (ACTB) were newly developed and validated with reference methods. The developed assay was further tested on 1046 unrelated individuals with a reduced mean corpuscular volume (MCV) of less than 75 fl for investigating genotypic and allelic spectrum of --CR . RESULTS Our developed assay showed 100% concordance with reference methods. The results were valid and reproducible throughout hundreds of reactions. Comparison of the genotypic and allelic spectra revealed that heterozygous --SEA (--SEA /αα) and --SEA alleles were dominant with the frequency of 22.85% (239/1046) and 13.34% (279/2092), respectively. Of these, --THAI and --CR were relatively rare in this population and comparable to each other with the allelic frequency of 0.14% (3/2092). CONCLUSION This study successfully established a reliable molecular diagnostic platform for genotyping of --CR , --SEA , and --THAI in a single reaction. Additionally, we demonstrated the frequency of --CR in Thailand for the first time and provided knowledge basis for the planning of severe α-thalassemia prevention and control programs in Thailand, where thalassemia is endemic.
Collapse
Affiliation(s)
- Pinyaphat Khamphikham
- Division of Clinical Microscopy, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand.,Hematology and Health Technology Research Center, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Oravee Hanmanoviriya
- Division of Clinical Microscopy, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Somsakul Pop Wongpalee
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Thongperm Munkongdee
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Kittiphong Paiboonsukwong
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Yupin Jopang
- Regional Health Promotion Center 9 Nakhon Ratchasima, Department of Health, Ministry of Public Health, Nakhon Ratchasima, Thailand
| | - Chaowanee Wangchauy
- Hematology Unit, Department of Pathology, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Charan Sancharernsook
- Department of Medical Technology, Sunpasitthiprasong Hospital, Ubon Ratchathani, Thailand
| | | | - Sakorn Pornprasert
- Division of Clinical Microscopy, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand.,Hematology and Health Technology Research Center, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
25
|
Abstract
Nearly 20 y ago, Jared Diamond and Peter Bellwood reviewed the evidence for the associated spread of farming and large language families by the demographic expansions of farmers. Since then, advances in obtaining and analyzing genomic data from modern and ancient populations have transformed our knowledge of human dispersals during the Holocene. Here, we provide an overview of Holocene dispersals in the light of genomic evidence and conclude that they have a complex history. Even when there is a demonstrated connection between a demographic expansion of people, the spread of agriculture, and the spread of a particular language family, the outcome in the results of contact between expanding and resident groups is highly variable. Further research is needed to identify the factors and social circumstances that have influenced this variation and complex history.
Collapse
|
26
|
Changmai P, Pinhasi R, Pietrusewsky M, Stark MT, Ikehara-Quebral RM, Reich D, Flegontov P. Ancient DNA from Protohistoric Period Cambodia indicates that South Asians admixed with local populations as early as 1st-3rd centuries CE. Sci Rep 2022; 12:22507. [PMID: 36581666 PMCID: PMC9800559 DOI: 10.1038/s41598-022-26799-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 12/20/2022] [Indexed: 12/31/2022] Open
Abstract
Indian cultural influence is remarkable in present-day Mainland Southeast Asia (MSEA), and it may have stimulated early state formation in the region. Various present-day populations in MSEA harbor a low level of South Asian ancestry, but previous studies failed to detect such ancestry in any ancient individual from MSEA. In this study, we discovered a substantial level of South Asian admixture (ca. 40-50%) in a Protohistoric individual from the Vat Komnou cemetery at the Angkor Borei site in Cambodia. The location and direct radiocarbon dating result on the human bone (95% confidence interval is 78-234 calCE) indicate that this individual lived during the early period of Funan, one of the earliest states in MSEA, which shows that the South Asian gene flow to Cambodia started about a millennium earlier than indicated by previous published results of genetic dating relying on present-day populations. Plausible proxies for the South Asian ancestry source in this individual are present-day populations in Southern India, and the individual shares more genetic drift with present-day Cambodians than with most present-day East and Southeast Asian populations.
Collapse
Affiliation(s)
- Piya Changmai
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic.
| | - Ron Pinhasi
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Human Evolution and Archaeological Sciences, University of Vienna, Vienna, Austria
| | | | - Miriam T Stark
- Department of Anthropology, University of Hawai'i-Mānoa, Honolulu, HI, USA
| | - Rona Michi Ikehara-Quebral
- Department of Anthropology, University of Hawai'i-Mānoa, Honolulu, HI, USA
- International Archaeological Research Institute, Inc., Honolulu, HI, USA
| | - David Reich
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA.
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA.
| | - Pavel Flegontov
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic.
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA.
- Kalmyk Research Center of the Russian Academy of Sciences, Elista, Kalmykia, Russia.
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic.
| |
Collapse
|
27
|
He G, Adnan A, Al-Qahtani WS, Safhi FA, Yeh HY, Hadi S, Wang CC, Wang M, Liu C, Yao J. Genetic admixture history and forensic characteristics of Tibeto-Burman-speaking Qiang people explored via the newly developed Y-STR panel and genome-wide SNP data. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.939659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Fine-scale patterns of population genetic structure and diversity of ethnolinguistically diverse populations are important for biogeographical ancestry inference, kinship testing, and development and validation of new kits focused on forensic personal identification. Analyses focused on forensic markers and genome-wide single nucleotide polymorphism (SNP) data can provide new insights into the origin, admixture processes, and forensic characteristics of targeted populations. Qiang people had a large sample size among Tibeto-Burmanspeaking populations, which widely resided in the middle latitude of the Tibetan Plateau. However, their genetic structure and forensic features have remained uncharacterized because of the paucity of comprehensive genetic analyses. Here, we first developed and validated the forensic performance of the AGCU-Y30 Y-short tandem repeats (STR) panel, which contains slowly and moderately mutating Y-STRs, and then we conducted comprehensive population genetic analyses based on Y-STRs and genome-wide SNPs to explore the admixture history of Qiang people and their neighbors. The validated results of this panel showed that the new Y-STR kit was sensitive and robust enough for forensic applications. Haplotype diversity (HD) ranging from 0.9932 to 0.9996 and allelic frequencies ranging from 0.001946 to 0.8326 in 514 Qiang people demonstrated that all included markers were highly polymorphic in Tibeto-Burman people. Population genetic analyses based on Y-STRs [RST, FST, multidimensional scaling (MDS) analysis, neighboring-joining (NJ) tree, principal component analysis (PCA), and median-joining network (MJN)] revealed that the Qiang people harbored a paternally close relationship with lowland Tibetan-Yi corridor populations. Furthermore, we conducted a comprehensive population admixture analysis among modern and ancient Eurasian populations based on genome-wide shared SNPs. We found that the Qiang people were a genetically admixed population and showed closest relationship with Tibetan and Neolithic Yellow River farmers. Admixture modeling showed that Qiang people shared the primary ancestry related to Tibetan, supporting the hypothesis of common origin between Tibetan and Qiang people from North China.
Collapse
|
28
|
Chen H, Lin R, Lu Y, Zhang R, Gao Y, He Y, Xu S. Tracing Bai-Yue Ancestry in Aboriginal Li People on Hainan Island. Mol Biol Evol 2022; 39:6731089. [PMID: 36173765 PMCID: PMC9585476 DOI: 10.1093/molbev/msac210] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
As the most prevalent aboriginal group on Hainan Island located between South China and the mainland of Southeast Asia, the Li people are believed to preserve some unique genetic information due to their isolated circumstances, although this has been largely uninvestigated. We performed the first whole-genome sequencing of 55 Hainan Li (HNL) individuals with high coverage (∼30-50×) to gain insight into their genetic history and potential adaptations. We identified the ancestry enriched in HNL (∼85%) is well preserved in present-day Tai-Kadai speakers residing in South China and North Vietnam, that is, Bai-Yue populations. A lack of admixture signature due to the geographical restriction exacerbated the bottleneck in the present-day HNL. The genetic divergence among Bai-Yue populations began ∼4,000-3,000 years ago when the proto-HNL underwent migration and the settling of Hainan Island. Finally, we identified signatures of positive selection in the HNL, some outstanding examples included FADS1 and FADS2 related to a diet rich in polyunsaturated fatty acids. In addition, we observed that malaria-driven selection had occurred in the HNL, with population-specific variants of malaria-related genes (e.g., CR1) present. Interestingly, HNL harbors a high prevalence of malaria leveraged gene variants related to hematopoietic function (e.g., CD3G) that may explain the high incidence of blood disorders such as B-cell lymphomas in the present-day HNL. The results have advanced our understanding of the genetic history of the Bai-Yue populations and have provided new insights into the adaptive scenarios of the Li people.
Collapse
Affiliation(s)
| | | | - Yan Lu
- State Key Laboratory of Genetic Engineering, Center for Evolutionary Biology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China,Human Phenome Institute, Zhangjiang Fudan International Innovation Center, and Ministry of Education Key Laboratory of Contemporary Anthropology, Fudan University, Shanghai 201203, China
| | - Rui Zhang
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yang Gao
- Human Phenome Institute, Zhangjiang Fudan International Innovation Center, and Ministry of Education Key Laboratory of Contemporary Anthropology, Fudan University, Shanghai 201203, China
| | | | | |
Collapse
|
29
|
Ren Z, Yang M, Jin X, Wang Q, Liu Y, Zhang H, Ji J, Wang CC, Huang J. Genetic substructure of Guizhou Tai-Kadai-speaking people inferred from genome-wide single nucleotide polymorphisms data. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.995783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The genome-wide characteristics and admixture history of the Tai-Kadai-speaking populations are essential for understanding the population genetic diversity in southern China. We genotyped about 700,000 single nucleotide polymorphisms (SNPs) of 239 individuals from six Tai-Kadai-speaking populations residing in the mountainous Guizhou Province of southwestern China. We merged the genome-wide data with available populations and ancients in East and Southeast Asia to infer Tai-Kadai-speaking populations’ admixture history and genetic structure. We observed a genetic substructure within the studied six populations in the PCA, ADMIXTURE, ChromoPainter, GLOBETROTTER, f-statistics, and qpWave analysis. The Dong, Zhuang, and Bouyei people had a strong genetic affinity with other Tai-Kadai-speaking and Austronesian groups in the surrounding area. However, Gelao showed an affinity to Sino-Tibetan groups, and Mulao people were genetically close to Hmong-Mien populations. qpAdm further illuminated that Gelao and Dong_Tongren composited more Han-related ancestry than Dong, Zhuang, Bouyei, and Mulao people. Meanwhile, we observed high frequencies of Y-chromosome haplogroup O in studied Tai-Kadai-speaking groups except for Gelao people with a high haplogroup N frequency. From the maternal side, haplogroup M7 was frequent in studied populations except for Tongren Dong, who had a high frequency of haplogroup B5. Our newly reported data are helpful for further exploring population dynamics in southern China.
Collapse
|
30
|
Huang X, Xia ZY, Bin X, He G, Guo J, Adnan A, Yin L, Huang Y, Zhao J, Yang Y, Ma F, Li Y, Hu R, Yang T, Wei LH, Wang CC. Genomic Insights Into the Demographic History of the Southern Chinese. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.853391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Southern China is the birthplace of rice-cultivating agriculture and different language families and has also witnessed various human migrations that facilitated cultural diffusions. The fine-scale demographic history in situ that forms present-day local populations, however, remains unclear. To comprehensively cover the genetic diversity in East and Southeast Asia, we generated genome-wide SNP data from 211 present-day Southern Chinese and co-analyzed them with ∼1,200 ancient and modern genomes. In Southern China, language classification is significantly associated with genetic variation but with a different extent of predictability, and there is strong evidence for recent shared genetic history particularly in Hmong–Mien and Austronesian speakers. A geography-related genetic sub-structure that represents the major genetic variation in Southern East Asians is established pre-Holocene and its extremes are represented by Neolithic Fujianese and First Farmers in Mainland Southeast Asia. This sub-structure is largely reduced by admixture in ancient Southern Chinese since > ∼2,000 BP, which forms a “Southern Chinese Cluster” with a high level of genetic homogeneity. Further admixture characterizes the demographic history of the majority of Hmong–Mien speakers and some Kra-Dai speakers in Southwest China happened ∼1,500–1,000 BP, coeval to the reigns of local chiefdoms. In Yellow River Basin, we identify a connection of local populations to genetic sub-structure in Southern China with geographical correspondence appearing > ∼9,000 BP, while the gene flow likely closely related to “Southern Chinese Cluster” since the Longshan period (∼5,000–4,000 BP) forms ancestry profile of Han Chinese Cline.
Collapse
|
31
|
Ancient genomes from the last three millennia support multiple human dispersals into Wallacea. Nat Ecol Evol 2022; 6:1024-1034. [PMID: 35681000 PMCID: PMC9262713 DOI: 10.1038/s41559-022-01775-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 04/13/2022] [Indexed: 12/27/2022]
Abstract
Previous research indicates that human genetic diversity in Wallacea-islands in present-day Eastern Indonesia and Timor-Leste that were never part of the Sunda or Sahul continental shelves-has been shaped by complex interactions between migrating Austronesian farmers and indigenous hunter-gatherer communities. Yet, inferences based on present-day groups proved insufficient to disentangle this region's demographic movements and admixture timings. Here, we investigate the spatio-temporal patterns of variation in Wallacea based on genome-wide data from 16 ancient individuals (2600-250 years BP) from the North Moluccas, Sulawesi and East Nusa Tenggara. While ancestry in the northern islands primarily reflects contact between Austronesian- and Papuan-related groups, ancestry in the southern islands reveals additional contributions from Mainland Southeast Asia that seem to predate the arrival of Austronesians. Admixture time estimates further support multiple and/or continuous admixture involving Papuan- and Asian-related groups throughout Wallacea. Our results clarify previously debated times of admixture and suggest that the Neolithic dispersals into Island Southeast Asia are associated with the spread of multiple genetic ancestries.
Collapse
|
32
|
Balagué-Dobón L, Cáceres A, González JR. Fully exploiting SNP arrays: a systematic review on the tools to extract underlying genomic structure. Brief Bioinform 2022; 23:bbac043. [PMID: 35211719 PMCID: PMC8921734 DOI: 10.1093/bib/bbac043] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/25/2022] [Accepted: 01/28/2022] [Indexed: 12/12/2022] Open
Abstract
Single nucleotide polymorphisms (SNPs) are the most abundant type of genomic variation and the most accessible to genotype in large cohorts. However, they individually explain a small proportion of phenotypic differences between individuals. Ancestry, collective SNP effects, structural variants, somatic mutations or even differences in historic recombination can potentially explain a high percentage of genomic divergence. These genetic differences can be infrequent or laborious to characterize; however, many of them leave distinctive marks on the SNPs across the genome allowing their study in large population samples. Consequently, several methods have been developed over the last decade to detect and analyze different genomic structures using SNP arrays, to complement genome-wide association studies and determine the contribution of these structures to explain the phenotypic differences between individuals. We present an up-to-date collection of available bioinformatics tools that can be used to extract relevant genomic information from SNP array data including population structure and ancestry; polygenic risk scores; identity-by-descent fragments; linkage disequilibrium; heritability and structural variants such as inversions, copy number variants, genetic mosaicisms and recombination histories. From a systematic review of recently published applications of the methods, we describe the main characteristics of R packages, command-line tools and desktop applications, both free and commercial, to help make the most of a large amount of publicly available SNP data.
Collapse
|
33
|
Wang M, He G, Zou X, Chen P, Wang Z, Tang R, Yang X, Chen J, Yang M, Li Y, Liu J, Wang F, Zhao J, Guo J, Hu R, Wei L, Chen G, Yeh H, Wang C. Reconstructing the genetic admixture history of Tai‐Kadai and Sinitic people: Insights from genome‐wide SNP data from South China. JOURNAL OF SYSTEMATICS AND EVOLUTION 2022. [DOI: 10.1111/jse.12825] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Meng‐Ge Wang
- State Key Laboratory of Cellular Stress Biology, National Institute for Data Science in Health and Medicine, School of Life Sciences Xiamen University Xiamen 361005 Fujian China
- Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology Xiamen University Xiamen 361005 Fujian China
- Institute of Forensic Medicine, West China School of Basic Science and Forensic Medicine Sichuan University Chengdu 610000 China
- Guangzhou Forensic Science Institute Guangzhou 510080 China
- Faculty of Forensic Medicine, Zhongshan School of Medicine Sun Yat‐sen University Guangzhou 510080 China
| | - Guang‐Lin He
- State Key Laboratory of Cellular Stress Biology, National Institute for Data Science in Health and Medicine, School of Life Sciences Xiamen University Xiamen 361005 Fujian China
- Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology Xiamen University Xiamen 361005 Fujian China
- Institute of Forensic Medicine, West China School of Basic Science and Forensic Medicine Sichuan University Chengdu 610000 China
- Institute Of Rare Diseases West China Hospital of Sichuan University Chengdu 610000 China
- School of Humanities Nanyang Technological University Singapore 224050 Singapore
| | - Xing Zou
- Institute of Forensic Medicine, West China School of Basic Science and Forensic Medicine Sichuan University Chengdu 610000 China
- College of Medicine Chongqing University Chongqing 400016 China
| | - Peng‐Yu Chen
- School of Forensic Medicine Zunyi Medical University Zunyi 563000 Guizhou China
| | - Zheng Wang
- Institute of Forensic Medicine, West China School of Basic Science and Forensic Medicine Sichuan University Chengdu 610000 China
| | - Ren‐Kuan Tang
- Department of Forensic Medicine, College of Basic Medicine Chongqing Medical University Chongqing 400016 China
| | - Xiao‐Min Yang
- State Key Laboratory of Cellular Stress Biology, National Institute for Data Science in Health and Medicine, School of Life Sciences Xiamen University Xiamen 361005 Fujian China
- Institute Of Rare Diseases West China Hospital of Sichuan University Chengdu 610000 China
- State Key Laboratory of Marine Environmental Science Xiamen University Xiamen 361005 Fujian China
| | - Jing Chen
- Department of Forensic Medicine Guizhou Medical University Guiyang 550000 China
| | - Mei‐Qing Yang
- Department of Forensic Medicine Guizhou Medical University Guiyang 550000 China
| | - Ying‐Xiang Li
- State Key Laboratory of Cellular Stress Biology, National Institute for Data Science in Health and Medicine, School of Life Sciences Xiamen University Xiamen 361005 Fujian China
- Institute Of Rare Diseases West China Hospital of Sichuan University Chengdu 610000 China
- State Key Laboratory of Marine Environmental Science Xiamen University Xiamen 361005 Fujian China
| | - Jing Liu
- Institute of Forensic Medicine, West China School of Basic Science and Forensic Medicine Sichuan University Chengdu 610000 China
| | - Fei Wang
- Institute of Forensic Medicine, West China School of Basic Science and Forensic Medicine Sichuan University Chengdu 610000 China
| | - Jing Zhao
- State Key Laboratory of Cellular Stress Biology, National Institute for Data Science in Health and Medicine, School of Life Sciences Xiamen University Xiamen 361005 Fujian China
- Institute Of Rare Diseases West China Hospital of Sichuan University Chengdu 610000 China
- State Key Laboratory of Marine Environmental Science Xiamen University Xiamen 361005 Fujian China
| | - Jian‐Xin Guo
- State Key Laboratory of Cellular Stress Biology, National Institute for Data Science in Health and Medicine, School of Life Sciences Xiamen University Xiamen 361005 Fujian China
- Institute Of Rare Diseases West China Hospital of Sichuan University Chengdu 610000 China
- State Key Laboratory of Marine Environmental Science Xiamen University Xiamen 361005 Fujian China
| | - Rong Hu
- State Key Laboratory of Cellular Stress Biology, National Institute for Data Science in Health and Medicine, School of Life Sciences Xiamen University Xiamen 361005 Fujian China
- Institute Of Rare Diseases West China Hospital of Sichuan University Chengdu 610000 China
- State Key Laboratory of Marine Environmental Science Xiamen University Xiamen 361005 Fujian China
| | - Lan‐Hai Wei
- State Key Laboratory of Cellular Stress Biology, National Institute for Data Science in Health and Medicine, School of Life Sciences Xiamen University Xiamen 361005 Fujian China
- Institute Of Rare Diseases West China Hospital of Sichuan University Chengdu 610000 China
- State Key Laboratory of Marine Environmental Science Xiamen University Xiamen 361005 Fujian China
| | - Gang Chen
- Hunan Key Lab of Bioinformatics, School of Computer Science and Engineering Central South University Changsha 410075 China
| | - Hui‐Yuan Yeh
- School of Humanities Nanyang Technological University Singapore 224050 Singapore
| | - Chuan‐Chao Wang
- State Key Laboratory of Cellular Stress Biology, National Institute for Data Science in Health and Medicine, School of Life Sciences Xiamen University Xiamen 361005 Fujian China
- Institute Of Rare Diseases West China Hospital of Sichuan University Chengdu 610000 China
- State Key Laboratory of Marine Environmental Science Xiamen University Xiamen 361005 Fujian China
| |
Collapse
|
34
|
Chen J, He G, Ren Z, Wang Q, Liu Y, Zhang H, Yang M, Zhang H, Ji J, Zhao J, Guo J, Chen J, Zhu K, Yang X, Wang R, Ma H, Tao L, Liu Y, Shen Q, Yang W, Wang CC, Huang J. Fine-Scale Population Admixture Landscape of Tai–Kadai-Speaking Maonan in Southwest China Inferred From Genome-Wide SNP Data. Front Genet 2022; 13:815285. [PMID: 35251126 PMCID: PMC8891617 DOI: 10.3389/fgene.2022.815285] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/27/2022] [Indexed: 12/27/2022] Open
Abstract
Guizhou Province harbors extensive ethnolinguistic and cultural diversity with Sino-Tibetan-, Hmong–Mien-, and Tai–Kadai-speaking populations. However, previous genetic analyses mainly focused on the genetic admixture history of the former two linguistic groups. The admixture history of Tai–Kadai-speaking populations in Guizhou needed to be characterized further. Thus, we genotyped genome-wide SNP data from 41 Tai–Kadai-speaking Maonan people and made a comprehensive population genetic analysis to explore their genetic origin and admixture history based on the pattern of the sharing alleles and haplotypes. We found a genetic affinity among geographically different Tai–Kadai-speaking populations, especially for Guizhou Maonan people and reference Maonan from Guangxi. Furthermore, formal tests based on the f3/f4-statistics further identified an adjacent connection between Maonan and geographically adjacent Hmong–Mien and Sino-Tibetan people, which was consistent with their historically documented shared material culture (Zhang et al., iScience, 2020, 23, 101032). Fitted qpAdm-based two-way admixture models with ancestral sources from northern and southern East Asians demonstrated that Maonan people were an admixed population with primary ancestry related to Guangxi historical people and a minor proportion of ancestry from Northeast Asians, consistent with their linguistically supported southern China origin. Here, we presented the landscape of genetic structure and diversity of Maonan people and a simple demographic model for their evolutionary process. Further whole-genome-sequence–based projects can be presented with more detailed information about the population history and adaptative history of the Guizhou Maonan people.
Collapse
Affiliation(s)
- Jing Chen
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Guanglin He
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
- Department of Anthropology and Ethnology, School of Sociology and Anthropology, Institute of Anthropology, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
- Institute Of Rare Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Zheng Ren
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Qiyan Wang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Yubo Liu
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Hongling Zhang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Meiqing Yang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Han Zhang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Jingyan Ji
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Jing Zhao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
- Department of Anthropology and Ethnology, School of Sociology and Anthropology, Institute of Anthropology, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Jianxin Guo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
- Department of Anthropology and Ethnology, School of Sociology and Anthropology, Institute of Anthropology, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Jinwen Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
- Department of Anthropology and Ethnology, School of Sociology and Anthropology, Institute of Anthropology, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Kongyang Zhu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
- Department of Anthropology and Ethnology, School of Sociology and Anthropology, Institute of Anthropology, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Xiaomin Yang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
- Department of Anthropology and Ethnology, School of Sociology and Anthropology, Institute of Anthropology, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Rui Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
- Department of Anthropology and Ethnology, School of Sociology and Anthropology, Institute of Anthropology, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Hao Ma
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
- Department of Anthropology and Ethnology, School of Sociology and Anthropology, Institute of Anthropology, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Le Tao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
- Department of Anthropology and Ethnology, School of Sociology and Anthropology, Institute of Anthropology, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Yilan Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
- Department of Anthropology and Ethnology, School of Sociology and Anthropology, Institute of Anthropology, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Qu Shen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
- Department of Anthropology and Ethnology, School of Sociology and Anthropology, Institute of Anthropology, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Wenjiao Yang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
- Department of Anthropology and Ethnology, School of Sociology and Anthropology, Institute of Anthropology, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Chuan-Chao Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
- Department of Anthropology and Ethnology, School of Sociology and Anthropology, Institute of Anthropology, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
- *Correspondence: Chuan-Chao Wang, ; Jiang Huang,
| | - Jiang Huang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
- *Correspondence: Chuan-Chao Wang, ; Jiang Huang,
| |
Collapse
|
35
|
Changmai P, Jaisamut K, Kampuansai J, Kutanan W, Altınışık NE, Flegontova O, Inta A, Yüncü E, Boonthai W, Pamjav H, Reich D, Flegontov P. Indian genetic heritage in Southeast Asian populations. PLoS Genet 2022; 18:e1010036. [PMID: 35176016 PMCID: PMC8853555 DOI: 10.1371/journal.pgen.1010036] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 01/12/2022] [Indexed: 11/20/2022] Open
Abstract
The great ethnolinguistic diversity found today in mainland Southeast Asia (MSEA) reflects multiple migration waves of people in the past. Maritime trading between MSEA and India was established at the latest 300 BCE, and the formation of early states in Southeast Asia during the first millennium CE was strongly influenced by Indian culture, a cultural influence that is still prominent today. Several ancient Indian-influenced states were located in present-day Thailand, and various populations in the country are likely to be descendants of people from those states. To systematically explore Indian genetic heritage in MSEA populations, we generated genome-wide SNP data (using the Affymetrix Human Origins array) for 119 present-day individuals belonging to 10 ethnic groups from Thailand and co-analyzed them with published data using PCA, ADMIXTURE, and methods relying on f-statistics and on autosomal haplotypes. We found low levels of South Asian admixture in various MSEA populations for whom there is evidence of historical connections with the ancient Indian-influenced states but failed to find this genetic component in present-day hunter-gatherer groups and relatively isolated groups from the highlands of Northern Thailand. The results suggest that migration of Indian populations to MSEA may have been responsible for the spread of Indian culture in the region. Our results also support close genetic affinity between Kra-Dai-speaking (also known as Tai-Kadai) and Austronesian-speaking populations, which fits a linguistic hypothesis suggesting cladality of the two language families.
Collapse
Affiliation(s)
- Piya Changmai
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Kitipong Jaisamut
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Jatupol Kampuansai
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Research Center in Bioresources for Agriculture, Industry and Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Wibhu Kutanan
- Department of Biology, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - N Ezgi Altınışık
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Olga Flegontova
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Angkhana Inta
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Research Center in Bioresources for Agriculture, Industry and Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Eren Yüncü
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Worrawit Boonthai
- Research Unit in Physical Anthropology and Health Science, Thammasat University, Pathum thani, Thailand
| | - Horolma Pamjav
- Hungarian Institute for Forensic Sciences, Institute of Forensic Genetics, Budapest, Hungary
| | - David Reich
- Department of Human Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Pavel Flegontov
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
- Department of Human Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
- Kalmyk Research Center of the Russian Academy of Sciences, Elista, Kalmykia, Russia
| |
Collapse
|
36
|
Liu Y, Xie J, Wang M, Liu C, Zhu J, Zou X, Li W, Wang L, Leng C, Xu Q, Yeh HY, Wang CC, Wen X, Liu C, He G. Genomic Insights Into the Population History and Biological Adaptation of Southwestern Chinese Hmong-Mien People. Front Genet 2022; 12:815160. [PMID: 35047024 PMCID: PMC8762323 DOI: 10.3389/fgene.2021.815160] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/03/2021] [Indexed: 01/19/2023] Open
Abstract
Hmong-Mien (HM) -speaking populations, widely distributed in South China, the north of Thailand, Laos, and Vietnam, have experienced different settlement environments, dietary habits, and pathogenic exposure. However, their specific biological adaptation remained largely uncharacterized, which is important in the population evolutionary genetics and Trans-Omics for regional Precision Medicine. Besides, the origin and genetic diversity of HM people and their phylogenetic relationship with surrounding modern and ancient populations are also unknown. Here, we reported genome-wide SNPs in 52 representative Miao people and combined them with 144 HM people from 13 geographically representative populations to characterize the full genetic admixture and adaptive landscape of HM speakers. We found that obvious genetic substructures existed in geographically different HM populations; one localized in the HM clines, and others possessed affinity with Han Chinese. We also identified one new ancestral lineage specifically existed in HM people, which spatially distributed from Sichuan and Guizhou in the north to Thailand in the south. The sharing patterns of the newly identified homogenous ancestry component combined the estimated admixture times via the decay of linkage disequilibrium and haplotype sharing in GLOBETROTTER suggested that the modern HM-speaking populations originated from Southwest China and migrated southward in the historic period, which is consistent with the reconstructed phenomena of linguistic and archeological documents. Additionally, we identified specific adaptive signatures associated with several important human nervous system biological functions. Our pilot work emphasized the importance of anthropologically informed sampling and deeply genetic structure reconstruction via whole-genome sequencing in the next step in the deep Chinese Population Genomic Diversity Project (CPGDP), especially in the regions with rich ethnolinguistic diversity.
Collapse
Affiliation(s)
- Yan Liu
- School of Basic Medical Sciences, North Sichuan Medical College, Nanchong, China.,Medical Imaging Key Laboratory of Sichuan Province, North Sichuan Medical College, Nanchong, China
| | - Jie Xie
- School of Basic Medical Sciences, North Sichuan Medical College, Nanchong, China
| | - Mengge Wang
- Guangzhou Forensic Science Institute, Guangzhou, China.,Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Changhui Liu
- Guangzhou Forensic Science Institute, Guangzhou, China
| | - Jingrong Zhu
- Department of Anthropology and Ethnology, Xiamen University, Xiamen, China
| | - Xing Zou
- College of Medicine, Chongqing University, Chongqing, China
| | - Wenshan Li
- College of Medical Imaging, North Sichuan Medical College, Nanchong, China
| | - Lin Wang
- College of Clinical Medicine, North Sichuan Medical College, Nanchong, China
| | - Cuo Leng
- College of Medical Imaging, North Sichuan Medical College, Nanchong, China
| | - Quyi Xu
- Guangzhou Forensic Science Institute, Guangzhou, China
| | - Hui-Yuan Yeh
- School of Humanities, Nanyang Technological University, Singapore, Singapore
| | - Chuan-Chao Wang
- State Key Laboratory of Cellular Stress Biology, National Institute for Data Science in Health and Medicine, School of Life Sciences, Xiamen University, Xiamen, China.,Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, Xiamen University, Xiamen, China.,State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Xiaohong Wen
- School of Basic Medical Sciences, North Sichuan Medical College, Nanchong, China
| | - Chao Liu
- Guangzhou Forensic Science Institute, Guangzhou, China.,Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Guanglin He
- School of Humanities, Nanyang Technological University, Singapore, Singapore.,State Key Laboratory of Cellular Stress Biology, National Institute for Data Science in Health and Medicine, School of Life Sciences, Xiamen University, Xiamen, China.,Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, Xiamen University, Xiamen, China.,State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| |
Collapse
|
37
|
Forensic and genetic characterizations of diverse southern Thai populations based on 15 autosomal STRs. Sci Rep 2022; 12:655. [PMID: 35027632 PMCID: PMC8758738 DOI: 10.1038/s41598-021-04646-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 12/23/2021] [Indexed: 11/08/2022] Open
Abstract
Southern Thailand is home to various populations; the Moklen, Moken and Urak Lawoi’ sea nomads and Maniq negrito are the minority, while the southern Thai groups (Buddhist and Muslim) are the majority. Although previous studies have generated forensic STR dataset for major groups, such data of the southern Thai minority have not been included; here we generated a regional forensic database of southern Thailand. We newly genotyped common 15 autosomal STRs in 184 unrelated southern Thais, including all minorities and majorities. When combined with previously published data of major southern Thais, this provides a total of 334 southern Thai samples. The forensic parameter results show appropriate values for personal identification and paternity testing; the probability of excluding paternity is 0.99999622, and the combined discrimination power is 0.999999999999999. Probably driven by genetic drift and/or isolation with small census size, we found genetic distinction of the Maniq and sea nomads from the major groups, which were closer to the Malay and central Thais than the other Thai groups. The allelic frequency results can strength the regional forensic database in southern Thailand and also provide useful information for anthropological perspective.
Collapse
|
38
|
Wang M, Du W, Tang R, Liu Y, Zou X, Yuan D, Wang Z, Liu J, Guo J, Yang X, Chen J, Yang M, Zhang X, Wei LH, Yuan H, Yeh HY, Wang CC, Liu C, He G. Genomic history and forensic characteristics of Sherpa highlanders on the Tibetan Plateau inferred from high-resolution InDel panel and genome-wide SNPs. Forensic Sci Int Genet 2021; 56:102633. [PMID: 34826721 DOI: 10.1016/j.fsigen.2021.102633] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/13/2021] [Accepted: 11/10/2021] [Indexed: 11/18/2022]
Abstract
Sherpa people, one of the high-altitude hypoxic adaptive populations, mainly reside in Nepal and the southern Tibet Autonomous Region. The genetic origin and detailed evolutionary profiles of Sherpas remain to be further explored and comprehensively characterized. Here we analyzed the newly-generated InDel genotype data from 628 Dingjie Sherpas by merging with 4222 worldwide InDel profiles and collected genome-wide SNP data (approximately 600K SNPs) from 1612 individuals in 191 modern and ancient populations to explore and reconstruct the fine-scale genetic structure of Sherpas and their relationships with nearby modern and ancient East Asians based on the shared alleles and haplotypes. The forensic parameters of 57 autosomal InDels (A-InDels) included in our used new-generation InDel amplification system showed that this focused InDel panel is informative and polymorphic in Dingjie Sherpas, suggesting that it can be used as the supplementary tool for forensic personal identification and parentage testing in Dingjie Sherpas. Descriptive findings from the PCA, ADMIXTURE, and TreeMix-based phylogenies suggested that studied Nepal Sherpas showed excess allele sharing with neighboring Tibeto-Burman Tibetans. Furthermore, patterns of allele sharing in f-statistics demonstrated that Nepal Sherpas had a different evolutionary history compared with their neighbors from Nepal (Newar and Gurung) but showed genetic similarity with 2700-year-old Chokhopani and modern Tibet Tibetans. QpAdm/qpGraph-based admixture sources and models further showed that Sherpas, core Tibetans, and Chokhopani formed one clade, which could be fitted as having the main ancestry from late Neolithic Qijia millet farmers and other deep ancestries from early Asians. Chromosome painting profiles and shared IBD fragments inferred from fineSTRUCTURE and ChromoPainter not only confirmed the abovementioned genomic affinity patterns but also revealed the fine-scale genetic microstructures among Sino-Tibetan speakers. Finally, natural-selection signals revealed via iHS, nSL and iHH12 showed natural selection signatures associated with disease susceptibility in Sherpas. Generally, we provided the comprehensive landscape of admixture and evolutionary history of Sherpa people based on the shared alleles and haplotypes from the InDel-based genotype data and high-density genome-wide SNP data. The more detailed genetic landscape of Sherpa people should be further confirmed and characterized via ancient genomes or single-molecule real-time sequencing technology.
Collapse
Affiliation(s)
- Mengge Wang
- Guangzhou Forensic Science Institute, Guangzhou 510030, PR China; Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan Road II, Guangzhou 510080, PR China
| | - Weian Du
- AGCU ScienTech Incorporation, Wuxi 214174, PR China; School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Renkuan Tang
- Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Yan Liu
- School of Basic Medical Sciences, North Sichuan Medical College, Nanchong, Sichuan 637100, PR China
| | - Xing Zou
- College of Basic Medicine, Chongqing University, Chongqing 400016, PR China; Institute of Forensic Medicine, West China School of Basic Science and Forensic Medicine, Sichuan University, Chengdu 610000, PR China
| | - Didi Yuan
- Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Zheng Wang
- Institute of Forensic Medicine, West China School of Basic Science and Forensic Medicine, Sichuan University, Chengdu 610000, PR China
| | - Jing Liu
- Institute of Forensic Medicine, West China School of Basic Science and Forensic Medicine, Sichuan University, Chengdu 610000, PR China
| | - Jianxin Guo
- Department of Anthropology and Ethnology, Institute of Anthropology, National Institute for Data Science in Health and Medicine, State Key Laboratory of Marine Environmental Science, State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, PR China
| | - Xiaomin Yang
- Department of Anthropology and Ethnology, Institute of Anthropology, National Institute for Data Science in Health and Medicine, State Key Laboratory of Marine Environmental Science, State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, PR China
| | - Jing Chen
- Department of Forensic Medicine, Guizhou Medical University, Guiyang 550000, PR China
| | - Meiqing Yang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang 550000, PR China
| | - Xianpeng Zhang
- Institute of Biological Anthropology, Jinzhou Medical University, Jinzhou 121000, PR China
| | - Lan-Hai Wei
- Department of Anthropology and Ethnology, Institute of Anthropology, National Institute for Data Science in Health and Medicine, State Key Laboratory of Marine Environmental Science, State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, PR China
| | - Haibing Yuan
- National Demonstration Center for Experimental Archaeology Education and Department of Archaeology, Sichuan University, Chengdu 610200, PR China; School of Archaeology and Museology & National Demonstration Center for Experimental Archaeology Education, Sichuan University, Chengdu, Sichuan 610064, PR China.
| | - Hui-Yuan Yeh
- School of Humanities, Nanyang Technological University, Nanyang 639798, Singapore.
| | - Chuan-Chao Wang
- Department of Anthropology and Ethnology, Institute of Anthropology, National Institute for Data Science in Health and Medicine, State Key Laboratory of Marine Environmental Science, State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, PR China.
| | - Chao Liu
- Guangzhou Forensic Science Institute, Guangzhou 510030, PR China; Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan Road II, Guangzhou 510080, PR China; School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China.
| | - Guanglin He
- Department of Anthropology and Ethnology, Institute of Anthropology, National Institute for Data Science in Health and Medicine, State Key Laboratory of Marine Environmental Science, State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, PR China; School of Humanities, Nanyang Technological University, Nanyang 639798, Singapore.
| |
Collapse
|
39
|
Bin X, Wang R, Huang Y, Wei R, Zhu K, Yang X, Ma H, He G, Guo J, Zhao J, Yang M, Chen J, Zhang X, Tao L, Liu Y, Huang X, Wang CC. Genomic Insight Into the Population Structure and Admixture History of Tai-Kadai-Speaking Sui People in Southwest China. Front Genet 2021; 12:735084. [PMID: 34616433 PMCID: PMC8489805 DOI: 10.3389/fgene.2021.735084] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/23/2021] [Indexed: 12/14/2022] Open
Abstract
Sui people, which belong to the Tai-Kadai-speaking family, remain poorly characterized due to a lack of genome-wide data. To infer the fine-scale population genetic structure and putative genetic sources of the Sui people, we genotyped 498,655 genome-wide single-nucleotide polymorphisms (SNPs) using SNP arrays in 68 Sui individuals from seven indigenous populations in Guizhou province and Guangxi Zhuang Autonomous Region in Southwest China and co-analyzed with available East Asians via a series of population genetic methods including principal component analysis (PCA), ADMIXTURE, pairwise Fst genetic distance, f-statistics, qpWave, and qpAdm. Our results revealed that Guangxi and Guizhou Sui people showed a strong genetic affinity with populations from southern China and Southeast Asia, especially Tai-Kadai- and Hmong-Mien-speaking populations as well as ancient Iron Age Taiwan Hanben, Gongguan individuals supporting the hypothesis that Sui people came from southern China originally. The indigenous Tai-Kadai-related ancestry (represented by Li), Northern East Asian-related ancestry, and Hmong-Mien-related lineage contributed to the formation processes of the Sui people. We identified the genetic substructure within Sui groups: Guizhou Sui people were relatively homogeneous and possessed similar genetic profiles with neighboring Tai-Kadai-related populations, such as Maonan. While Sui people in Yizhou and Huanjiang of Guangxi might receive unique, additional gene flow from Hmong-Mien-speaking populations and Northern East Asians, respectively, after the divergence within other Sui populations. Sui people could be modeled as the admixture of ancient Yellow River Basin farmer-related ancestry (36.2-54.7%) and ancient coastal Southeast Asian-related ancestry (45.3-63.8%). We also identified the potential positive selection signals related to the disease susceptibility in Sui people via integrated haplotype score (iHS) and number of segregating sites by length (nSL) scores. These genomic findings provided new insights into the demographic history of Tai-Kadai-speaking Sui people and their interaction with neighboring populations in Southern China.
Collapse
Affiliation(s)
- Xiaoyun Bin
- College of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise, China
| | - Rui Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China.,Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China.,State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Youyi Huang
- College of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise, China
| | - Rongyao Wei
- College of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise, China
| | - Kongyang Zhu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China.,Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China.,State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Xiaomin Yang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China.,Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China.,State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Hao Ma
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China.,Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China.,State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Guanglin He
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China.,Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China.,State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Jianxin Guo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China.,Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China.,State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Jing Zhao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China.,Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China.,State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Meiqing Yang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Jing Chen
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | | | - Le Tao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China.,Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China.,State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Yilan Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China.,Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China.,State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Xiufeng Huang
- College of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise, China
| | - Chuan-Chao Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China.,Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China.,State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| |
Collapse
|
40
|
Zhang X, He G, Li W, Wang Y, Li X, Chen Y, Qu Q, Wang Y, Xi H, Wang CC, Wen Y. Genomic Insight Into the Population Admixture History of Tungusic-Speaking Manchu People in Northeast China. Front Genet 2021; 12:754492. [PMID: 34659368 PMCID: PMC8515022 DOI: 10.3389/fgene.2021.754492] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 08/30/2021] [Indexed: 11/13/2022] Open
Abstract
Manchu is the third-largest ethnic minority in China and has the largest population size among the Tungusic-speaking groups. However, the genetic origin and admixture history of the Manchu people are far from clear due to the sparse sampling and a limited number of markers genotyped. Here, we provided the first batch of genome-wide data of genotyping approximate 700,000 single-nucleotide polymorphisms (SNPs) in 93 Manchu individuals collected from northeast China. We merged the newly generated data with data of publicly available modern and ancient East Asians to comprehensively characterize the genetic diversity and fine-scale population structure, as well as explore the genetic origin and admixture history of northern Chinese Manchus. We applied both descriptive methods of ADMIXTURE, fineSTRUCTURE, F ST , TreeMix, identity by decedent (IBD), principal component analysis (PCA), and qualitative f-statistics (f 3, f 4, qpAdm, and qpWave). We found that Liaoning Manchus have a close genetic relationship and significant admixture signal with northern Han Chinese, which is in line with the cluster patterns in the haplotype-based results. Additionally, the qpAdm-based admixture models showed that modern Manchu people were formed as major ancestry related to Yellow River farmers and minor ancestry linked to ancient populations from Amur River Bain, or others. In summary, the northeastern Chinese Manchu people in Liaoning were an exception to the coherent genetic structure of Tungusic-speaking populations, probably due to the large-scale population migrations and genetic admixtures in the past few hundred years.
Collapse
Affiliation(s)
- Xianpeng Zhang
- Institute of Biological Anthropology, Jinzhou Medical University, Jinzhou, China
| | - Guanglin He
- State Key Laboratory of Cellular Stress Biology, National Institute for Data Science in Health and Medicine, School of Life Sciences, Xiamen University, Xiamen, China
- Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, Xiamen University, Xiamen, China
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
- School of Humanities, Nanyang Technological University, Singapore, Singapore
| | - Wenhui Li
- Institute of Biological Anthropology, Jinzhou Medical University, Jinzhou, China
| | - Yunfeng Wang
- Xinbin Manchu Autonomous County People’s Hospital, Fushun, China
| | - Xin Li
- Institute of Biological Anthropology, Jinzhou Medical University, Jinzhou, China
| | - Ying Chen
- Institute of Biological Anthropology, Jinzhou Medical University, Jinzhou, China
| | - Quanying Qu
- Institute of Biological Anthropology, Jinzhou Medical University, Jinzhou, China
| | - Ying Wang
- Institute of Biological Anthropology, Jinzhou Medical University, Jinzhou, China
| | - Huanjiu Xi
- Institute of Biological Anthropology, Jinzhou Medical University, Jinzhou, China
| | - Chuan-Chao Wang
- State Key Laboratory of Cellular Stress Biology, National Institute for Data Science in Health and Medicine, School of Life Sciences, Xiamen University, Xiamen, China
- Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, Xiamen University, Xiamen, China
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Youfeng Wen
- Institute of Biological Anthropology, Jinzhou Medical University, Jinzhou, China
| |
Collapse
|