1
|
Huang Y, Sahu SK, Liu X. Deciphering recent transposition patterns in plants through comparison of 811 genome assemblies. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:1121-1132. [PMID: 39791953 PMCID: PMC11933835 DOI: 10.1111/pbi.14570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/25/2024] [Accepted: 12/23/2024] [Indexed: 01/12/2025]
Abstract
Transposable elements (TEs) are significant drivers of genome evolution, yet their recent dynamics and impacts within and among species, as well as the roles of host genes and non-coding RNAs in the transposition process, remain elusive. With advancements in large-scale pan-genome sequencing and the development of open data sharing, large-scale comparative genomics studies have become feasible. Here, we performed complete de novo TE annotations and identified active TEs in 310 plant genome assemblies across 119 species and seven crop populations. Using 811 high-quality genomes, we detected 13 844 553 TE-induced structural variants (TE-SVs), providing unprecedented resolution in delineating recent TE activities. Our integrative analysis revealed a mutual evolutionary relationship between TEs and host genomes. On one hand, host genes and ncRNAs are involved in the transposition process, as evidenced by their colocalization and coactivation with TEs, and may play a role in chromatin regulation. On the other hand, TEs drive genetic innovation by promoting the duplication of host genes and inserting into regulatory regions. Moreover, genes influenced by active TEs are linked to plant growth, nutrient absorption, storage metabolism and environmental adaptation, aiding in crop domestication and adaptation. This TE dynamics atlas not only reveals evolutionary and functional features linked to transposition activity but also highlights the role of TEs in crop domestication and adaptation, paving the way for future exploration of TE-mediated genome evolution and crop improvement strategies.
Collapse
Affiliation(s)
- Yan Huang
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
- State Key Laboratory of Agricultural GenomicsBGI ResearchShenzhenChina
- BGI Research BeijingBGI ResearchBeijingChina
| | - Sunil Kumar Sahu
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
- State Key Laboratory of Agricultural GenomicsBGI ResearchShenzhenChina
| | - Xin Liu
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
- State Key Laboratory of Agricultural GenomicsBGI ResearchShenzhenChina
- BGI Research BeijingBGI ResearchBeijingChina
| |
Collapse
|
2
|
Kołodziejczyk J, Fijarczyk A, Porth I, Robakowski P, Vella N, Vella A, Kloch A, Biedrzycka A. Genomic investigations of successful invasions: the picture emerging from recent studies. Biol Rev Camb Philos Soc 2025. [PMID: 39956989 DOI: 10.1111/brv.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 01/30/2025] [Accepted: 01/31/2025] [Indexed: 02/18/2025]
Abstract
Invasion biology aims to identify traits and mechanisms that contribute to successful invasions, while also providing general insights into the mechanisms underlying population expansion and adaptation to rapid climate and habitat changes. Certain phenotypic attributes have been linked to successful invasions, and the role of genetics has been critical in understanding adaptation of invasive species. Nevertheless, a comprehensive summary evaluating the most common evolutionary mechanisms associated with successful invasions across species and environments is still lacking. Here we present a systematic review of studies since 2015 that have applied genomic tools to investigate mechanisms of successful invasions across different organisms. We examine demographic patterns such as changes in genomic diversity at the population level, the presence of genetic bottlenecks and gene flow in the invasive range. We review mechanisms of adaptation such as selection from standing genetic variation and de novo mutations, hybridisation and introgression, all of which can have an impact on invasion success. This comprehensive review of recent articles on the genomic diversity of invasive species led to the creation of a searchable database to provide researchers with an accessible resource. Analysis of this database allowed quantitative assessment of demographic and adaptive mechanisms acting in invasive species. A predominant role of admixture in increasing levels of genetic diversity enabling molecular adaptation in novel habitats is the most important finding of our study. The "genetic paradox" of invasive species was not validated in genomic data across species and ecosystems. Even though the presence of genetic drift and bottlenecks is commonly reported upon invasion, a large reduction in genomic diversity is rarely observed. Any decrease in genetic diversity is often relatively mild and almost always restored via gene flow between different invasive populations. The fact that loci under selection are frequently detected suggests that adaptation to novel habitats on a molecular level is not hindered. The above findings are confirmed herein for the first time in a semi-quantitative manner by molecular data. We also point to gaps and potential improvements in the design of studies of mechanisms driving rapid molecular adaptation in invasive populations. These include the scarcity of comprehensive studies that include sampling from multiple native and invasive populations, identification of invasion sources, longitudinal population sampling, and the integration of fitness measures into genomic analyses. We also note that the potential of whole genome studies is often not exploited fully in predicting invasive potential. Comparative genomic studies identifying genome features promoting invasions are underrepresented despite their potential for use as a tool in invasive species control.
Collapse
Affiliation(s)
- Joanna Kołodziejczyk
- Institute of Nature Conservation, Polish Academy of Sciences, Mickiewicza 33, Kraków, 31-120, Poland
| | - Anna Fijarczyk
- Natural Resources Canada, Laurentian Forestry Centre, 1055 Rue du Peps, Québec City, Quebec, G1V 4C7, Canada
- Department of Biology, Laval University, 1045 Avenue de la Médecine, Québec City, Quebec, G1V 0A6, Canada
- Institute of Integrative Biology and Systems, Laval University, 1030 Avenue de La Médecine, Québec City, Quebec, G1V 0A6, Canada
| | - Ilga Porth
- Institute of Integrative Biology and Systems, Laval University, 1030 Avenue de La Médecine, Québec City, Quebec, G1V 0A6, Canada
- Department of Wood and Forest Sciences, Laval University, 1030 Avenue de La Médecine, Québec City, Quebec, G1V 0A6, Canada
- Centre for Forest Research, Laval University, 2405 Rue de La Terrasse, Québec City, Quebec, G1V 0A6, Canada
| | - Piotr Robakowski
- Faculty of Forestry and Wood Technology, Poznań University of Life Sciences, 71E Wojska Polskiego Street, Poznań, PL 60-625, Poland
| | - Noel Vella
- Conservation Biology Research Group, Department of Biology, University of Malta, Msida, MSD2080, Malta
| | - Adriana Vella
- Conservation Biology Research Group, Department of Biology, University of Malta, Msida, MSD2080, Malta
| | - Agnieszka Kloch
- Faculty of Biology, University of Warsaw, Miecznikowa 1, Warsaw, 02-089, Poland
| | - Aleksandra Biedrzycka
- Institute of Nature Conservation, Polish Academy of Sciences, Mickiewicza 33, Kraków, 31-120, Poland
| |
Collapse
|
3
|
Ratiu AC, Ionascu A, Constantin ND. The Impact of Oxford Nanopore Technologies Based Methodologies on the Genome Sequencing and Assembly of Romanian Strains of Drosophila suzukii. INSECTS 2024; 16:2. [PMID: 39859583 PMCID: PMC11766098 DOI: 10.3390/insects16010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/19/2024] [Accepted: 12/21/2024] [Indexed: 01/27/2025]
Abstract
BACKGROUND Drosophila suzukii is a worldwide invasive species with serious economic impacts. Herein, we are presenting the first project of sequencing and assembling the whole genomes of two lines of D. suzukii derived from Romanian local populations using exclusively Oxford Nanopore Technologies data. METHODS We implemented both MinION and Flongle flow-cells and tested the impact of various basecalling models and assembly strategies on the quality of the sought-after representative genome assemblies. RESULTS We demonstrate that the sup-basecalling model significantly improved the read quality and that adding a relatively small collection of reads had a significant positive impact over the assembly quality. The novel dScaff bioinformatics prototype tool allowed us to perform sequence-level quality tests, as well as to represent assembly selections and display both the contig redundancy and the repeats-enriched genomic sub-sequences. Moreover, we used dScaff to propose a minimal assembly variant corresponding to one of our lines, GB-ls-coga4, which assured a basic linear coverage of the genome and exhibited quality parameters comparable with those particular to the current reference genome assembly. CONCLUSIONS The study presents the first sequencing and assembly of a D. suzukii line in Romania and argues the efficiency of long-read sequencing strategies.
Collapse
Affiliation(s)
- Attila Cristian Ratiu
- Drosophila Laboratory, Department of Genetics, Faculty of Biology, University of Bucharest, 060101 Bucharest, Romania; (A.C.R.); (N.D.C.)
- The Research Institute of the University of Bucharest, 050095 Bucharest, Romania
| | - Adrian Ionascu
- Drosophila Laboratory, Department of Genetics, Faculty of Biology, University of Bucharest, 060101 Bucharest, Romania; (A.C.R.); (N.D.C.)
- The Research Institute of the University of Bucharest, 050095 Bucharest, Romania
- Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, 050095 Bucharest, Romania
| | - Nicoleta Denisa Constantin
- Drosophila Laboratory, Department of Genetics, Faculty of Biology, University of Bucharest, 060101 Bucharest, Romania; (A.C.R.); (N.D.C.)
- The Research Institute of the University of Bucharest, 050095 Bucharest, Romania
- Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, 050095 Bucharest, Romania
| |
Collapse
|
4
|
Garriga A, Toubarro D, Morton A, Simões N, García-Del-Pino F. Analysis of the immune transcriptome of the invasive pest spotted wing drosophila infected by Steinernema carpocapsae. BULLETIN OF ENTOMOLOGICAL RESEARCH 2024; 114:622-630. [PMID: 39328175 DOI: 10.1017/s0007485324000543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Drosophila suzukii is a pest of global concern due to its great impact on several crops. The entomopathogenic nematode Steinernema carpocapsae was highly virulent to the larvae of the fly although some immune mechanisms were triggered along the infection course. Thus, to understand the gene activation profile we performed a comparative transcriptome of D. suzukii larvae infected with S. carpocapsae and Xenorhabdus nematophila to map the differentially expressed genes involved in the defence response. The analysis exposed the induction of genes involved in the humoral response such as the antimicrobial peptides and pattern-recognition receptors while there was a suppression of the cellular defence. Besides, genes involved in melanisation, and clot formation were downregulated hindering the encapsulation response and wound healing. After the infection, larvae were in a stress condition with an enrichment of metabolic and transport functionalities. Concerning the stress response, we observed variations of the heat-shock proteins, detoxification, and peroxidase enzymes. These findings set a genetical comprehensive knowledge of the host-pathogen relation of D. suzukii challenged with S. carpocapsae which could support further comparative studies with entomopathogenic nematodes.
Collapse
Affiliation(s)
- A Garriga
- Departament de Biologia Animal, Biologia Vegetal i Ecologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Centro de Biotecnologia dos Açores, Faculdade de Ciências e Tecnologia, Universidade dos Açores, Ponta Delgada, Portugal
| | - D Toubarro
- Centro de Biotecnologia dos Açores, Faculdade de Ciências e Tecnologia, Universidade dos Açores, Ponta Delgada, Portugal
| | - A Morton
- Departament de Biologia Animal, Biologia Vegetal i Ecologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - N Simões
- Centro de Biotecnologia dos Açores, Faculdade de Ciências e Tecnologia, Universidade dos Açores, Ponta Delgada, Portugal
| | - F García-Del-Pino
- Departament de Biologia Animal, Biologia Vegetal i Ecologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| |
Collapse
|
5
|
Lin L, Huang Y, McIntyre J, Chang CH, Colmenares S, Lee YCG. Prevalent Fast Evolution of Genes Involved in Heterochromatin Functions. Mol Biol Evol 2024; 41:msae181. [PMID: 39189646 PMCID: PMC11408610 DOI: 10.1093/molbev/msae181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 08/14/2024] [Accepted: 08/20/2024] [Indexed: 08/28/2024] Open
Abstract
Heterochromatin is a gene-poor and repeat-rich genomic compartment universally found in eukaryotes. Despite its low transcriptional activity, heterochromatin plays important roles in maintaining genome stability, organizing chromosomes, and suppressing transposable elements. Given the importance of these functions, it is expected that genes involved in heterochromatin regulation would be highly conserved. Yet, a handful of these genes were found to evolve rapidly. To investigate whether these previous findings are anecdotal or general to genes modulating heterochromatin, we compile an exhaustive list of 106 candidate genes involved in heterochromatin functions and investigate their evolution over short and long evolutionary time scales in Drosophila. Our analyses find that these genes exhibit significantly more frequent evolutionary changes, both in the forms of amino acid substitutions and gene copy number change, when compared to genes involved in Polycomb-based repressive chromatin. While positive selection drives amino acid changes within both structured domains with diverse functions and intrinsically disordered regions, purifying selection may have maintained the proportions of intrinsically disordered regions of these proteins. Together with the observed negative associations between the evolutionary rate of these genes and the genomic abundance of transposable elements, we propose an evolutionary model where the fast evolution of genes involved in heterochromatin functions is an inevitable outcome of the unique functional roles of heterochromatin, while the rapid evolution of transposable elements may be an effect rather than cause. Our study provides an important global view of the evolution of genes involved in this critical cellular domain and provides insights into the factors driving the distinctive evolution of heterochromatin.
Collapse
Affiliation(s)
- Leila Lin
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, USA
| | - Yuheng Huang
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, USA
| | - Jennifer McIntyre
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, USA
| | - Ching-Ho Chang
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Serafin Colmenares
- Department of Cell and Molecular Biology, University of California, Berkeley, CA, USA
| | - Yuh Chwen G Lee
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, USA
| |
Collapse
|
6
|
Feng S, DeGrey SP, Guédot C, Schoville SD, Pool JE. Genomic Diversity Illuminates the Environmental Adaptation of Drosophila suzukii. Genome Biol Evol 2024; 16:evae195. [PMID: 39235033 PMCID: PMC11421661 DOI: 10.1093/gbe/evae195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 07/09/2024] [Accepted: 08/21/2024] [Indexed: 09/06/2024] Open
Abstract
Biological invasions carry substantial practical and scientific importance and represent natural evolutionary experiments on contemporary timescales. Here, we investigated genomic diversity and environmental adaptation of the crop pest Drosophila suzukii using whole-genome sequencing data and environmental metadata for 29 population samples from its native and invasive range. Through a multifaceted analysis of this population genomic data, we increase our understanding of the D. suzukii genome, its diversity and its evolution, and we identify an appropriate genotype-environment association pipeline for our dataset. Using this approach, we detect genetic signals of local adaptation associated with nine distinct environmental factors related to altitude, wind speed, precipitation, temperature, and human land use. We uncover unique functional signatures for each environmental variable, such as the prevalence of cuticular genes associated with annual precipitation. We also infer biological commonalities in the adaptation to diverse selective pressures, particularly in terms of the apparent contribution of nervous system evolution to enriched processes (ranging from neuron development to circadian behavior) and to top genes associated with all nine environmental variables. Our findings therefore depict a finer-scale adaptive landscape underlying the rapid invasion success of this agronomically important species.
Collapse
Affiliation(s)
- Siyuan Feng
- Laboratory of Genetics, University of Wisconsin–Madison, Madison, WI, USA
| | - Samuel P DeGrey
- Department of Entomology, University of Wisconsin-Madison, Madison, WI, USA
| | - Christelle Guédot
- Department of Entomology, University of Wisconsin-Madison, Madison, WI, USA
| | - Sean D Schoville
- Department of Entomology, University of Wisconsin-Madison, Madison, WI, USA
| | - John E Pool
- Laboratory of Genetics, University of Wisconsin–Madison, Madison, WI, USA
| |
Collapse
|
7
|
Mayekar HV, Rajpurohit S. No single rescue recipe: genome complexities modulate insect response to climate change. CURRENT OPINION IN INSECT SCIENCE 2024; 64:101220. [PMID: 38848812 DOI: 10.1016/j.cois.2024.101220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/08/2024] [Accepted: 05/31/2024] [Indexed: 06/09/2024]
Abstract
Declines in insect populations have gained formidable attention. Given their crucial role in the ecosystem, the causes of declining insect populations must be investigated. However, the insect clade has been associated with low extinction and high diversification rates. It is unlikely that insects underwent mass extinctions in the past. However, the pace of current climate change could make insect populations vulnerable to extinction. We propose genome size (GS) and transposable elements (TEs) to be rough estimates to assess extinction risk. Larger GS and/or proliferating TEs have been associated with adaptation in rapid climate change scenarios. We speculate that unstable, stressful environmental conditions are strongly associated with GS and TE expansion, which could be further correlated with adaptations. Alternately, stressful conditions trigger TE bursts that are not purged in smaller populations. GS and TE loads could be indicators of small effective populations in the wild, likely experiencing bottlenecks or drastic climatic perturbations, which calls for an urgent assessment of extinction risk.
Collapse
Affiliation(s)
- Harshad Vijay Mayekar
- Biological and Life Sciences, School of Arts of Sciences, Ahmedabad University, Ahmedabad 380009, India.
| | - Subhash Rajpurohit
- Biological and Life Sciences, School of Arts of Sciences, Ahmedabad University, Ahmedabad 380009, India.
| |
Collapse
|
8
|
Lin L, Huang Y, McIntyre J, Chang CH, Colmenares S, Lee YCG. Prevalent fast evolution of genes involved in heterochromatin functions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.03.583199. [PMID: 38496614 PMCID: PMC10942301 DOI: 10.1101/2024.03.03.583199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Heterochromatin is a gene-poor and repeat-rich genomic compartment universally found in eukaryotes. Despite its low transcriptional activity, heterochromatin plays important roles in maintaining genome stability, organizing chromosomes, and suppressing transposable elements (TEs). Given the importance of these functions, it is expected that the genes involved in heterochromatin regulation would be highly conserved. Yet, a handful of these genes were found to evolve rapidly. To investigate whether these previous findings are anecdotal or general to genes modulating heterochromatin, we compile an exhaustive list of 106 candidate genes involved in heterochromatin functions and investigate their evolution over short and long evolutionary time scales in Drosophila. Our analyses find that these genes exhibit significantly more frequent evolutionary changes, both in the forms of amino acid substitutions and gene copy number change, when compared to genes involved in Polycomb-based repressive chromatin. While positive selection drives amino acid changes within both structured domains with diverse functions and intrinsically disordered regions (IDRs), purifying selection may have maintained the proportions of IDRs of these proteins. Together with the observed negative associations between evolutionary rates of these genes and genomic TE abundance, we propose an evolutionary model where the fast evolution of genes involved in heterochromatin functions is an inevitable outcome of the unique functional roles of heterochromatin, while the rapid evolution of TEs may be an effect rather than cause. Our study provides an important global view of the evolution of genes involved in this critical cellular domain and provides insights into the factors driving the distinctive evolution of heterochromatin.
Collapse
|
9
|
Garambois C, Boulesteix M, Fablet M. Effects of Arboviral Infections on Transposable Element Transcript Levels in Aedes aegypti. Genome Biol Evol 2024; 16:evae092. [PMID: 38695057 PMCID: PMC11110940 DOI: 10.1093/gbe/evae092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2024] [Indexed: 05/23/2024] Open
Abstract
Transposable elements are mobile repeated sequences found in all genomes. Transposable elements are controlled by RNA interference pathways in most organisms, and this control involves the PIWI-interacting RNA pathway and the small interfering RNA pathway, which is also known to be the first line of antiviral defense in invertebrates. Using Drosophila, we recently showed that viral infections result in the modulation of transposable element transcript levels through modulation of the small RNA repertoire. The Aedes aegypti mosquito is of particular interest because almost half of its genome is made of transposable elements, and it is described as a major vector of viruses (such as the dengue [DENV], Zika [ZIKV], and chikungunya [CHIKV] arboviruses). Moreover, Aedes mosquitoes are unique among insects in that the PIWI-interacting RNA pathway is also involved in the somatic antiviral response, in addition to the transposable element control and PIWI-interacting RNA pathway genes expanded in the mosquito genome. For these reasons, we studied the impacts of viral infections on transposable element transcript levels in A. aegypti samples. We retrieved public datasets corresponding to RNA-seq data obtained from viral infections by DENV, ZIKV, and CHIKV in various tissues. We found that transposable element transcripts are moderately modulated following viral infection and that the direction of the modulation varies greatly across tissues and viruses. These results highlight the need for an in-depth investigation of the tightly intertwined interactions between transposable elements and viruses.
Collapse
Affiliation(s)
- Chloé Garambois
- Universite Claude Bernard Lyon 1, Laboratoire de Biométrie et Biologie Evolutive (LBBE), UMR 5558, CNRS, VAS, Villeurbanne 69622, France
| | - Matthieu Boulesteix
- Universite Claude Bernard Lyon 1, Laboratoire de Biométrie et Biologie Evolutive (LBBE), UMR 5558, CNRS, VAS, Villeurbanne 69622, France
| | - Marie Fablet
- Universite Claude Bernard Lyon 1, Laboratoire de Biométrie et Biologie Evolutive (LBBE), UMR 5558, CNRS, VAS, Villeurbanne 69622, France
- Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
10
|
Horvath R, Minadakis N, Bourgeois Y, Roulin AC. The evolution of transposable elements in Brachypodium distachyon is governed by purifying selection, while neutral and adaptive processes play a minor role. eLife 2024; 12:RP93284. [PMID: 38606833 PMCID: PMC11014726 DOI: 10.7554/elife.93284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024] Open
Abstract
Understanding how plants adapt to changing environments and the potential contribution of transposable elements (TEs) to this process is a key question in evolutionary genomics. While TEs have recently been put forward as active players in the context of adaptation, few studies have thoroughly investigated their precise role in plant evolution. Here, we used the wild Mediterranean grass Brachypodium distachyon as a model species to identify and quantify the forces acting on TEs during the adaptation of this species to various conditions, across its entire geographic range. Using sequencing data from more than 320 natural B. distachyon accessions and a suite of population genomics approaches, we reveal that putatively adaptive TE polymorphisms are rare in wild B. distachyon populations. After accounting for changes in past TE activity, we show that only a small proportion of TE polymorphisms evolved neutrally (<10%), while the vast majority of them are under moderate purifying selection regardless of their distance to genes. TE polymorphisms should not be ignored when conducting evolutionary studies, as they can be linked to adaptation. However, our study clearly shows that while they have a large potential to cause phenotypic variation in B. distachyon, they are not favored during evolution and adaptation over other types of mutations (such as point mutations) in this species.
Collapse
Affiliation(s)
- Robert Horvath
- Department of Plant and Microbial Biology, University of ZurichZurichSwitzerland
| | - Nikolaos Minadakis
- Department of Plant and Microbial Biology, University of ZurichZurichSwitzerland
| | - Yann Bourgeois
- DIADE, University of Montpellier, CIRAD, IRDMontpellierFrance
- University of PortsmouthPortsmouthUnited Kingdom
| | - Anne C Roulin
- Department of Plant and Microbial Biology, University of ZurichZurichSwitzerland
| |
Collapse
|
11
|
Jiang J, Xu YC, Zhang ZQ, Chen JF, Niu XM, Hou XH, Li XT, Wang L, Zhang YE, Ge S, Guo YL. Forces driving transposable element load variation during Arabidopsis range expansion. THE PLANT CELL 2024; 36:840-862. [PMID: 38036296 PMCID: PMC10980350 DOI: 10.1093/plcell/koad296] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/25/2023] [Accepted: 11/06/2023] [Indexed: 12/02/2023]
Abstract
Genetic load refers to the accumulated and potentially life-threatening deleterious mutations in populations. Understanding the mechanisms underlying genetic load variation of transposable element (TE) insertion, a major large-effect mutation, during range expansion is an intriguing question in biology. Here, we used 1,115 global natural accessions of Arabidopsis (Arabidopsis thaliana) to study the driving forces of TE load variation during its range expansion. TE load increased with range expansion, especially in the recently established Yangtze River basin population. Effective population size, which explains 62.0% of the variance in TE load, high transposition rate, and selective sweeps contributed to TE accumulation in the expanded populations. We genetically mapped and identified multiple candidate causal genes and TEs, and revealed the genetic architecture of TE load variation. Overall, this study reveals the variation in TE genetic load during Arabidopsis expansion and highlights the causes of TE load variation from the perspectives of both population genetics and quantitative genetics.
Collapse
Affiliation(s)
- Juan Jiang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong-Chao Xu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Zhi-Qin Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jia-Fu Chen
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Min Niu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Xing-Hui Hou
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Xin-Tong Li
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Wang
- Agricultural Synthetic Biology Center, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Yong E Zhang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents & Key Laboratory of the Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Song Ge
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ya-Long Guo
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
12
|
Ma LJ, Cao LJ, Chen JC, Tang MQ, Song W, Yang FY, Shen XJ, Ren YJ, Yang Q, Li H, Hoffmann AA, Wei SJ. Rapid and Repeated Climate Adaptation Involving Chromosome Inversions following Invasion of an Insect. Mol Biol Evol 2024; 41:msae044. [PMID: 38401527 PMCID: PMC10924284 DOI: 10.1093/molbev/msae044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/23/2024] [Accepted: 02/20/2024] [Indexed: 02/26/2024] Open
Abstract
Following invasion, insects can become adapted to conditions experienced in their invasive range, but there are few studies on the speed of adaptation and its genomic basis. Here, we examine a small insect pest, Thrips palmi, following its contemporary range expansion across a sharp climate gradient from the subtropics to temperate areas. We first found a geographically associated population genetic structure and inferred a stepping-stone dispersal pattern in this pest from the open fields of southern China to greenhouse environments of northern regions, with limited gene flow after colonization. In common garden experiments, both the field and greenhouse groups exhibited clinal patterns in thermal tolerance as measured by critical thermal maximum (CTmax) closely linked with latitude and temperature variables. A selection experiment reinforced the evolutionary potential of CTmax with an estimated h2 of 6.8% for the trait. We identified 3 inversions in the genome that were closely associated with CTmax, accounting for 49.9%, 19.6%, and 8.6% of the variance in CTmax among populations. Other genomic variations in CTmax outside the inversion region were specific to certain populations but functionally conserved. These findings highlight rapid adaptation to CTmax in both open field and greenhouse populations and reiterate the importance of inversions behaving as large-effect alleles in climate adaptation.
Collapse
Affiliation(s)
- Li-Jun Ma
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Li-Jun Cao
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Jin-Cui Chen
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Meng-Qing Tang
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Wei Song
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Fang-Yuan Yang
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Xiu-Jing Shen
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Ya-Jing Ren
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Qiong Yang
- Bio21 Institute, School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Hu Li
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Ary Anthony Hoffmann
- Bio21 Institute, School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Shu-Jun Wei
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| |
Collapse
|
13
|
Wu Z, Yu X, Zhang S, He Y, Guo W. Novel roles of PIWI proteins and PIWI-interacting RNAs in human health and diseases. Cell Commun Signal 2023; 21:343. [PMID: 38031146 PMCID: PMC10685540 DOI: 10.1186/s12964-023-01368-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
Non-coding RNA has aroused great research interest recently, they play a wide range of biological functions, such as regulating cell cycle, cell proliferation, and intracellular substance metabolism. Piwi-interacting RNAs (piRNAs) are emerging small non-coding RNAs that are 24-31 nucleotides in length. Previous studies on piRNAs were mainly limited to evaluating the binding to the PIWI protein family to play the biological role. However, recent studies have shed more lights on piRNA functions; aberrant piRNAs play unique roles in many human diseases, including diverse lethal cancers. Therefore, understanding the mechanism of piRNAs expression and the specific functional roles of piRNAs in human diseases is crucial for developing its clinical applications. Presently, research on piRNAs mainly focuses on their cancer-specific functions but lacks investigation of their expressions and epigenetic modifications. This review discusses piRNA's biogenesis and functional roles and the recent progress of functions of piRNA/PIWI protein complexes in human diseases. Video Abstract.
Collapse
Affiliation(s)
- Zeyu Wu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, 450052, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China
| | - Xiao Yu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, 450052, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China
| | - Shuijun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, 450052, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China
| | - Yuting He
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, 450052, China.
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China.
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, 450052, China.
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China.
| |
Collapse
|
14
|
Bodelón A, Fablet M, Siqueira de Oliveira D, Vieira C, García Guerreiro MP. Impact of Heat Stress on Transposable Element Expression and Derived Small RNAs in Drosophila subobscura. Genome Biol Evol 2023; 15:evad189. [PMID: 37847062 PMCID: PMC10627563 DOI: 10.1093/gbe/evad189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 10/02/2023] [Accepted: 10/09/2023] [Indexed: 10/18/2023] Open
Abstract
Global warming is forcing insect populations to move and adapt, triggering adaptive genetic responses. Thermal stress is known to alter gene expression, repressing the transcription of active genes, and inducing others, such as those encoding heat shock proteins. It has also been related to the activation of some specific transposable element (TE) families. However, the actual magnitude of this stress on the whole genome and the factors involved in these genomic changes are still unclear. We studied mRNAs and small RNAs in gonads of two Drosophila subobscura populations, considered a good model to study adaptation to temperature changes. In control conditions, we found that a few genes and TE families were differentially expressed between populations, pointing out their putative involvement in the adaptation of populations to their different environments. Under heat stress, sex-specific changes in gene expression together with a trend toward overexpression, mainly of heat shock response-related genes, were observed. We did not observe large changes of TE expression nor small RNA production due to stress. Only population and sex-specific expression changes of some TE families (mainly retrotransposons), or the amounts of siRNAs and piRNAs, derived from specific TE families were observed, as well as the piRNA production from some piRNA clusters. Changes in small RNA amounts and TE expression could not be clearly correlated, indicating that other factors as chromatin modulation could also be involved. This work provides the first whole transcriptomic study including genes, TEs, and small RNAs after a heat stress in D. subobscura.
Collapse
Affiliation(s)
- Alejandra Bodelón
- Grup de Genòmica, Bioinformática i Biologia Evolutiva, Departament de Genètica i Microbiologia (Edifici C), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Marie Fablet
- Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon; Université Lyon 1; CNRS; UMR 5558, Villeurbanne, France
- Institut universitaire de France, Paris, France
| | - Daniel Siqueira de Oliveira
- Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon; Université Lyon 1; CNRS; UMR 5558, Villeurbanne, France
- Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (Unesp), São Paulo, Brazil
| | - Cristina Vieira
- Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon; Université Lyon 1; CNRS; UMR 5558, Villeurbanne, France
| | - Maria Pilar García Guerreiro
- Grup de Genòmica, Bioinformática i Biologia Evolutiva, Departament de Genètica i Microbiologia (Edifici C), Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
15
|
Feng S, DeGrey SP, Guédot C, Schoville SD, Pool JE. Genomic Diversity Illuminates the Environmental Adaptation of Drosophila suzukii. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.03.547576. [PMID: 37461625 PMCID: PMC10349955 DOI: 10.1101/2023.07.03.547576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Biological invasions carry substantial practical and scientific importance, and represent natural evolutionary experiments on contemporary timescales. Here, we investigated genomic diversity and environmental adaptation of the crop pest Drosophila suzukii using whole-genome sequencing data and environmental metadata for 29 population samples from its native and invasive range. Through a multifaceted analysis of this population genomic data, we increase our understanding of the D. suzukii genome, its diversity and its evolution, and we identify an appropriate genotype-environment association pipeline for our data set. Using this approach, we detect genetic signals of local adaptation associated with nine distinct environmental factors related to altitude, wind speed, precipitation, temperature, and human land use. We uncover unique functional signatures for each environmental variable, such as a prevalence of cuticular genes associated with annual precipitation. We also infer biological commonalities in the adaptation to diverse selective pressures, particularly in terms of the apparent contribution of nervous system evolution to enriched processes (ranging from neuron development to circadian behavior) and to top genes associated with all nine environmental variables. Our findings therefore depict a finer-scale adaptive landscape underlying the rapid invasion success of this agronomically important species.
Collapse
Affiliation(s)
- Siyuan Feng
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, USA
| | - Samuel P. DeGrey
- Department of Entomology, University of Wisconsin-Madison, Madison, WI, USA
| | - Christelle Guédot
- Department of Entomology, University of Wisconsin-Madison, Madison, WI, USA
| | - Sean D. Schoville
- Department of Entomology, University of Wisconsin-Madison, Madison, WI, USA
| | - John E. Pool
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
16
|
Fablet M, Salces-Ortiz J, Jacquet A, Menezes BF, Dechaud C, Veber P, Rebollo R, Vieira C. A Quantitative, Genome-Wide Analysis in Drosophila Reveals Transposable Elements' Influence on Gene Expression Is Species-Specific. Genome Biol Evol 2023; 15:evad160. [PMID: 37652057 PMCID: PMC10492446 DOI: 10.1093/gbe/evad160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 08/21/2023] [Accepted: 08/25/2023] [Indexed: 09/02/2023] Open
Abstract
Transposable elements (TEs) are parasite DNA sequences that are able to move and multiply along the chromosomes of all genomes. They can be controlled by the host through the targeting of silencing epigenetic marks, which may affect the chromatin structure of neighboring sequences, including genes. In this study, we used transcriptomic and epigenomic high-throughput data produced from ovarian samples of several Drosophila melanogaster and Drosophila simulans wild-type strains, in order to finely quantify the influence of TE insertions on gene RNA levels and histone marks (H3K9me3 and H3K4me3). Our results reveal a stronger epigenetic effect of TEs on ortholog genes in D. simulans compared with D. melanogaster. At the same time, we uncover a larger contribution of TEs to gene H3K9me3 variance within genomes in D. melanogaster, which is evidenced by a stronger correlation of TE numbers around genes with the levels of this chromatin mark in D. melanogaster. Overall, this work contributes to the understanding of species-specific influence of TEs within genomes. It provides a new light on the considerable natural variability provided by TEs, which may be associated with contrasted adaptive and evolutionary potentials.
Collapse
Affiliation(s)
- Marie Fablet
- Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon; Université Lyon 1; CNRS; UMR 5558, Villeurbanne, France
- Institut Universitaire de France (IUF), Paris, France
| | - Judit Salces-Ortiz
- Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon; Université Lyon 1; CNRS; UMR 5558, Villeurbanne, France
| | - Angelo Jacquet
- Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon; Université Lyon 1; CNRS; UMR 5558, Villeurbanne, France
| | - Bianca F Menezes
- Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon; Université Lyon 1; CNRS; UMR 5558, Villeurbanne, France
| | - Corentin Dechaud
- Institut de Génomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Philippe Veber
- Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon; Université Lyon 1; CNRS; UMR 5558, Villeurbanne, France
| | - Rita Rebollo
- Univ Lyon, INRAE, INSA-Lyon, BF2I, UMR 203, Villeurbanne, France
| | - Cristina Vieira
- Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon; Université Lyon 1; CNRS; UMR 5558, Villeurbanne, France
| |
Collapse
|
17
|
Huang Y, Shukla H, Lee YCG. Species-specific chromatin landscape determines how transposable elements shape genome evolution. eLife 2022; 11:81567. [PMID: 35997258 PMCID: PMC9398452 DOI: 10.7554/elife.81567] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 07/15/2022] [Indexed: 11/30/2022] Open
Abstract
Transposable elements (TEs) are selfish genetic parasites that increase their copy number at the expense of host fitness. The ‘success’, or genome-wide abundance, of TEs differs widely between species. Deciphering the causes for this large variety in TE abundance has remained a central question in evolutionary genomics. We previously proposed that species-specific TE abundance could be driven by the inadvertent consequences of host-direct epigenetic silencing of TEs—the spreading of repressive epigenetic marks from silenced TEs into adjacent sequences. Here, we compared this TE-mediated local enrichment of repressive marks, or ‘the epigenetic effect of TEs’, in six species in the Drosophila melanogaster subgroup to dissect step-by-step the role of such effect in determining genomic TE abundance. We found that TE-mediated local enrichment of repressive marks is prevalent and substantially varies across and even within species. While this TE-mediated effect alters the epigenetic states of adjacent genes, we surprisingly discovered that the transcription of neighboring genes could reciprocally impact this spreading. Importantly, our multi-species analysis provides the power and appropriate phylogenetic resolution to connect species-specific host chromatin regulation, TE-mediated epigenetic effects, the strength of natural selection against TEs, and genomic TE abundance unique to individual species. Our findings point toward the importance of host chromatin landscapes in shaping genome evolution through the epigenetic effects of a selfish genetic parasite. All the instructions required for life are encoded in the set of DNA present in a cell. It therefore seems natural to think that every bit of this genetic information should serve the organism. And yet most species carry parasitic ‘transposable’ sequences, or transposons, whose only purpose is to multiply and insert themselves at other positions in the genome. It is possible for cells to suppress these selfish elements. Chemical marks can be deposited onto the DNA to temporarily ‘silence’ transposons and prevent them from being able to move and replicate. However, this sometimes comes at a cost: the repressive chemical modifications can spread to nearby genes that are essential for the organism and perturb their function. Strangely, the prevalence of transposons varies widely across the tree of life. These sequences form the majority of the genome of certain species – in fact, they represent about half of the human genetic information. But their abundance is much lower in other organisms, forming a measly 6% of the genome of puffer fish for instance. Even amongst fruit fly species, the prevalence of transposable elements can range between 2% and 25%. What explains such differences? Huang et al. set out to examine this question through the lens of transposon silencing, systematically comparing how this process impacts nearby regions in six species of fruit flies. This revealed variations in the strength of the side effects associated with transposon silencing, resulting in different levels of perturbation on neighbouring genes. A stronger impact was associated with the species having fewer transposons in its genome, suggesting that an evolutionary pressure is at work to keep the abundance of transposons at a low level in these species. Further analyses showed that the genes which determine how silencing marks are distributed may also be responsible for the variations in the impact of transposon silencing. They could therefore be the ones driving differences in the abundance of transposons between species. Overall, this work sheds light on the complex mechanisms shaping the evolution of genomes, and it may help to better understand how transposons are linked to processes such as aging and cancer.
Collapse
Affiliation(s)
- Yuheng Huang
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, United States
| | - Harsh Shukla
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, United States
| | - Yuh Chwen G Lee
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, United States
| |
Collapse
|
18
|
Ramachandran D, Huebner CD, Daly M, Haimovitz J, Swale T, Barrett CF. Chromosome Level Genome Assembly and Annotation of Highly Invasive Japanese Stiltgrass (Microstegium vimineum). Genome Biol Evol 2021; 13:6413638. [PMID: 34718556 PMCID: PMC8598173 DOI: 10.1093/gbe/evab238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2021] [Indexed: 02/06/2023] Open
Abstract
The invasive Japanese stiltgrass (Microstegium vimineum) affects a wide range of ecosystems and threatens biodiversity across the eastern USA. However, the mechanisms underlying rapid adaptation, plasticity, and epigenetics in the invasive range are largely unknown. We present a chromosome-level assembly for M. vimineum to investigate genome dynamics, evolution, adaptation, and the genomics of phenotypic plasticity. We generated a 1.12-Gb genome with scaffold N50 length of 53.44 Mb respectively, taking a de novo assembly approach that combined PacBio and Dovetail Genomics Omni-C sequencing. The assembly contains 23 pseudochromosomes, representing 99.96% of the genome. BUSCO assessment indicated that 80.3% of Poales gene groups are present in the assembly. The genome is predicted to contain 39,604 protein-coding genes, of which 26,288 are functionally annotated. Furthermore, 66.68% of the genome is repetitive, of which unclassified (35.63%) and long-terminal repeat (LTR) retrotransposons (26.90%) are predominant. Similar to other grasses, Gypsy (41.07%) and Copia (32%) are the most abundant LTR-retrotransposon families. The majority of LTR-retrotransposons are derived from a significant expansion in the past 1-2 Myr, suggesting the presence of relatively young LTR-retrotransposon lineages. We find corroborating evidence from Ks plots for a stiltgrass-specific duplication event, distinct from the more ancient grass-specific duplication event. The assembly and annotation of M. vimineum will serve as an essential genomic resource facilitating studies of the invasion process, the history and consequences of polyploidy in grasses, and provides a crucial tool for natural resource managers.
Collapse
Affiliation(s)
| | - Cynthia D Huebner
- Department of Biology, West Virginia University, USA.,USDA Forest Service, Northern Research Station, Morgantown, West Virginia, USA
| | - Mark Daly
- Dovetail Genomics, LLC, Scotts Valley, California, USA
| | | | - Thomas Swale
- Dovetail Genomics, LLC, Scotts Valley, California, USA
| | | |
Collapse
|
19
|
Marin P, Jaquet A, Picarle J, Fablet M, Merel V, Delignette-Muller ML, Ferrarini MG, Gibert P, Vieira C. Phenotypic and Transcriptomic Responses to Stress Differ According to Population Geography in an Invasive Species. Genome Biol Evol 2021; 13:evab208. [PMID: 34505904 PMCID: PMC8483892 DOI: 10.1093/gbe/evab208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2021] [Indexed: 11/14/2022] Open
Abstract
Adaptation to rapid environmental changes must occur within a short-time scale. In this context, studies of invasive species may provide insights into the underlying mechanisms of rapid adaptation as these species have repeatedly encountered and adapted to novel environmental conditions. We investigated how invasive and noninvasive genotypes of Drosophila suzukii deal with oxidative stress at the phenotypic and molecular levels. We also studied the impact of transposable element (TE) insertions on the gene expression in response to stress. Our results show that flies from invasive areas (France and the United States) live longer in natural conditions than the ones from native Japanese areas. As expected, lifespan for all genotypes was significantly reduced following exposure to paraquat, but this reduction varied among genotypes (genotype-by-environment interaction) with invasive genotypes appearing more affected by exposure than noninvasive ones. A transcriptomic analysis of genotypes upon paraquat treatment detected many genes differentially expressed (DE). Although a small core set of genes were DE in all genotypes following paraquat exposure, much of the response of each genotype was unique. Moreover, we showed that TEs were not activated after oxidative stress and DE genes were significantly depleted of TEs. In conclusion, it is likely that transcriptomic changes are involved in the rapid adaptation to local environments. We provide new evidence that in the decade since the invasion from Asia, the sampled genotypes in Europe and the United States of D. suzukii diverged from the ones from the native area regarding their phenotypic and genomic response to oxidative stress.
Collapse
Affiliation(s)
- Pierre Marin
- Université de Lyon, Université Lyon 1, CNRS, VetAgro Sup, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, Villeurbanne, France
| | - Angelo Jaquet
- Université de Lyon, Université Lyon 1, CNRS, VetAgro Sup, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, Villeurbanne, France
| | - Justine Picarle
- Université de Lyon, Université Lyon 1, CNRS, VetAgro Sup, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, Villeurbanne, France
| | - Marie Fablet
- Université de Lyon, Université Lyon 1, CNRS, VetAgro Sup, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, Villeurbanne, France
| | - Vincent Merel
- Université de Lyon, Université Lyon 1, CNRS, VetAgro Sup, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, Villeurbanne, France
| | - Marie-Laure Delignette-Muller
- Université de Lyon, Université Lyon 1, CNRS, VetAgro Sup, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, Villeurbanne, France
| | - Mariana Galvão Ferrarini
- Université de Lyon, Université Lyon 1, CNRS, VetAgro Sup, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, Villeurbanne, France
- Université de Lyon, INSA-Lyon, INRAE, BF2I, UMR0203, Villeurbanne, France
| | - Patricia Gibert
- Université de Lyon, Université Lyon 1, CNRS, VetAgro Sup, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, Villeurbanne, France
| | - Cristina Vieira
- Université de Lyon, Université Lyon 1, CNRS, VetAgro Sup, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, Villeurbanne, France
| |
Collapse
|
20
|
Errbii M, Keilwagen J, Hoff KJ, Steffen R, Altmüller J, Oettler J, Schrader L. Transposable elements and introgression introduce genetic variation in the invasive ant Cardiocondyla obscurior. Mol Ecol 2021; 30:6211-6228. [PMID: 34324751 DOI: 10.1111/mec.16099] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 12/11/2022]
Abstract
Introduced populations of invasive organisms have to cope with novel environmental challenges, while having reduced genetic variation caused by founder effects. The mechanisms associated with this "genetic paradox of invasive species" has received considerable attention, yet few studies have examined the genomic architecture of invasive species. Populations of the heart node ant Cardiocondyla obscurior belong to two distinct lineages, a New World lineage so far only found in Latin America and a more globally distributed Old World lineage. In the present study, we use population genomic approaches to compare populations of the two lineages with apparent divergent invasive potential. We find that the strong genetic differentiation of the two lineages began at least 40,000 generations ago and that activity of transposable elements (TEs) has contributed significantly to the divergence of both lineages, possibly linked to the very unusual genomic distribution of TEs in this species. Furthermore, we show that introgression from the Old World lineage is a dominant source of genetic diversity in the New World lineage, despite the lineages' strong genetic differentiation. Our study uncovers mechanisms underlying novel genetic variation in introduced populations of C. obscurior that could contribute to the species' adaptive potential.
Collapse
Affiliation(s)
- Mohammed Errbii
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Jens Keilwagen
- Institute for Biosafety in Plant Biotechnology, Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Quedlinburg, Germany
| | - Katharina J Hoff
- Institute of Mathematics and Computer Science, University of Greifswald, Greifswald, Germany.,Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Raphael Steffen
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Janine Altmüller
- Cologne Center for Genomics, Institute of Human Genetics, University of Cologne, Cologne, Germany.,Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Core Facility Genomics, Berlin, Germany.,Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Jan Oettler
- Lehrstuhl für Zoologie/Evolutionsbiologie, University Regensburg, Regensburg, Germany
| | - Lukas Schrader
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| |
Collapse
|
21
|
Almojil D, Bourgeois Y, Falis M, Hariyani I, Wilcox J, Boissinot S. The Structural, Functional and Evolutionary Impact of Transposable Elements in Eukaryotes. Genes (Basel) 2021; 12:genes12060918. [PMID: 34203645 PMCID: PMC8232201 DOI: 10.3390/genes12060918] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 12/22/2022] Open
Abstract
Transposable elements (TEs) are nearly ubiquitous in eukaryotes. The increase in genomic data, as well as progress in genome annotation and molecular biology techniques, have revealed the vast number of ways mobile elements have impacted the evolution of eukaryotes. In addition to being the main cause of difference in haploid genome size, TEs have affected the overall organization of genomes by accumulating preferentially in some genomic regions, by causing structural rearrangements or by modifying the recombination rate. Although the vast majority of insertions is neutral or deleterious, TEs have been an important source of evolutionary novelties and have played a determinant role in the evolution of fundamental biological processes. TEs have been recruited in the regulation of host genes and are implicated in the evolution of regulatory networks. They have also served as a source of protein-coding sequences or even entire genes. The impact of TEs on eukaryotic evolution is only now being fully appreciated and the role they may play in a number of biological processes, such as speciation and adaptation, remains to be deciphered.
Collapse
Affiliation(s)
- Dareen Almojil
- New York University Abu Dhabi, Saadiyat Island, Abu Dhabi P.O. Box 129188, United Arab Emirates; (D.A.); (M.F.); (I.H.); (J.W.)
| | - Yann Bourgeois
- School of Biological Sciences, University of Portsmouth, Portsmouth, UK;
| | - Marcin Falis
- New York University Abu Dhabi, Saadiyat Island, Abu Dhabi P.O. Box 129188, United Arab Emirates; (D.A.); (M.F.); (I.H.); (J.W.)
| | - Imtiyaz Hariyani
- New York University Abu Dhabi, Saadiyat Island, Abu Dhabi P.O. Box 129188, United Arab Emirates; (D.A.); (M.F.); (I.H.); (J.W.)
| | - Justin Wilcox
- New York University Abu Dhabi, Saadiyat Island, Abu Dhabi P.O. Box 129188, United Arab Emirates; (D.A.); (M.F.); (I.H.); (J.W.)
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi P.O. Box 129188, United Arab Emirates
| | - Stéphane Boissinot
- New York University Abu Dhabi, Saadiyat Island, Abu Dhabi P.O. Box 129188, United Arab Emirates; (D.A.); (M.F.); (I.H.); (J.W.)
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi P.O. Box 129188, United Arab Emirates
- Correspondence:
| |
Collapse
|
22
|
North HL, McGaughran A, Jiggins CD. Insights into invasive species from whole-genome resequencing. Mol Ecol 2021; 30:6289-6308. [PMID: 34041794 DOI: 10.1111/mec.15999] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/12/2021] [Accepted: 04/30/2021] [Indexed: 12/12/2022]
Abstract
Studies of invasive species can simultaneously inform management strategies and quantify rapid evolution in the wild. The role of genomics in invasion science is increasingly recognised, and the growing availability of reference genomes for invasive species is paving the way for whole-genome resequencing studies in a wide range of systems. Here, we survey the literature to assess the application of whole-genome resequencing data in invasion biology. For some applications, such as the reconstruction of invasion routes in time and space, sequencing the whole genome of many individuals can increase the accuracy of existing methods. In other cases, population genomic approaches such as haplotype analysis can permit entirely new questions to be addressed and new technologies applied. To date whole-genome resequencing has only been used in a handful of invasive systems, but these studies have confirmed the importance of processes such as balancing selection and hybridization in allowing invasive species to reuse existing adaptations and rapidly overcome the challenges of a foreign ecosystem. The use of genomic data does not constitute a paradigm shift per se, but by leveraging new theory, tools, and technologies, population genomics can provide unprecedented insight into basic and applied aspects of invasion science.
Collapse
Affiliation(s)
- Henry L North
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Angela McGaughran
- Te Aka Mātuatua/School of Science, University of Waikato, Hamilton, New Zealand
| | - Chris D Jiggins
- Department of Zoology, University of Cambridge, Cambridge, UK
| |
Collapse
|