1
|
Ward CM, Onetto CA, Borneman AR. Adaptation During the Shift from Entomopathogen to Endosymbiont Is Accompanied by Gene Loss and Intensified Selection. Genome Biol Evol 2024; 16:evae251. [PMID: 39561190 PMCID: PMC11632363 DOI: 10.1093/gbe/evae251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 11/10/2024] [Accepted: 11/14/2024] [Indexed: 11/21/2024] Open
Abstract
Fungi have been found to be associated with many insect species, with some species transitioning to reside within insects as symbionts. However, the evolutionary pressures and genomic consequences associated with this transition are not well understood. Pathogenic fungi of the genus Ophiocordyceps have undergone multiple, independent transitions from pathogen to endosymbiont lifestyles, where they reside within the fatty tissues of infected soft-scale insects transgenerationally without killing their hosts. To gain an understanding of the genomic adaptations underlying this life history shift, long-read sequencing was utilized to assemble the genomes of both the soft-scale insect Parthenolecanium corni and its Ophiocordyceps endosymbiont from a single insect. Assembly and metagenomic-based binning produced a highly contiguous genome for Pa. corni and a chromosome-level assembly for the Ophiocordyceps endosymbiont. The endosymbiont genome was characterized by 524 gene loss events compared to free-living pathogenic Ophiocordyceps relatives, with predicted roles in hyphal growth, cell wall integrity, metabolism, gene regulation, and toxin production. Contrasting patterns of selection were observed between the nuclear and mitochondrial genomes specific to the endosymbiont lineage. Intensified selection was most frequently observed across orthologs in the nuclear genome, whereas selection on most mitochondrial genes was found to be relaxed. Scans for positive selection were enriched within the fatty acid metabolism pathway with endosymbiont specific selection within three adjacent enzymes catalyzing the conversion of acetoacetate to acetyl-coenzyme A, suggesting that the endosymbiont lineage is under selective pressure to effectively exploit the lipid rich environment of the insect fat bodies in which it is found.
Collapse
Affiliation(s)
- Chris M Ward
- Australian Wine Research Institute, Glen Osmond, Australia
| | - Cristobal A Onetto
- Australian Wine Research Institute, Glen Osmond, Australia
- School of Agriculture, Food and Wine, University of Adelaide, Adelaide, Australia
| | - Anthony R Borneman
- Australian Wine Research Institute, Glen Osmond, Australia
- School of Agriculture, Food and Wine, University of Adelaide, Adelaide, Australia
| |
Collapse
|
2
|
Beasley‐Hall PG, Kinjo Y, Rose HA, Walker J, Foster CSP, Kovacs TGL, Bourguignon T, Ho SYW, Lo N. Shrinking in the dark: Parallel endosymbiont genome erosions are associated with repeated host transitions to an underground life. INSECT SCIENCE 2024; 31:1810-1821. [PMID: 38462506 PMCID: PMC11632294 DOI: 10.1111/1744-7917.13339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/06/2023] [Accepted: 01/03/2024] [Indexed: 03/12/2024]
Abstract
Microbial symbioses have had profound impacts on the evolution of animals. Conversely, changes in host biology may impact the evolutionary trajectory of symbionts themselves. Blattabacterium cuenoti is present in almost all cockroach species and enables hosts to subsist on a nutrient-poor diet. To investigate if host biology has impacted Blattabacterium at the genomic level, we sequenced and analyzed 25 genomes from Australian soil-burrowing cockroaches (Blaberidae: Panesthiinae), which have undergone at least seven separate subterranean, subsocial transitions from above-ground, wood-feeding ancestors. We find at least three independent instances of genome erosion have occurred in Blattabacterium strains exclusive to Australian soil-burrowing cockroaches. These shrinkages have involved the repeated inactivation of genes involved in amino acid biosynthesis and nitrogen recycling, the core role of Blattabacterium in the host-symbiont relationship. The most drastic of these erosions have occurred in hosts thought to have transitioned underground the earliest relative to other lineages, further suggestive of a link between gene loss in Blattabacterium and the burrowing behavior of hosts. As Blattabacterium is unable to fulfill its core function in certain host lineages, these findings suggest soil-burrowing cockroaches must acquire these nutrients from novel sources. Our study represents one of the first cases, to our knowledge, of parallel host adaptations leading to concomitant parallelism in their mutualistic symbionts, further underscoring the intimate relationship between these two partners.
Collapse
Affiliation(s)
- Perry G. Beasley‐Hall
- School of Life and Environmental SciencesUniversity of SydneySydneyNew South WalesAustralia
- School of Biological SciencesUniversity of AdelaideAdelaideSouth AustraliaAustralia
| | - Yukihiro Kinjo
- Evolutionary Genomics UnitOkinawa Institute of Science & Technology Graduate UniversityOnna‐sonOkinawaJapan
| | - Harley A. Rose
- School of Life and Environmental SciencesUniversity of SydneySydneyNew South WalesAustralia
| | - James Walker
- Australian Government Department of Agriculture Water and EnvironmentCanberraAustralia
| | - Charles S. P. Foster
- School of Biomedical SciencesUniversity of New South WalesSydneyNew South WalesAustralia
| | - Toby G. L. Kovacs
- School of Life and Environmental SciencesUniversity of SydneySydneyNew South WalesAustralia
| | - Thomas Bourguignon
- Australian Government Department of Agriculture Water and EnvironmentCanberraAustralia
| | - Simon Y. W. Ho
- School of Life and Environmental SciencesUniversity of SydneySydneyNew South WalesAustralia
| | - Nathan Lo
- School of Life and Environmental SciencesUniversity of SydneySydneyNew South WalesAustralia
| |
Collapse
|
3
|
Yin Z, Liang J, Zhang M, Chen B, Yu Z, Tian X, Deng X, Peng L. Pan-genome insights into adaptive evolution of bacterial symbionts in mixed host-microbe symbioses represented by human gut microbiota Bacteroides cellulosilyticus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172251. [PMID: 38604355 DOI: 10.1016/j.scitotenv.2024.172251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/13/2024]
Abstract
Animal hosts harbor diverse assemblages of microbial symbionts that play crucial roles in the host's lifestyle. The link between microbial symbiosis and host development remains poorly understood. In particular, little is known about the adaptive evolution of gut bacteria in host-microbe symbioses. Recently, symbiotic relationships have been categorized as open, closed, or mixed, reflecting their modes of inter-host transmission and resulting in distinct genomic features. Members of the genus Bacteroides are the most abundant human gut microbiota and possess both probiotic and pathogenic potential, providing an excellent model for studying pan-genome evolution in symbiotic systems. Here, we determined the complete genome of an novel clinical strain PL2022, which was isolated from a blood sample and performed pan-genome analyses on a representative set of Bacteroides cellulosilyticus strains to quantify the influence of the symbiotic relationship on the evolutionary dynamics. B. cellulosilyticus exhibited correlated genomic features with both open and closed symbioses, suggesting a mixed symbiosis. An open pan-genome is characterized by abundant accessory gene families, potential horizontal gene transfer (HGT), and diverse mobile genetic elements (MGEs), indicating an innovative gene pool, mainly associated with genomic islands and plasmids. However, massive parallel gene loss, weak purifying selection, and accumulation of positively selected mutations were the main drivers of genome reduction in B. cellulosilyticus. Metagenomic read recruitment analyses showed that B. cellulosilyticus members are globally distributed and active in human gut habitats, in line with predominant vertical transmission in the human gut. However, existence and/or high abundance were also detected in non-intestinal tissues, other animal hosts, and non-host environments, indicating occasional horizontal transmission to new niches, thereby creating arenas for the acquisition of novel genes. This case study of adaptive evolution under a mixed host-microbe symbiosis advances our understanding of symbiotic pan-genome evolution. Our results highlight the complexity of genetic evolution in this unusual intestinal symbiont.
Collapse
Affiliation(s)
- Zhiqiu Yin
- Department of Clinical Laboratory, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 510700, Guangdong, China
| | - Jiaxin Liang
- Department of Clinical Laboratory, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 510700, Guangdong, China
| | - Mujie Zhang
- Department of Clinical Laboratory, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 510700, Guangdong, China
| | - Baozhu Chen
- Department of Clinical Laboratory, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 510700, Guangdong, China
| | - Zhanpeng Yu
- Department of Clinical Laboratory, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 510700, Guangdong, China
| | - Xiaoyan Tian
- Department of Clinical Laboratory, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 510700, Guangdong, China
| | - Xiaoyan Deng
- Department of Clinical Laboratory, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 510700, Guangdong, China.
| | - Liang Peng
- Department of Clinical Laboratory, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 510700, Guangdong, China; KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou 510180, Guangdong, China.
| |
Collapse
|
4
|
Silva FJ, Domínguez-Santos R, Latorre A, García-Ferris C. Comparative Transcriptomics of Fat Bodies between Symbiotic and Quasi-Aposymbiotic Adult Females of Blattella germanica with Emphasis on the Metabolic Integration with Its Endosymbiont Blattabacterium and Its Immune System. Int J Mol Sci 2024; 25:4228. [PMID: 38673813 PMCID: PMC11050582 DOI: 10.3390/ijms25084228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
We explored the metabolic integration of Blattella germanica and its obligate endosymbiont Blattabacterium cuenoti by the transcriptomic analysis of the fat body of quasi-aposymbiotic cockroaches, where the endosymbionts were almost entirely removed with rifampicin. Fat bodies from quasi-aposymbiotic insects displayed large differences in gene expression compared to controls. In quasi-aposymbionts, the metabolism of phenylalanine and tyrosine involved in cuticle sclerotization and pigmentation increased drastically to compensate for the deficiency in the biosynthesis of these amino acids by the endosymbionts. On the other hand, the uricolytic pathway and the biosynthesis of uric acid were severely decreased, probably because the reduced population of endosymbionts was unable to metabolize urea to ammonia. Metabolite transporters that could be involved in the endosymbiosis process were identified. Immune system and antimicrobial peptide (AMP) gene expression was also reduced in quasi-aposymbionts, genes encoding peptidoglycan-recognition proteins, which may provide clues for the maintenance of the symbiotic relationship, as well as three AMP genes whose involvement in the symbiotic relationship will require additional analysis. Finally, a search for AMP-like factors that could be involved in controlling the endosymbiont identified two orphan genes encoding proteins smaller than 200 amino acids underexpressed in quasi-aposymbionts, suggesting a role in the host-endosymbiont relationship.
Collapse
Affiliation(s)
- Francisco J. Silva
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia and Spanish Research Council, 46980 Paterna, Spain; (R.D.-S.); (A.L.)
- Genomics and Health Area, Foundation for the Promotion of Sanitary and Biomedical Research of the Valencia Region, 46020 Valencia, Spain
| | - Rebeca Domínguez-Santos
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia and Spanish Research Council, 46980 Paterna, Spain; (R.D.-S.); (A.L.)
- Genomics and Health Area, Foundation for the Promotion of Sanitary and Biomedical Research of the Valencia Region, 46020 Valencia, Spain
| | - Amparo Latorre
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia and Spanish Research Council, 46980 Paterna, Spain; (R.D.-S.); (A.L.)
- Genomics and Health Area, Foundation for the Promotion of Sanitary and Biomedical Research of the Valencia Region, 46020 Valencia, Spain
| | - Carlos García-Ferris
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia and Spanish Research Council, 46980 Paterna, Spain; (R.D.-S.); (A.L.)
- Genomics and Health Area, Foundation for the Promotion of Sanitary and Biomedical Research of the Valencia Region, 46020 Valencia, Spain
- Department of Biochemistry and Molecular Biology, University of Valencia, 46100 Burjassot, Spain
| |
Collapse
|
5
|
Cazzaniga M, Domínguez-Santos R, Marín-Miret J, Gil R, Latorre A, García-Ferris C. Exploring Gut Microbial Dynamics and Symbiotic Interaction in Blattella germanica Using Rifampicin. BIOLOGY 2023; 12:955. [PMID: 37508385 PMCID: PMC10376618 DOI: 10.3390/biology12070955] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/26/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023]
Abstract
Blattella germanica harbours two cohabiting symbiotic systems: an obligate endosymbiont, Blattabacterium, located inside bacteriocytes and vertically transmitted, which is key in nitrogen metabolism, and abundant and complex gut microbiota acquired horizontally (mainly by coprophagy) that must play an important role in host physiology. In this work, we use rifampicin treatment to deepen the knowledge on the relationship between the host and the two systems. First, we analysed changes in microbiota composition in response to the presence and removal of the antibiotic with and without faeces in one generation. We found that, independently of faeces supply, rifampicin-sensitive bacteria are strongly affected at four days of treatment, and most taxa recover after treatment, although some did not reach control levels. Second, we tried to generate an aposymbiotic population, but individuals that reached the second generation were severely affected and no third generation was possible. Finally, we established a mixed population with quasi-aposymbiotic and control nymphs sharing an environment in a blind experiment. The analysis of the two symbiotic systems in each individual after reaching the adult stage revealed that endosymbiont's load does not affect the composition of the hindgut microbiota, suggesting that there is no interaction between the two symbiotic systems in Blattella germanica.
Collapse
Affiliation(s)
- Monica Cazzaniga
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia and Spanish Research Council, 46980 Paterna, Spain
| | - Rebeca Domínguez-Santos
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia and Spanish Research Council, 46980 Paterna, Spain
| | - Jesús Marín-Miret
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia and Spanish Research Council, 46980 Paterna, Spain
| | - Rosario Gil
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia and Spanish Research Council, 46980 Paterna, Spain
- Genomic and Health Area, Foundation for the Promotion of Sanitary and Biomedical Research of the Valencia Region, 46020 Valencia, Spain
| | - Amparo Latorre
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia and Spanish Research Council, 46980 Paterna, Spain
- Genomic and Health Area, Foundation for the Promotion of Sanitary and Biomedical Research of the Valencia Region, 46020 Valencia, Spain
| | - Carlos García-Ferris
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia and Spanish Research Council, 46980 Paterna, Spain
- Genomic and Health Area, Foundation for the Promotion of Sanitary and Biomedical Research of the Valencia Region, 46020 Valencia, Spain
- Department of Biochemistry and Molecular Biology, University of Valencia, 46100 Burjassot, Spain
| |
Collapse
|
6
|
Arora J, Buček A, Hellemans S, Beránková T, Arias JR, Fisher BL, Clitheroe C, Brune A, Kinjo Y, Šobotník J, Bourguignon T. Evidence of cospeciation between termites and their gut bacteria on a geological time scale. Proc Biol Sci 2023; 290:20230619. [PMID: 37339742 DOI: 10.1098/rspb.2023.0619] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/24/2023] [Indexed: 06/22/2023] Open
Abstract
Termites host diverse communities of gut microbes, including many bacterial lineages only found in this habitat. The bacteria endemic to termite guts are transmitted via two routes: a vertical route from parent colonies to daughter colonies and a horizontal route between colonies sometimes belonging to different termite species. The relative importance of both transmission routes in shaping the gut microbiota of termites remains unknown. Using bacterial marker genes derived from the gut metagenomes of 197 termites and one Cryptocercus cockroach, we show that bacteria endemic to termite guts are mostly transferred vertically. We identified 18 lineages of gut bacteria showing cophylogenetic patterns with termites over tens of millions of years. Horizontal transfer rates estimated for 16 bacterial lineages were within the range of those estimated for 15 mitochondrial genes, suggesting that horizontal transfers are uncommon and vertical transfers are the dominant transmission route in these lineages. Some of these associations probably date back more than 150 million years and are an order of magnitude older than the cophylogenetic patterns between mammalian hosts and their gut bacteria. Our results suggest that termites have cospeciated with their gut bacteria since first appearing in the geological record.
Collapse
Affiliation(s)
- Jigyasa Arora
- Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Aleš Buček
- Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
- Faculty of Tropical AgriScience, Czech University of Life Sciences, Kamýcká 129, Suchdol, 165 00, Prague 6, Czech Republic
| | - Simon Hellemans
- Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Tereza Beránková
- Faculty of Tropical AgriScience, Czech University of Life Sciences, Kamýcká 129, Suchdol, 165 00, Prague 6, Czech Republic
| | - Johanna Romero Arias
- Faculty of Tropical AgriScience, Czech University of Life Sciences, Kamýcká 129, Suchdol, 165 00, Prague 6, Czech Republic
| | - Brian L Fisher
- Madagascar Biodiversity Center, Parc Botanique et Zoologique de Tsimbazaza, Antananarivo 101, Madagascar
- California Academy of Sciences, San Francisco, CA, USA
| | - Crystal Clitheroe
- Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Andreas Brune
- Research Group Insect Gut Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, Marburg, 35043, Germany
| | - Yukihiro Kinjo
- Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
- College of Economics and Environmental Policy, Okinawa International University, 2-6-1 Ginowan, Ginowan, 901-2701, Okinawa, Japan
| | - Jan Šobotník
- Faculty of Tropical AgriScience, Czech University of Life Sciences, Kamýcká 129, Suchdol, 165 00, Prague 6, Czech Republic
- College of Economics and Environmental Policy, Okinawa International University, 2-6-1 Ginowan, Ginowan, 901-2701, Okinawa, Japan
| | - Thomas Bourguignon
- Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
- Faculty of Tropical AgriScience, Czech University of Life Sciences, Kamýcká 129, Suchdol, 165 00, Prague 6, Czech Republic
| |
Collapse
|
7
|
Liu JL, Zhang JW, Han W, Wang YS, He SL, Wang ZQ. Advances in the understanding of Blattodea evolution: Insights from phylotranscriptomics and spermathecae. Mol Phylogenet Evol 2023; 182:107753. [PMID: 36898488 DOI: 10.1016/j.ympev.2023.107753] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/03/2023] [Accepted: 03/03/2023] [Indexed: 03/12/2023]
Abstract
Cockroaches, an ancient and diverse group of insects on earth that originated in the Carboniferous, displays a wide array of morphology or biology diversity. The spermatheca is an organ of the insect reproductive system; the diversity of spermathecae might be the adaption to different mating and sperm storage strategies. Yet a consensus about the phylogenetic relationships among the main lineages of Blattodea and the evolution of spermatheca has not been reached until now. Here we added the transcriptome data of Anaplectidae for the first time and supplemented other family level groups (such as Blaberidae, Corydiidae) to address the pending issues. Our results showed that Blattoidea was recovered as sister to Corydioidea, which was strongly supported by molecular evidence. In Blattoidea, (Lamproblattidae + Anaplectidae) + (Cryptocercidae + Termitoidae) was strongly supported by our molecular data. In Blaberoidea, Pseudophyllodromiidae and Blaberidae were recovered to be monophyletic, while Blattellidae was found to be paraphyletic with respect to Malaccina. Ectobius sylvestris + Malaccina discoidalis formed the sister group to other Blaberoidea; Blattellidae (except Malaccina discoidalis) + Nyctiboridae was found as the sister of Blaberidae. Corydiidae was recovered to be non-monophyletic due to the embedding of Nocticola sp. Our ASR analysis of spermatheca suggested that primary spermathecae were present in the common ancestor, and it transformed at least six times during the evolutionary history of Blattodea. The evolution of spermatheca could be described as a unidirectional trend: the increased size to accommodate more sperm. Furthermore, major splits within the existing genera of cockroaches occurred in the Upper Paleogene to Neogene. Our study provides strong support for the relationship among three superfamilies and offers some new insights into the phylogeny of cockroaches. Meanwhile, this study also provides basic knowledge on the evolution of spermathecae and reproductive patterns.
Collapse
Affiliation(s)
- Jin-Lin Liu
- Institute of Entomology, College of Plant Protection, Southwest University, Beibei, Chongqing 400715, China
| | - Jia-Wei Zhang
- Institute of Entomology, College of Plant Protection, Southwest University, Beibei, Chongqing 400715, China
| | - Wei Han
- Institute of Entomology, College of Plant Protection, Southwest University, Beibei, Chongqing 400715, China
| | - Yi-Shu Wang
- Institute of Entomology, College of Plant Protection, Southwest University, Beibei, Chongqing 400715, China
| | - Shu-Lin He
- College of Life Sciences, Chongqing Normal University, Shapingba, Chongqing 401331, China
| | - Zong-Qing Wang
- Institute of Entomology, College of Plant Protection, Southwest University, Beibei, Chongqing 400715, China; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China.
| |
Collapse
|
8
|
Jia Y, Xu M, Hu H, Chapman B, Watt C, Buerte B, Han N, Zhu M, Bian H, Li C, Zeng Z. Comparative gene retention analysis in barley, wild emmer, and bread wheat pangenome lines reveals factors affecting gene retention following gene duplication. BMC Biol 2023; 21:25. [PMID: 36747211 PMCID: PMC9903521 DOI: 10.1186/s12915-022-01503-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 12/16/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Gene duplication is a prevalent phenomenon and a major driving force underlying genome evolution. The process leading to the fixation of gene duplicates following duplication is critical to understand how genome evolves but remains fragmentally understood. Most previous studies on gene retention are based on gene duplicate analyses in single reference genome. No population-based comparative gene retention analysis has been performed to date. RESULTS Taking advantage of recently published genomic data in Triticeae, we dissected a divergent homogentisate phytyltransferase (HPT2) lineage caught in the middle stage of gene fixation following duplication. The presence/absence of HPT2 in barley (diploid), wild emmer (tetraploid), and bread wheat (hexaploid) pangenome lines appears to be associated with gene dosage constraint and environmental adaption. Based on these observations, we adopted a phylogeny-based orthology inference approach and performed comparative gene retention analyses across barley, wild emmer, and bread wheat. This led to the identification of 326 HPT2-pattern-like genes at whole genome scale, representing a pool of gene duplicates in the middle stage of gene fixation. Majority of these HPT2-pattern-like genes were identified as small-scale duplicates, such as dispersed, tandem, and proximal duplications. Natural selection analyses showed that HPT2-pattern-like genes have experienced relaxed selection pressure, which is generally accompanied with partial positive selection and transcriptional divergence. Functional enrichment analyses showed that HPT2-pattern-like genes are over-represented with molecular-binding and defense response functions, supporting the potential role of environmental adaption during gene retention. We also observed that gene duplicates from larger gene family are more likely to be lost, implying a gene dosage constraint effect. Further comparative gene retention analysis in barley and bread wheat pangenome lines revealed combined effects of species-specific selection and gene dosage constraint. CONCLUSIONS Comparative gene retention analyses at the population level support gene dosage constraint, environmental adaption, and species-specific selection as three factors that may affect gene retention following gene duplication. Our findings shed light on the evolutionary process leading to the retention of newly formed gene duplicates and will greatly improve our understanding on genome evolution via duplication.
Collapse
Affiliation(s)
- Yong Jia
- grid.1025.60000 0004 0436 6763Western Crop Genetic Alliance, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, WA 6150 Australia ,grid.1025.60000 0004 0436 6763Western Australian State Agricultural Biotechnology Centre, Murdoch University, 90 South Street, Murdoch, WA 6150 Australia
| | - Mingrui Xu
- grid.410595.c0000 0001 2230 9154College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121 China
| | - Haifei Hu
- grid.1025.60000 0004 0436 6763Western Crop Genetic Alliance, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, WA 6150 Australia ,grid.1025.60000 0004 0436 6763Western Australian State Agricultural Biotechnology Centre, Murdoch University, 90 South Street, Murdoch, WA 6150 Australia
| | - Brett Chapman
- grid.1025.60000 0004 0436 6763Western Crop Genetic Alliance, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, WA 6150 Australia ,grid.1025.60000 0004 0436 6763Western Australian State Agricultural Biotechnology Centre, Murdoch University, 90 South Street, Murdoch, WA 6150 Australia
| | - Calum Watt
- grid.1025.60000 0004 0436 6763Western Australian State Agricultural Biotechnology Centre, Murdoch University, 90 South Street, Murdoch, WA 6150 Australia ,grid.516230.30000 0005 0233 6218Intergrain Pty Ltd, Bibra Lake, WA 6163 Australia
| | - B. Buerte
- grid.13402.340000 0004 1759 700XInstitute of Genetic and Regenerative Biology, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou, 310058 China
| | - Ning Han
- grid.13402.340000 0004 1759 700XInstitute of Genetic and Regenerative Biology, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou, 310058 China
| | - Muyuan Zhu
- grid.13402.340000 0004 1759 700XInstitute of Genetic and Regenerative Biology, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou, 310058 China
| | - Hongwu Bian
- Institute of Genetic and Regenerative Biology, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Chengdao Li
- Western Crop Genetic Alliance, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, WA, 6150, Australia. .,Western Australian State Agricultural Biotechnology Centre, Murdoch University, 90 South Street, Murdoch, WA, 6150, Australia. .,Department of Primary Industries and Regional Development, 3-Baron-Hay Court, South Perth, WA, 6151, Australia.
| | - Zhanghui Zeng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China. .,Institute of Genetic and Regenerative Biology, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China. .,Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou, 311121, China.
| |
Collapse
|
9
|
Alarcón ME, Polo PG, Akyüz SN, Rafiqi AM. Evolution and ontogeny of bacteriocytes in insects. Front Physiol 2022; 13:1034066. [PMID: 36505058 PMCID: PMC9732443 DOI: 10.3389/fphys.2022.1034066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/11/2022] [Indexed: 11/26/2022] Open
Abstract
The ontogenetic origins of the bacteriocytes, which are cells that harbour bacterial intracellular endosymbionts in multicellular animals, are unknown. During embryonic development, a series of morphological and transcriptional changes determine the fate of distinct cell types. The ontogeny of bacteriocytes is intimately linked with the evolutionary transition of endosymbionts from an extracellular to an intracellular environment, which in turn is linked to the diet of the host insect. Here we review the evolution and development of bacteriocytes in insects. We first classify the endosymbiotic occupants of bacteriocytes, highlighting the complex challenges they pose to the host. Then, we recall the historical account of the discovery of bacteriocytes. We then summarize the molecular interactions between the endosymbiont and the host. In addition, we illustrate the genetic contexts in which the bacteriocytes develop, with examples of the genetic changes in the hosts and endosymbionts, during specific endosymbiotic associations. We finally address the evolutionary origin as well as the putative ontogenetic or developmental source of bacteriocytes in insects.
Collapse
|
10
|
Coevolution of Metabolic Pathways in Blattodea and Their Blattabacterium Endosymbionts, and Comparisons with Other Insect-Bacteria Symbioses. Microbiol Spectr 2022; 10:e0277922. [PMID: 36094208 PMCID: PMC9603385 DOI: 10.1128/spectrum.02779-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Many insects harbor bacterial endosymbionts that supply essential nutrients and enable their hosts to thrive on a nutritionally unbalanced diet. Comparisons of the genomes of endosymbionts and their insect hosts have revealed multiple cases of mutually-dependent metabolic pathways that require enzymes encoded in 2 genomes. Complementation of metabolic reactions at the pathway level has been described for hosts feeding on unbalanced diets, such as plant sap. However, the level of collaboration between symbionts and hosts that feed on more variable diets is largely unknown. In this study, we investigated amino acid and vitamin/cofactor biosynthetic pathways in Blattodea, which comprises cockroaches and termites, and their obligate endosymbiont Blattabacterium cuenoti (hereafter Blattabacterium). In contrast to other obligate symbiotic systems, we found no clear evidence of "collaborative pathways" for amino acid biosynthesis in the genomes of these taxa, with the exception of collaborative arginine biosynthesis in 2 taxa, Cryptocercus punctulatus and Mastotermes darwiniensis. Nevertheless, we found that several gaps specific to Blattabacterium in the folate biosynthetic pathway are likely to be complemented by their host. Comparisons with other insects revealed that, with the exception of the arginine biosynthetic pathway, collaborative pathways for essential amino acids are only observed in phloem-sap feeders. These results suggest that the host diet is an important driving factor of metabolic pathway evolution in obligate symbiotic systems. IMPORTANCE The long-term coevolution between insects and their obligate endosymbionts is accompanied by increasing levels of genome integration, sometimes to the point that metabolic pathways require enzymes encoded in two genomes, which we refer to as "collaborative pathways". To date, collaborative pathways have only been reported from sap-feeding insects. Here, we examined metabolic interactions between cockroaches, a group of detritivorous insects, and their obligate endosymbiont, Blattabacterium, and only found evidence of collaborative pathways for arginine biosynthesis. The rarity of collaborative pathways in cockroaches and Blattabacterium contrasts with their prevalence in insect hosts feeding on phloem-sap. Our results suggest that host diet is a factor affecting metabolic integration in obligate symbiotic systems.
Collapse
|
11
|
Vasquez YM, Bennett GM. A complex interplay of evolutionary forces continues to shape ancient co-occurring symbiont genomes. iScience 2022; 25:104786. [PMID: 35982793 PMCID: PMC9379567 DOI: 10.1016/j.isci.2022.104786] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 06/03/2022] [Accepted: 07/13/2022] [Indexed: 01/03/2023] Open
Abstract
Many insects depend on ancient associations with intracellular bacteria for essential nutrition. The genomes of these bacteria are often highly reduced. Although drift is a major driver of symbiont evolution, other evolutionary forces continue to influence them. To understand how ongoing molecular evolution and gene loss shape symbiont genomes, we sequenced two of the most ancient symbionts known, Sulcia and Nasuia, from 20 Hawaiian Nesophrosyne leafhoppers. We leveraged the parallel divergence of Nesophrosyne lineages throughout Hawaii as a natural experimental framework. Sulcia and Nasuia experience ongoing-but divergent-gene loss, often in a convergent fashion. Although some genes are under relaxed selection, purifying and positive selection are also important drivers of genome evolution, particularly in maintaining certain nutritional and cellular functions. Our results further demonstrate that symbionts experience dramatically different evolutionary environments, as evidenced by the finding that Sulcia and Nasuia have one of the slowest and fastest rates of molecular evolution known.
Collapse
Affiliation(s)
- Yumary M. Vasquez
- Department of Life and Environmental Sciences, University of California, Merced, CA, USA
| | - Gordon M. Bennett
- Department of Life and Environmental Sciences, University of California, Merced, CA, USA
| |
Collapse
|
12
|
Manthey JD, Girón JC, Hruska JP. Impact of host demography and evolutionary history on endosymbiont molecular evolution: A test in carpenter ants (genus Camponotus) and their Blochmannia endosymbionts. Ecol Evol 2022; 12:e9026. [PMID: 35795355 PMCID: PMC9251289 DOI: 10.1002/ece3.9026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 11/28/2022] Open
Abstract
Obligate endosymbioses are tight associations between symbionts and the hosts they live inside. Hosts and their associated obligate endosymbionts generally exhibit codiversification, which has been documented in taxonomically diverse insect lineages. Host demography (e.g., effective population sizes) may impact the demography of endosymbionts, which may lead to an association between host demography and the patterns and processes of endosymbiont molecular evolution. Here, we used whole-genome sequencing data for carpenter ants (Genus Camponotus; subgenera Camponotus and Tanaemyrmex) and their Blochmannia endosymbionts as our study system to address whether Camponotus demography shapes Blochmannia molecular evolution. Using whole-genome phylogenomics, we confirmed previous work identifying codiversification between carpenter ants and their Blochmannia endosymbionts. We found that Blochmannia genes have evolved at a pace ~30× faster than that of their hosts' molecular evolution and that these rates are positively associated with host rates of molecular evolution. Using multiple tests for selection in Blochmannia genes, we found signatures of positive selection and shifts in selection strength across the phylogeny. Host demography was associated with Blochmannia shifts toward increased selection strengths, but not associated with Blochmannia selection relaxation, positive selection, genetic drift rates, or genome size evolution. Mixed support for relationships between host effective population sizes and Blochmannia molecular evolution suggests weak or uncoupled relationships between host demography and Blochmannia population genomic processes. Finally, we found that Blochmannia genome size evolution was associated with genome-wide estimates of genetic drift and number of genes with relaxed selection pressures.
Collapse
Affiliation(s)
- Joseph D. Manthey
- Department of Biological SciencesTexas Tech UniversityLubbockTexasUSA
| | - Jennifer C. Girón
- Department of EntomologyPurdue UniversityWest LafayetteIndianaUSA
- Natural Science Research LaboratoryMuseum of Texas Tech UniversityLubbockTexasUSA
| | - Jack P. Hruska
- Department of Biological SciencesTexas Tech UniversityLubbockTexasUSA
| |
Collapse
|
13
|
Of Cockroaches and Symbionts: Recent Advances in the Characterization of the Relationship between Blattella germanica and Its Dual Symbiotic System. Life (Basel) 2022; 12:life12020290. [PMID: 35207577 PMCID: PMC8878154 DOI: 10.3390/life12020290] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 12/17/2022] Open
Abstract
Mutualistic stable symbioses are widespread in all groups of eukaryotes, especially in insects, where symbionts have played an essential role in their evolution. Many insects live in obligate relationship with different ecto- and endosymbiotic bacteria, which are needed to maintain their hosts’ fitness in their natural environment, to the point of even relying on them for survival. The case of cockroaches (Blattodea) is paradigmatic, as both symbiotic systems coexist in the same organism in two separated compartments: an intracellular endosymbiont (Blattabacterium) inside bacteriocytes located in the fat body, and a rich and complex microbiota in the hindgut. The German cockroach Blattella germanica is a good model for the study of symbiotic interactions, as it can be maintained in the laboratory in controlled populations, allowing the perturbations of the two symbiotic systems in order to study the communication and integration of the tripartite organization of the host–endosymbiont–microbiota, and to evaluate the role of symbiotic antimicrobial peptides (AMPs) in host control over their symbionts. The importance of cockroaches as reservoirs and transmission vectors of antibiotic resistance sequences, and their putative interest to search for AMPs to deal with the problem, is also discussed.
Collapse
|
14
|
Lee IPA, Eldakar OT, Gogarten JP, Andam CP. Bacterial cooperation through horizontal gene transfer. Trends Ecol Evol 2021; 37:223-232. [PMID: 34815098 DOI: 10.1016/j.tree.2021.11.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/27/2021] [Accepted: 11/01/2021] [Indexed: 11/16/2022]
Abstract
Cooperation exists across all scales of biological organization, from genetic elements to complex human societies. Bacteria cooperate by secreting molecules that benefit all individuals in the population (i.e., public goods). Genes associated with cooperation can spread among strains through horizontal gene transfer (HGT). We discuss recent findings on how HGT mediated by mobile genetic elements promotes bacterial cooperation, how cooperation in turn can facilitate more frequent HGT, and how the act of HGT itself may be considered as a form of cooperation. We propose that HGT is an important enforcement mechanism in bacterial populations, thus creating a positive feedback loop that further maintains cooperation. To enforce cooperation, HGT serves as a homogenizing force by transferring the cooperative trait, effectively eliminating cheaters.
Collapse
Affiliation(s)
- Isaiah Paolo A Lee
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Omar Tonsi Eldakar
- Department of Biological Sciences, Nova Southeastern University, Fort Lauderdale, FL 33314, USA
| | - J Peter Gogarten
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA.
| | - Cheryl P Andam
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12222, USA.
| |
Collapse
|