1
|
Zou H, Huang X, Xiao W, He H, Liu S, Zeng H. Recent advancements in bacterial anti-phage strategies and the underlying mechanisms altering susceptibility to antibiotics. Microbiol Res 2025; 295:128107. [PMID: 40023108 DOI: 10.1016/j.micres.2025.128107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/12/2025] [Accepted: 02/16/2025] [Indexed: 03/04/2025]
Abstract
The rapid spread of multidrug-resistant bacteria and the challenges in developing new antibiotics have brought renewed international attention to phage therapy. However, in bacteria-phage co-evolution, the rapid development of bacterial resistance to phage has limited its clinical application. This review consolidates the latest advancements in research on anti-phage mechanisms, encompassing strategies such as systems associated with reduced nicotinamide adenine dinucleotide (NAD+) to halt the propagation of the phage, symbiotic bacteria episymbiont-mediated modulation of gene expression in host bacteria to resist phage infection, and defence-related reverse transcriptase (DRT) encoded by bacteria to curb phage infections. We conduct an in-depth analysis of the underlying mechanisms by which bacteria undergo alterations in antibiotic susceptibility after developing phage resistance. We also discuss the remaining challenges and promising directions for phage-based therapy in the future.
Collapse
Affiliation(s)
- Huanhuan Zou
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiaoyi Huang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Wenyue Xiao
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Haoxuan He
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Shenshen Liu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Haiyan Zeng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
2
|
Li M, Li L, Zhang X, Yuan Q, Bao B, Tang Y. A Conjugated Oligomer with Drug Efflux Pump Inhibition and Photodynamic Therapy for Synergistically Combating Resistant Bacteria. ACS APPLIED MATERIALS & INTERFACES 2025; 17:4675-4688. [PMID: 39787568 DOI: 10.1021/acsami.4c20278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
High expression of drug efflux pump makes antibiotics ineffective against bacteria, leading to drug-resistant strains and even the emergence of "superbugs". Herein, we design and synthesize a dual functional o-nitrobenzene (NB)-modified conjugated oligo-polyfluorene vinylene (OPFV) photosensitizer, OPFV-NB, which can depress efflux pump activity and also possesses photodynamic therapy (PDT) for synergistically overcoming drug-resistant bacteria. Upon light irradiation, the OPFV-NB can produce aldehyde active groups to covalently bind outer membrane proteins, such as tolerant colicin (TolC), blocking drug efflux of bacteria. The minimum inhibitory concentration of antibiotic model chloramphenicol (CHL) is reduced about 64 times, significantly resensitizing drug-resistant bacteria to antibiotics. Also, the probe can produce highly efficient reactive oxygen species (ROS) under light irradiation. Consequently, the unimolecular OPFV-NB-based system demonstrates insusceptibility to antibiotic resistance while maintaining significant antimicrobial effects (100%) against drug-resistant bacteria. More importantly, in vivo assays corroborate that the combined system greatly accelerates wound healing by eradicating the bacterial population, dampening inflammation, and promoting angiogenesis. Overall, the OPFV-NB not only counteracts antibiotic resistance but also holds tremendous PDT efficiency, which provides a promising therapeutic strategy for combating drug-resistant bacteria and treating bacteria-infected wounds.
Collapse
Affiliation(s)
- Meiqi Li
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Ling Li
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Xinyi Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Qiong Yuan
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Benkai Bao
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Yanli Tang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Normal University, Xi'an 710119, P. R. China
| |
Collapse
|
3
|
Kavanaugh LG, Dey D, Shafer WM, Conn GL. Structural and functional diversity of Resistance-Nodulation-Division (RND) efflux pump transporters with implications for antimicrobial resistance. Microbiol Mol Biol Rev 2024; 88:e0008923. [PMID: 39235227 PMCID: PMC11426026 DOI: 10.1128/mmbr.00089-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024] Open
Abstract
SUMMARYThe discovery of bacterial efflux pumps significantly advanced our understanding of how bacteria can resist cytotoxic compounds that they encounter. Within the structurally and functionally distinct families of efflux pumps, those of the Resistance-Nodulation-Division (RND) superfamily are noteworthy for their ability to reduce the intracellular concentration of structurally diverse antimicrobials. RND systems are possessed by many Gram-negative bacteria, including those causing serious human disease, and frequently contribute to resistance to multiple antibiotics. Herein, we review the current literature on the structure-function relationships of representative transporter proteins of tripartite RND efflux pumps of clinically important pathogens. We emphasize their contribution to bacterial resistance to clinically used antibiotics, host defense antimicrobials and other biocides, as well as highlighting structural similarities and differences among efflux transporters that help bacteria survive in the face of antimicrobials. Furthermore, we discuss technical advances that have facilitated and advanced efflux pump research and suggest future areas of investigation that will advance antimicrobial development efforts.
Collapse
Affiliation(s)
- Logan G Kavanaugh
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
- Graduate Program in Microbiology and Molecular Genetics, Emory University, Atlanta, Georgia, USA
| | - Debayan Dey
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | - William M Shafer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
- Laboratories of Microbial Pathogenesis, VA Medical Research Service, Veterans Affairs Medical Center, Decatur, Georgia, USA
- Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Graeme L Conn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
4
|
Kantarcioglu I, Gaszek IK, Guclu TF, Yildiz MS, Atilgan AR, Toprak E, Atilgan C. Structural shifts in TolC facilitate Efflux-Mediated β-lactam resistance. Commun Biol 2024; 7:1051. [PMID: 39187619 PMCID: PMC11347637 DOI: 10.1038/s42003-024-06750-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/16/2024] [Indexed: 08/28/2024] Open
Abstract
Efflux-mediated β-lactam resistance is a major public health concern, reducing the effectiveness of β-lactam antibiotics against many bacteria. Structural analyses show the efflux protein TolC in Gram-negative bacteria acts as a channel for antibiotics, impacting bacterial susceptibility and virulence. This study examines β-lactam drug efflux mediated by TolC using experimental and computational methods. Molecular dynamics simulations of drug-free TolC reveal essential movements and key residues involved in TolC opening. A whole-gene-saturation mutagenesis assay, mutating each TolC residue and measuring fitness effects under β-lactam selection, is performed. Here we show the TolC-mediated efflux of three antibiotics: oxacillin, piperacillin, and carbenicillin. Steered molecular dynamics simulations identify general and drug-specific efflux mechanisms, revealing key positions at TolC's periplasmic entry affecting efflux motions. Our findings provide insights into TolC's structural dynamics, aiding the design of new antibiotics to overcome bacterial efflux mechanisms.
Collapse
Affiliation(s)
- Isik Kantarcioglu
- Faculty of Engineering and Natural Sciences, Sabancı University, Tuzla, Istanbul, Turkey
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ilona K Gaszek
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Tandac F Guclu
- Faculty of Engineering and Natural Sciences, Sabancı University, Tuzla, Istanbul, Turkey
| | - M Sadik Yildiz
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ali Rana Atilgan
- Faculty of Engineering and Natural Sciences, Sabancı University, Tuzla, Istanbul, Turkey
| | - Erdal Toprak
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Canan Atilgan
- Faculty of Engineering and Natural Sciences, Sabancı University, Tuzla, Istanbul, Turkey.
| |
Collapse
|
5
|
Tajer L, Paillart JC, Dib H, Sabatier JM, Fajloun Z, Abi Khattar Z. Molecular Mechanisms of Bacterial Resistance to Antimicrobial Peptides in the Modern Era: An Updated Review. Microorganisms 2024; 12:1259. [PMID: 39065030 PMCID: PMC11279074 DOI: 10.3390/microorganisms12071259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/10/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
Antimicrobial resistance (AMR) poses a serious global health concern, resulting in a significant number of deaths annually due to infections that are resistant to treatment. Amidst this crisis, antimicrobial peptides (AMPs) have emerged as promising alternatives to conventional antibiotics (ATBs). These cationic peptides, naturally produced by all kingdoms of life, play a crucial role in the innate immune system of multicellular organisms and in bacterial interspecies competition by exhibiting broad-spectrum activity against bacteria, fungi, viruses, and parasites. AMPs target bacterial pathogens through multiple mechanisms, most importantly by disrupting their membranes, leading to cell lysis. However, bacterial resistance to host AMPs has emerged due to a slow co-evolutionary process between microorganisms and their hosts. Alarmingly, the development of resistance to last-resort AMPs in the treatment of MDR infections, such as colistin, is attributed to the misuse of this peptide and the high rate of horizontal genetic transfer of the corresponding resistance genes. AMP-resistant bacteria employ diverse mechanisms, including but not limited to proteolytic degradation, extracellular trapping and inactivation, active efflux, as well as complex modifications in bacterial cell wall and membrane structures. This review comprehensively examines all constitutive and inducible molecular resistance mechanisms to AMPs supported by experimental evidence described to date in bacterial pathogens. We also explore the specificity of these mechanisms toward structurally diverse AMPs to broaden and enhance their potential in developing and applying them as therapeutics for MDR bacteria. Additionally, we provide insights into the significance of AMP resistance within the context of host-pathogen interactions.
Collapse
Affiliation(s)
- Layla Tajer
- Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and Its Applications, Department of Cell Culture, EDST, Lebanese University, Tripoli 1300, Lebanon; (L.T.); (Z.F.)
| | - Jean-Christophe Paillart
- CNRS, Architecture et Réactivité de l’ARN, UPR 9002, Université de Strasbourg, 2 Allée Konrad Roentgen, F-67000 Strasbourg, France;
| | - Hanna Dib
- College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait;
| | - Jean-Marc Sabatier
- CNRS, INP, Inst Neurophysiopathol, Aix-Marseille Université, 13385 Marseille, France
| | - Ziad Fajloun
- Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and Its Applications, Department of Cell Culture, EDST, Lebanese University, Tripoli 1300, Lebanon; (L.T.); (Z.F.)
- Department of Biology, Faculty of Sciences 3, Lebanese University, Campus Michel Slayman Ras Maska, Tripoli 1352, Lebanon
| | - Ziad Abi Khattar
- Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, P.O. Box 100, Tripoli, Lebanon
| |
Collapse
|
6
|
Kraus S, Fletcher ML, Łapińska U, Chawla K, Baker E, Attrill EL, O'Neill P, Farbos A, Jeffries A, Galyov EE, Korbsrisate S, Barnes KB, Harding SV, Tsaneva-Atanasova K, Blaskovich MAT, Pagliara S. Phage-induced efflux down-regulation boosts antibiotic efficacy. PLoS Pathog 2024; 20:e1012361. [PMID: 38941361 PMCID: PMC11239113 DOI: 10.1371/journal.ppat.1012361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 07/11/2024] [Accepted: 06/21/2024] [Indexed: 06/30/2024] Open
Abstract
The interactions between a virus and its host vary in space and time and are affected by the presence of molecules that alter the physiology of either the host or the virus. Determining the molecular mechanisms at the basis of these interactions is paramount for predicting the fate of bacterial and phage populations and for designing rational phage-antibiotic therapies. We study the interactions between stationary phase Burkholderia thailandensis and the phage ΦBp-AMP1. Although heterogeneous genetic resistance to phage rapidly emerges in B. thailandensis, the presence of phage enhances the efficacy of three major antibiotic classes, the quinolones, the beta-lactams and the tetracyclines, but antagonizes tetrahydrofolate synthesis inhibitors. We discovered that enhanced antibiotic efficacy is facilitated by reduced antibiotic efflux in the presence of phage. This new phage-antibiotic therapy allows for eradication of stationary phase bacteria, whilst requiring reduced antibiotic concentrations, which is crucial for treating infections in sites where it is difficult to achieve high antibiotic concentrations.
Collapse
Affiliation(s)
- Samuel Kraus
- Living Systems Institute and Biosciences, University of Exeter, Exeter, Devon, United Kingdom
| | - Megan L Fletcher
- Living Systems Institute and Biosciences, University of Exeter, Exeter, Devon, United Kingdom
| | - Urszula Łapińska
- Living Systems Institute and Biosciences, University of Exeter, Exeter, Devon, United Kingdom
| | - Krina Chawla
- Living Systems Institute and Biosciences, University of Exeter, Exeter, Devon, United Kingdom
| | - Evan Baker
- Department of Mathematics and Living Systems Institute, University of Exeter, Exeter, Devon, United Kingdom
- EPSRC Hub for Quantitative Modelling in Healthcare, University of Exeter, Exeter, United Kingdom
| | - Erin L Attrill
- Living Systems Institute and Biosciences, University of Exeter, Exeter, Devon, United Kingdom
| | - Paul O'Neill
- Biosciences, University of Exeter, Exeter, Devon, EX4 4QD, United Kingdom
| | - Audrey Farbos
- Biosciences, University of Exeter, Exeter, Devon, EX4 4QD, United Kingdom
| | - Aaron Jeffries
- Biosciences, University of Exeter, Exeter, Devon, EX4 4QD, United Kingdom
| | - Edouard E Galyov
- Department of Genetics and Genome Biology, University of Leicester, University Road, Leicester, United Kingdom
| | - Sunee Korbsrisate
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok Thailand
| | - Kay B Barnes
- Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire, United Kingdom
| | - Sarah V Harding
- Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire, United Kingdom
| | - Krasimira Tsaneva-Atanasova
- Department of Mathematics and Living Systems Institute, University of Exeter, Exeter, Devon, United Kingdom
- EPSRC Hub for Quantitative Modelling in Healthcare, University of Exeter, Exeter, United Kingdom
| | - Mark A T Blaskovich
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| | - Stefano Pagliara
- Living Systems Institute and Biosciences, University of Exeter, Exeter, Devon, United Kingdom
| |
Collapse
|
7
|
Vermeersch AS, Ali M, Gansemans Y, Van Nieuwerburgh F, Ducatelle R, Geldhof P, Deforce D, Callens J, Opsomer G. An in-depth investigation of the microbiota and its virulence factors associated with severe udder cleft dermatitis lesions. J Dairy Sci 2024; 107:3219-3234. [PMID: 38135052 DOI: 10.3168/jds.2023-24180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023]
Abstract
Udder cleft dermatitis (UCD) is a skin condition affecting the anterior parts of the udder in dairy cattle. In the present study, we aimed to shed light on the microbiota in severe UCD lesions versus healthy udder skin by putting forward a taxonomic and functional profile based on a virulence factor analysis. Through shotgun metagenomic sequencing, we found a high proportion of bacteria in addition to a low abundance of archaea. A distinct clustering of healthy udder skin versus UCD lesion samples was shown by applying principal component analysis and (sparse) partial least squares analysis on the metagenomic data. Proteobacteria, Bacillota, and Actinomycetota were among the most abundant phyla in healthy udder skin samples. In UCD samples, Bacteroidota was the most abundant phylum. At genus level, Bifidobacterium spp. had the highest relative abundance in healthy skin samples, whereas Porphyromonas spp. and Corynebacterium spp. had the highest relative abundance in UCD samples. In the differential abundance analysis, Porphyromonas spp. and Bacteroides spp. were significantly differentially abundant in UCD samples, whereas Bifidobacterium spp., Staphylococcus sp. AntiMn-1, and Staphylococcus equorum were more commonly found in healthy samples. Moreover, the abundance of several treponeme phylotypes was significantly higher in lesion samples. The streptococcal cysteine protease speB was among the most abundant virulence factors present in severe UCD lesions, while a plethora of virulence factors such as the antitoxin relB were downregulated, possibly contributing to creating the ideal wound climate for the dysbiotic community. Network analysis showed healthy lesion samples had a large network ofpositive, correlations between the abundances of beneficial species such as Aerococcus urinaeequi and Bifidobacterium angulatum, indicating that the healthy skin microbiome forms an active protective bacterial network, which is disrupted in case of UCD. In UCD samples, a smaller microbial network mainly consisting of positive correlations between the abundances of Bacteroides fragilis and anaerobic Bacteroidota was exposed. Moreover, a high correlation between the taxonomic data and virulence factors was revealed, concurrently with 2 separate networks of microbes and virulence factors. One network, matching with the taxonomic findings in the healthy udder skin samples, showcased a community of harmless or beneficial bacteria, such as Bifidobacterium spp. and Butyrivibrio proteoclasticus, associated with hcnB, hcnC, relB, glyoxalase, and cupin 2. The other network, corresponding to UCD samples, consisted of pathogenic or facultative pathogenic and mainly anaerobic bacteria such as Treponema spp., Mycoplasmopsis spp., and bovine gammaherpesvirus 4, that correlated with virulence factors SpvB, fhaB, and haemagglutination activity domain-associated factor. Our results point toward a dysbiotic community with a notable decrease in diversity and evenness, with a loss of normal skin inhabitants and innocuous or useful species making way for predominantly anaerobic, facultative pathogens. The shift in the abundance of virulence factors such as fhaB and SpvB could play a role in the manifestation of a local micro-environment favorable to the microbiome associated with udder skin lesions. Lastly, the presence of specific networks between microbial species, and between microbes and virulence factors was shown.
Collapse
Affiliation(s)
- A S Vermeersch
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium.
| | - M Ali
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| | - Y Gansemans
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| | - F Van Nieuwerburgh
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| | - R Ducatelle
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - P Geldhof
- Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - D Deforce
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| | - J Callens
- Dierengezondheidszorg Vlaanderen, 8820 Torhout, Belgium
| | - G Opsomer
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| |
Collapse
|
8
|
Maes S, Deploey N, Peelman F, Eyckerman S. Deep mutational scanning of proteins in mammalian cells. CELL REPORTS METHODS 2023; 3:100641. [PMID: 37963462 PMCID: PMC10694495 DOI: 10.1016/j.crmeth.2023.100641] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/06/2023] [Accepted: 10/20/2023] [Indexed: 11/16/2023]
Abstract
Protein mutagenesis is essential for unveiling the molecular mechanisms underlying protein function in health, disease, and evolution. In the past decade, deep mutational scanning methods have evolved to support the functional analysis of nearly all possible single-amino acid changes in a protein of interest. While historically these methods were developed in lower organisms such as E. coli and yeast, recent technological advancements have resulted in the increased use of mammalian cells, particularly for studying proteins involved in human disease. These advancements will aid significantly in the classification and interpretation of variants of unknown significance, which are being discovered at large scale due to the current surge in the use of whole-genome sequencing in clinical contexts. Here, we explore the experimental aspects of deep mutational scanning studies in mammalian cells and report the different methods used in each step of the workflow, ultimately providing a useful guide toward the design of such studies.
Collapse
Affiliation(s)
- Stefanie Maes
- VIB Center for Medical Biotechnology (CMB), Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium; Department of Biochemistry and Microbiology, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium
| | - Nick Deploey
- VIB Center for Medical Biotechnology (CMB), Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium
| | - Frank Peelman
- VIB Center for Medical Biotechnology (CMB), Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium
| | - Sven Eyckerman
- VIB Center for Medical Biotechnology (CMB), Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium.
| |
Collapse
|
9
|
Upatissa S, Mun W, Mitchell RJ. Pairing Colicins B and E5 with Bdellovibrio bacteriovorus To Eradicate Carbapenem- and Colistin-Resistant Strains of Escherichia coli. Microbiol Spectr 2023; 11:e0017323. [PMID: 37036359 PMCID: PMC10269710 DOI: 10.1128/spectrum.00173-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/19/2023] [Indexed: 04/11/2023] Open
Abstract
While diverse antibacterials are available in nature, each possesses their own strengths and limitations. One such antibacterial is colicins, proteinaceous toxins that are produced by strains of E. coli to subvert the growth or viability of other E. coli strains. Similarly, predatory bacteria, of which Bdellovibrio bacteriovorus is well-known, are microbes that actively predate on and consume other Gram-negative bacterial strains. While they are all quite active as antibacterials, they also present some limitations: rapid resistance development to colicins while predation does not completely kill their prey. Within this study, therefore, we evaluated the impact of two different colicins (colicin B [ColB] and colicin E5 [ColE5]) and B. bacteriovorus HD100 either individually or together against four clinical isolates of E. coli that are resistant to either colistin or carbapenem. While the ColB and ColE5 were quickly active when used alone, causing a significant loss in viability (>3-log) in susceptible populations after only 3 h, the pathogens always grew afterwards and had final cell densities that were similar with their respective controls. Predation with B. bacteriovorus HD100, in contrast, was most pronounced after 24 h (>3-log reduction in each pathogen viability but never complete). When combined, better killing efficiencies were observed with several of the pathogens, with complete eradication realized for two (<100 viable pathogens per mL). Given the diversity of colicins in nature and the broad-spectrum activities of B. bacteriovorus strains, the results presented here suggest there is a massive potential to control pathogens when they are used together. IMPORTANCE The coupled impact of drug resistance with reduced antibiotic development has placed humankind at a postantibiotic crossroads where antibiotic alternatives are desperately needed. Consequently, we discuss here the combined effectiveness of two vastly different classes of antibacterials, namely, colicins and a predatory bacterium (i.e.,Bdellovibrio bacteriovorus HD100), against two priority pathogenic groups, colistin- and carbapenem-resistant strains of E. coli. While each is effective in its own manner, these antibacterials also display limitations, i.e., the rapid appearance of mutations that confer resistance to the colicins while predatory bacteria do not completely kill their prey. Here, we show these limitations can be overcome using combined treatments of these antibacterials, with two pathogenic E. coli populations completely eradicated within 24 h. Given the diversity of colicins and the broad-spectrum activities of B. bacteriovorus strains, the results presented here suggests there is a massive potential to control pathogens when they are used together.
Collapse
Affiliation(s)
- Sumudu Upatissa
- School of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
| | - Wonsik Mun
- School of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
| | - Robert J. Mitchell
- School of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
| |
Collapse
|
10
|
Burmeister AR, Tzintzun-Tapia E, Roush C, Mangal I, Barahman R, Bjornson RD, Turner PE. Experimental Evolution of the TolC-Receptor Phage U136B Functionally Identifies a Tail Fiber Protein Involved in Adsorption through Strong Parallel Adaptation. Appl Environ Microbiol 2023:e0007923. [PMID: 37191555 DOI: 10.1128/aem.00079-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
Abstract
Bacteriophages have received recent attention for their therapeutic potential to treat antibiotic-resistant bacterial infections. One particular idea in phage therapy is to use phages that not only directly kill their bacterial hosts but also rely on particular bacterial receptors, such as proteins involved in virulence or antibiotic resistance. In such cases, the evolution of phage resistance would correspond to the loss of those receptors, an approach termed evolutionary steering. We previously found that during experimental evolution, phage U136B can exert selection pressure on Escherichia coli to lose or modify its receptor, the antibiotic efflux protein TolC, often resulting in reduced antibiotic resistance. However, for TolC-reliant phages like U136B to be used therapeutically, we also need to study their own evolutionary potential. Understanding phage evolution is critical for the development of improved phage therapies as well as the tracking of phage populations during infection. Here, we characterized phage U136B evolution in 10 replicate experimental populations. We quantified phage dynamics that resulted in five surviving phage populations at the end of the 10-day experiment. We found that phages from all five surviving populations had evolved higher rates of adsorption on either ancestral or coevolved E. coli hosts. Using whole-genome and whole-population sequencing, we established that these higher rates of adsorption were associated with parallel molecular evolution in phage tail protein genes. These findings will be useful in future studies to predict how key phage genotypes and phenotypes influence phage efficacy and survival despite the evolution of host resistance. IMPORTANCE Antibiotic resistance is a persistent problem in health care and a factor that may help maintain bacterial diversity in natural environments. Bacteriophages ("phages") are viruses that specifically infect bacteria. We previously discovered and characterized a phage called U136B, which infects bacteria through TolC. TolC is an antibiotic resistance protein that helps bacteria pump antibiotics out of the cell. Over short timescales, phage U136B can be used to evolutionarily "steer" bacterial populations to lose or modify the TolC protein, sometimes reducing antibiotic resistance. In this study, we investigate whether U136B itself evolves to better infect bacterial cells. We discovered that the phage can readily evolve specific mutations that increase its infection rate. This work will be useful for understanding how phages can be used to treat bacterial infections.
Collapse
Affiliation(s)
- Alita R Burmeister
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA
- BEACON Center for the Study of Evolution in Action, East Lansing, Michigan, USA
- Department of Biological Sciences, University of Wisconsin Milwaukee, Milwaukee, Wisconsin, USA
| | - Eddy Tzintzun-Tapia
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA
- BEACON Center for the Study of Evolution in Action, East Lansing, Michigan, USA
| | - Carli Roush
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA
- BEACON Center for the Study of Evolution in Action, East Lansing, Michigan, USA
| | - Ivan Mangal
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA
- BEACON Center for the Study of Evolution in Action, East Lansing, Michigan, USA
| | - Roxanna Barahman
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA
- BEACON Center for the Study of Evolution in Action, East Lansing, Michigan, USA
| | | | - Paul E Turner
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA
- BEACON Center for the Study of Evolution in Action, East Lansing, Michigan, USA
- Microbiology Program, Yale School of Medicine, New Haven, Connecticut, USA
- Center for Phage Biology and Therapy, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
11
|
Phage resistance-mediated trade-offs with antibiotic resistance in Salmonella Typhimurium. Microb Pathog 2022; 171:105732. [PMID: 36002113 DOI: 10.1016/j.micpath.2022.105732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/20/2022] [Accepted: 08/16/2022] [Indexed: 11/24/2022]
Abstract
This study was designed to evaluate the trade-offs between phage resistance and antibiotic resistance of Salmonella Typhimurium (STKCCM) exposed to bacteriophage PBST10 and antibiotics (ampicillin and ciprofloxacin). STKCCM was serially exposed to control (no PBST10/antibiotic added), phage alone, ampicillin alone, ampicillin with phage, ciprofloxacin alone, and ciprofloxacin with phage for 8 days at 37 °C. The treated cells were used to evaluate the antibiotic susceptibility, β-lactamase activity, relative fitness, gene expression, and phage-resistance frequency. The antibiotic susceptibility of STKCCM to ampicillin was increased in the presence of phages. The β-lactamase activity was significantly increased in the phage alone and ampicillin with phage. The combination treatments of phages and antibiotics resulted in a greater fitness cost. The efflux pump-associated tolC was suppressed in STKCCM exposed to phage alone. The highest phage-resistance frequencies were observed at phage alone, followed by ampicillin with phage and ciprofloxacin with phage. The tolC-suppressed cells showed the enhanced antibiotic susceptibility. This study provides useful information for designing effective phage-antibiotic combination treatments. The evolutionary trade-offs of phage-resistant bacteria with antibiotic resistance might be good targets for controlling antibiotic-resistant bacteria.
Collapse
|
12
|
Evolutionary Dynamics between Phages and Bacteria as a Possible Approach for Designing Effective Phage Therapies against Antibiotic-Resistant Bacteria. Antibiotics (Basel) 2022; 11:antibiotics11070915. [PMID: 35884169 PMCID: PMC9311878 DOI: 10.3390/antibiotics11070915] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 02/06/2023] Open
Abstract
With the increasing global threat of antibiotic resistance, there is an urgent need to develop new effective therapies to tackle antibiotic-resistant bacterial infections. Bacteriophage therapy is considered as a possible alternative over antibiotics to treat antibiotic-resistant bacteria. However, bacteria can evolve resistance towards bacteriophages through antiphage defense mechanisms, which is a major limitation of phage therapy. The antiphage mechanisms target the phage life cycle, including adsorption, the injection of DNA, synthesis, the assembly of phage particles, and the release of progeny virions. The non-specific bacterial defense mechanisms include adsorption inhibition, superinfection exclusion, restriction-modification, and abortive infection systems. The antiphage defense mechanism includes a clustered regularly interspaced short palindromic repeats (CRISPR)–CRISPR-associated (Cas) system. At the same time, phages can execute a counterstrategy against antiphage defense mechanisms. However, the antibiotic susceptibility and antibiotic resistance in bacteriophage-resistant bacteria still remain unclear in terms of evolutionary trade-offs and trade-ups between phages and bacteria. Since phage resistance has been a major barrier in phage therapy, the trade-offs can be a possible approach to design effective bacteriophage-mediated intervention strategies. Specifically, the trade-offs between phage resistance and antibiotic resistance can be used as therapeutic models for promoting antibiotic susceptibility and reducing virulence traits, known as bacteriophage steering or evolutionary medicine. Therefore, this review highlights the synergistic application of bacteriophages and antibiotics in association with the pleiotropic trade-offs of bacteriophage resistance.
Collapse
|
13
|
Baas-Thomas MS, Oehm SB, Ostrov N, Church GM. Characterization of ColE1 Production for Robust tolC Plate Dual-Selection in E. coli. ACS Synth Biol 2022; 11:2009-2014. [PMID: 35666547 PMCID: PMC9208019 DOI: 10.1021/acssynbio.2c00061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Bacterial selection
is an indispensable tool for E. coli genetic
engineering. Marker genes allow for mutant isolation even
at low editing efficiencies. TolC is an especially
useful E. coli marker: its presence can be selected
for with sodium dodecyl sulfate, while its absence can be selected
for with the bactericidal protein ColE1. However, utilization of this
selection system is greatly limited by the lack of commercially available
ColE1 protein. Here, we provide a simple, plate-based, ColE1 negative-selection
protocol that does not require purification of ColE1. Using agar plates
containing a nonpurified lysate from a ColE1-production strain, we
achieved a stringent negative selection with an escape rate of 10–7. Using this powerful negative-selection assay, we
then performed the scarless deletion of multiple, large genomic loci
(>10 kb), screening only 12 colonies each. We hope this accessible
protocol for ColE1 production will lower the barrier of entry for
any lab that wishes to harness tolC’s dual
selection for genetic engineering.
Collapse
Affiliation(s)
| | - Sebastian B Oehm
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Nili Ostrov
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - George M Church
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, United States.,Wyss Institute for Biologically Inspired Engineering, Boston, Massachusetts 02115, United States
| |
Collapse
|
14
|
MDR Pumps as Crossroads of Resistance: Antibiotics and Bacteriophages. Antibiotics (Basel) 2022; 11:antibiotics11060734. [PMID: 35740141 PMCID: PMC9220107 DOI: 10.3390/antibiotics11060734] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 05/21/2022] [Accepted: 05/26/2022] [Indexed: 01/27/2023] Open
Abstract
At present, antibiotic resistance represents a global problem in modern medicine. In the near future, humanity may face a situation where medicine will be powerless against resistant bacteria and a post-antibiotic era will come. The development of new antibiotics is either very expensive or ineffective due to rapidly developing bacterial resistance. The need to develop alternative approaches to the treatment of bacterial infections, such as phage therapy, is beyond doubt. The cornerstone of bacterial defense against antibiotics are multidrug resistance (MDR) pumps, which are involved in antibiotic resistance, toxin export, biofilm, and persister cell formation. MDR pumps are the primary non-specific defense of bacteria against antibiotics, while drug target modification, drug inactivation, target switching, and target sequestration are the second, specific line of their defense. All bacteria have MDR pumps, and bacteriophages have evolved along with them and use the bacteria’s need for MDR pumps to bind and penetrate into bacterial cells. The study and understanding of the mechanisms of the pumps and their contribution to the overall resistance and to the sensitivity to bacteriophages will allow us to either seriously delay the onset of the post-antibiotic era or even prevent it altogether due to phage-antibiotic synergy.
Collapse
|
15
|
Nazarov PA, Kuznetsova AM, Karakozova MV. Multidrug Resistance Pumps as a Keystone of Bacterial Resistance. MOSCOW UNIVERSITY BIOLOGICAL SCIENCES BULLETIN 2022; 77:193-200. [PMID: 36843647 PMCID: PMC9940100 DOI: 10.3103/s009639252204006x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 10/05/2022] [Accepted: 10/26/2022] [Indexed: 02/22/2023]
Abstract
Antibiotic resistance is a global problem of modern medicine. A harbinger of the onset of the postantibiotic era is the complexity and high cost of developing new antibiotics as well as their inefficiency due to the rapidly developing resistance of bacteria. Multidrug resistance (MDR) pumps, involved in the formation of resistance to xenobiotics, the export of toxins, the maintenance of cellular homeostasis, and the formation of biofilms and persistent cells, are the keystone of bacterial protection against antibiotics. MDR pumps are the basis for the nonspecific protection of bacteria, while modification of the drug target, inactivation of the drug, and switching of the target or sequestration of the target is the second specific line of their protection. Thus, the nonspecific protection of bacteria formed by MDR pumps is a barrier that prevents the penetration of antibacterial substances into the cell, which is the main factor determining the resistance of bacteria. Understanding the mechanisms of MDR pumps and a balanced assessment of their contribution to total resistance, as well as to antibiotic sensitivity, will either seriously delay the onset of the postantibiotic era or prevent its onset in the foreseeable future.
Collapse
Affiliation(s)
- P. A. Nazarov
- grid.14476.300000 0001 2342 9668Belozersky Institute of Physicochemical Biology, Moscow State University, 119234 Moscow, Russia
| | - A. M. Kuznetsova
- grid.14476.300000 0001 2342 9668Department of Biology, Moscow State University, 119234 Moscow, Russia
| | - M. V. Karakozova
- grid.454320.40000 0004 0555 3608Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| |
Collapse
|