1
|
Brown AR, Fox GA, Kaplow IM, Lawler AJ, Phan BN, Gadey L, Wirthlin ME, Ramamurthy E, May GE, Chen Z, Su Q, McManus CJ, van de Weerd R, Pfenning AR. An in vivo systemic massively parallel platform for deciphering animal tissue-specific regulatory function. Front Genet 2025; 16:1533900. [PMID: 40270544 PMCID: PMC12016043 DOI: 10.3389/fgene.2025.1533900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 03/13/2025] [Indexed: 04/25/2025] Open
Abstract
Introduction: Transcriptional regulation is an important process wherein non-protein coding enhancer sequences play a key role in determining cell type identity and phenotypic diversity. In neural tissue, these gene regulatory processes are crucial for coordinating a plethora of interconnected and regionally specialized cell types, ensuring their synchronized activity in generating behavior. Recognizing the intricate interplay of gene regulatory processes in the brain is imperative, as mounting evidence links neurodevelopment and neurological disorders to non-coding genome regions. While genome-wide association studies are swiftly identifying non-coding human disease-associated loci, decoding regulatory mechanisms is challenging due to causal variant ambiguity and their specific tissue impacts. Methods: Massively parallel reporter assays (MPRAs) are widely used in cell culture to study the non-coding enhancer regions, linking genome sequence differences to tissue-specific regulatory function. However, widespread use in animals encounters significant challenges, including insufficient viral library delivery and library quantification, irregular viral transduction rates, and injection site inflammation disrupting gene expression. Here, we introduce a systemic MPRA (sysMPRA) to address these challenges through systemic intravenous AAV viral delivery. Results: We demonstrate successful transduction of the MPRA library into diverse mouse tissues, efficiently identifying tissue specificity in candidate enhancers and aligning well with predictions from machine learning models. We highlight that sysMPRA effectively uncovers regulatory effects stemming from the disruption of MEF2C transcription factor binding sites, single-nucleotide polymorphisms, and the consequences of genetic variations associated with late-onset Alzheimer's disease. Conclusion: SysMPRA is an effective library delivering method that simultaneously determines the transcriptional functions of hundreds of enhancers in vivo across multiple tissues.
Collapse
Affiliation(s)
- Ashley R. Brown
- Ray and Stephanie Lane Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, United States
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Grant A. Fox
- Ray and Stephanie Lane Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, United States
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Irene M. Kaplow
- Ray and Stephanie Lane Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, United States
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, United States
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Alyssa J. Lawler
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, United States
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States
| | - BaDoi N. Phan
- Ray and Stephanie Lane Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, United States
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, United States
- Medical Scientist Training Program, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Lahari Gadey
- Ray and Stephanie Lane Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, United States
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Morgan E. Wirthlin
- Ray and Stephanie Lane Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, United States
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Easwaran Ramamurthy
- Ray and Stephanie Lane Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, United States
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Gemma E. May
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Ziheng Chen
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Qiao Su
- Ray and Stephanie Lane Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, United States
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, United States
| | - C. Joel McManus
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Robert van de Weerd
- Ray and Stephanie Lane Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, United States
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Andreas R. Pfenning
- Ray and Stephanie Lane Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, United States
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, United States
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States
| |
Collapse
|
2
|
Patin E, Quintana-Murci L. Tracing the Evolution of Human Immunity Through Ancient DNA. Annu Rev Immunol 2025; 43:57-82. [PMID: 39705165 DOI: 10.1146/annurev-immunol-082323-024638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2024]
Abstract
Infections have imposed strong selection pressures throughout human evolution, making the study of natural selection's effects on immunity genes highly complementary to disease-focused research. This review discusses how ancient DNA studies, which have revolutionized evolutionary genetics, increase our understanding of the evolution of human immunity. These studies have shown that interbreeding between modern humans and Neanderthals or Denisovans has influenced present-day immune responses, particularly to viruses. Additionally, ancient genomics enables the tracking of how human immunity has evolved across cultural transitions, highlighting strong selection since the Bronze Age in Europe (<4,500 years) and potential genetic adaptations to epidemics raging during the Middle Ages and the European colonization of the Americas. Furthermore, ancient genomic studies suggest that the genetic risk for noninfectious immune disorders has gradually increased over millennia because alleles associated with increased risk for autoimmunity and inflammation once conferred resistance to infections. The challenge now is to extend these findings to diverse, non-European populations and to provide a more global understanding of the evolution of human immunity.
Collapse
Affiliation(s)
- Etienne Patin
- Institut Pasteur, Université Paris Cité, CNRS UMR 2000, Human Evolutionary Genetics Unit, Paris, France;
| | - Lluis Quintana-Murci
- Human Genomics and Evolution, Collège de France, Paris, France
- Institut Pasteur, Université Paris Cité, CNRS UMR 2000, Human Evolutionary Genetics Unit, Paris, France;
| |
Collapse
|
3
|
Ma K, Yang X, Mao Y. Advancing evolutionary medicine with complete primate genomes and advanced biotechnologies. Trends Genet 2025; 41:201-217. [PMID: 39627062 DOI: 10.1016/j.tig.2024.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/03/2024] [Accepted: 11/06/2024] [Indexed: 03/06/2025]
Abstract
Evolutionary medicine, which integrates evolutionary biology and medicine, significantly enhances our understanding of human traits and disease susceptibility. However, previous studies in this field have often focused on single-nucleotide variants due to technological limitations in characterizing complex genomic regions, hindering the comprehensive analyses of their evolutionary origins and clinical significance. In this review, we summarize recent advancements in complete telomere-to-telomere (T2T), primate genomes and other primate resources, and illustrate how these resources facilitate the research of complex regions. We focus on several biomedically relevant regions to examine the relationship between primate genome evolution and human diseases. We also highlight the potentials of high-throughput functional genomic technologies for assessing candidate loci. Finally, we discuss future directions for primate research within the context of evolutionary medicine.
Collapse
Affiliation(s)
- Kaiyue Ma
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Xiangyu Yang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Yafei Mao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China; Center for Genomic Research, International Institutes of Medicine, Fourth Affiliated Hospital, Zhejiang University, Yiwu, Zhejiang, China.
| |
Collapse
|
4
|
Tagore D, Akey JM. Archaic hominin admixture and its consequences for modern humans. Curr Opin Genet Dev 2025; 90:102280. [PMID: 39577372 PMCID: PMC11770379 DOI: 10.1016/j.gde.2024.102280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/24/2024]
Abstract
As anatomically modern humans dispersed out of Africa, they encountered and mated with now extinct hominins, including Neanderthals and Denisovans. It is now well established that all non-African individuals derive approximately 2% of their genome from Neanderthal ancestors and individuals of Melanesian and Australian aboriginal ancestry inherited an additional 2%-5% of their genomes from Denisovan ancestors. Attention has started to shift from documenting amounts of archaic admixture and identifying introgressed segments to understanding their molecular, phenotypic, and evolutionary consequences and refining models of human history. Here, we review recent insights into admixture between modern and archaic humans, emphasizing methodological innovations and the functional and phenotypic effects Neanderthal and Denisovan sequences have in contemporary individuals.
Collapse
Affiliation(s)
- Debashree Tagore
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton 08540, USA. https://twitter.com/@TagoreDebashree
| | - Joshua M Akey
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton 08540, USA.
| |
Collapse
|
5
|
Yaghmouri M, Izadi P. Role of the Neanderthal Genome in Genetic Susceptibility to COVID-19: 3p21.31 Locus in the Spotlight. Biochem Genet 2024; 62:4239-4263. [PMID: 38345759 DOI: 10.1007/s10528-024-10669-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/02/2024] [Indexed: 11/29/2024]
Abstract
Since the outbreak of COVID-19, genome-wide association studies have tried to discover the role of genetic predisposition in the clinical variability of this viral infection. The findings of various investigations have led to several loci for COVID-19 genetic susceptibility. Among candidate regions, the 3p21.31 locus has been in the spotlight among scientists, as it can increase the risk of severe COVID-19 by almost two fold. In addition to its substantial association with COVID-19 severity, this locus is related to some common diseases, such as diabetes, malignancies, and coronary artery disease. This locus also harbors evolutionary traces of Neanderthal genomes, which is believed to be the underlying reason for its association with COVID-19 severity. Additionally, the inheritance of this locus from Neanderthals seems to be under positive selection. This review aims to summarize a collection of evidence on the 3p21.31 locus and its impact on COVID-19 outcomes by focusing on the risk variants originated from the Neanderthal genome. Moreover, we discuss candidate genes at this locus and the possible mechanisms by which they influence the progression of COVID-19 symptoms. Better insights into human genetic susceptibility to newly emerging diseases such as COVID-19 and its evolutionary origin can provide fundamentals for risk assessment of different populations as well as the development of personalized prevention and treatments based on genomic medicine.
Collapse
Affiliation(s)
- Mohammad Yaghmouri
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Pantea Izadi
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Moss ND, Lollis D, Silver DL. How our brains are built: emerging approaches to understand human-specific features. Curr Opin Genet Dev 2024; 89:102278. [PMID: 39549607 DOI: 10.1016/j.gde.2024.102278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/08/2024] [Accepted: 10/21/2024] [Indexed: 11/18/2024]
Abstract
Understanding what makes us uniquely human is a long-standing question permeating fields from genomics, neuroscience, and developmental biology to medicine. The discovery of human-specific genomic sequences has enabled a new understanding of the molecular features of human brain evolution. Advances in sequencing, computational, and in vitro screening approaches collectively reveal new roles of uniquely human sequences in regulating gene expression. Here, we review the landscape of human-specific loci and describe how emerging technologies are being used to understand their molecular functions and impact on brain development. We describe current challenges in the field and the potential of integrating new hypotheses and approaches to propel our understanding of the human brain.
Collapse
Affiliation(s)
- Nicole D Moss
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Davoneshia Lollis
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA. https://twitter.com/@_mlollis
| | - Debra L Silver
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA; Department of Cell Biology and Neurobiology, Duke University Medical Center, Durham, NC 27710, USA; Duke Institute for Brain Sciences and Duke Regeneration Center, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
7
|
Rong S, Root E, Reilly SK. Massively parallel approaches for characterizing noncoding functional variation in human evolution. Curr Opin Genet Dev 2024; 88:102256. [PMID: 39217658 PMCID: PMC11648527 DOI: 10.1016/j.gde.2024.102256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/02/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
The genetic differences underlying unique phenotypes in humans compared to our closest primate relatives have long remained a mystery. Similarly, the genetic basis of adaptations between human groups during our expansion across the globe is poorly characterized. Uncovering the downstream phenotypic consequences of these genetic variants has been difficult, as a substantial portion lies in noncoding regions, such as cis-regulatory elements (CREs). Here, we review recent high-throughput approaches to measure the functions of CREs and the impact of variation within them. CRISPR screens can directly perturb CREs in the genome to understand downstream impacts on gene expression and phenotypes, while massively parallel reporter assays can decipher the regulatory impact of sequence variants. Machine learning has begun to be able to predict regulatory function from sequence alone, further scaling our ability to characterize genome function. Applying these tools across diverse phenotypes, model systems, and ancestries is beginning to revolutionize our understanding of noncoding variation underlying human evolution.
Collapse
Affiliation(s)
- Stephen Rong
- Department of Genetics, Yale University, New Haven, CT, USA.
| | - Elise Root
- Department of Genetics, Yale University, New Haven, CT, USA
| | - Steven K Reilly
- Department of Genetics, Yale University, New Haven, CT, USA; Wu Tsai Institute, Yale University, New Haven, CT, USA.
| |
Collapse
|
8
|
Petersen RM, Vockley CM, Lea AJ. Uncovering methylation-dependent genetic effects on regulatory element function in diverse genomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.23.609412. [PMID: 39229133 PMCID: PMC11370585 DOI: 10.1101/2024.08.23.609412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
A major goal in evolutionary biology and biomedicine is to understand the complex interactions between genetic variants, the epigenome, and gene expression. However, the causal relationships between these factors remain poorly understood. mSTARR-seq, a methylation-sensitive massively parallel reporter assay, is capable of identifying methylation-dependent regulatory activity at many thousands of genomic regions simultaneously, and allows for the testing of causal relationships between DNA methylation and gene expression on a region-by-region basis. Here, we developed a multiplexed mSTARR-seq protocol to assay naturally occurring human genetic variation from 25 individuals sampled from 10 localities in Europe and Africa. We identified 6,957 regulatory elements in either the unmethylated or methylated state, and this set was enriched for enhancer and promoter annotations, as expected. The expression of 58% of these regulatory elements was modulated by methylation, which was generally associated with decreased RNA expression. Within our set of regulatory elements, we used allele-specific expression analyses to identify 8,020 sites with genetic effects on gene regulation; further, we found that 42.3% of these genetic effects varied between methylated and unmethylated states. Sites exhibiting methylation-dependent genetic effects were enriched for GWAS and EWAS annotations, implicating them in human disease. Compared to datasets that assay DNA from a single European individual, our multiplexed assay uncovers dramatically more genetic effects and methylation-dependent genetic effects, highlighting the importance of including diverse individuals in assays which aim to understand gene regulatory processes.
Collapse
|
9
|
Zeberg H, Jakobsson M, Pääbo S. The genetic changes that shaped Neandertals, Denisovans, and modern humans. Cell 2024; 187:1047-1058. [PMID: 38367615 DOI: 10.1016/j.cell.2023.12.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/20/2023] [Accepted: 12/20/2023] [Indexed: 02/19/2024]
Abstract
Modern human ancestors diverged from the ancestors of Neandertals and Denisovans about 600,000 years ago. Until about 40,000 years ago, these three groups existed in parallel, occasionally met, and exchanged genes. A critical question is why modern humans, and not the other two groups, survived, became numerous, and developed complex cultures. Here, we discuss genetic differences among the groups and some of their functional consequences. As more present-day genome sequences become available from diverse groups, we predict that very few, if any, differences will distinguish all modern humans from all Neandertals and Denisovans. We propose that the genetic basis of what constitutes a modern human is best thought of as a combination of genetic features, where perhaps none of them is present in each and every present-day individual.
Collapse
Affiliation(s)
- Hugo Zeberg
- Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany; Department of Physiology and Pharmacology, Karolinska Institutet, 17165 Stockholm, Sweden.
| | - Mattias Jakobsson
- Department of Organismal Biology, Uppsala University, 75236 Uppsala, Sweden
| | - Svante Pääbo
- Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany; Okinawa Institute of Science and Technology, Onnason 904-0495, Okinawa, Japan.
| |
Collapse
|
10
|
Foley NM, Harris AJ, Bredemeyer KR, Ruedi M, Puechmaille SJ, Teeling EC, Criscitiello MF, Murphy WJ. Karyotypic stasis and swarming influenced the evolution of viral tolerance in a species-rich bat radiation. CELL GENOMICS 2024; 4:100482. [PMID: 38237599 PMCID: PMC10879000 DOI: 10.1016/j.xgen.2023.100482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 09/17/2023] [Accepted: 12/10/2023] [Indexed: 02/17/2024]
Abstract
The emergence of COVID-19 and severe acute respiratory syndrome (SARS) has prioritized understanding bats' viral tolerance. Myotis bats are exceptionally species rich and have evolved viral tolerance. They also exhibit swarming, a cryptic behavior where large, multi-species assemblages gather for mating, which has been hypothesized to promote interspecific hybridization. To resolve the coevolution of genome architecture and their unusual antiviral tolerance, we undertook a phylogenomic analysis of 60 Old World Myotis genomes. We demonstrate an extensive history of introgressive hybridization that has replaced the species phylogeny across 17%-93% of the genome except for pericentromeric regions of macrochromosomes. Introgression tracts were enriched on microchromosome regions containing key antiviral pathway genes overexpressed during viral challenge experiments. Together, these results suggest that the unusual Myotis karyotype may have evolved to selectively position immune-related genes in high recombining genomic regions prone to introgression of divergent alleles, including a diversity of interleukin loci responsible for the release of pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Nicole M Foley
- Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA.
| | - Andrew J Harris
- Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA; Interdisciplinary Program in Genetics & Genomics, Texas A&M University, College Station, TX, USA
| | - Kevin R Bredemeyer
- Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA; Interdisciplinary Program in Genetics & Genomics, Texas A&M University, College Station, TX, USA
| | - Manuel Ruedi
- Department of Mammalogy and Ornithology, Natural History Museum of Geneva, Route de Malagnou 1, BP 6434, 1211 Geneva 6, Switzerland
| | - Sebastien J Puechmaille
- Institut des Sciences de l'Évolution, Montpellier (ISEM), Université de Montpellier, CNRS, EPHE, IRD, Montpellier, France; Institut Universitaire de France, Paris, France
| | - Emma C Teeling
- School of Biology and Environmental, Science, Science Centre West, University College Dublin, Belfield, Ireland
| | - Michael F Criscitiello
- Interdisciplinary Program in Genetics & Genomics, Texas A&M University, College Station, TX, USA; Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843, USA
| | - William J Murphy
- Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA; Interdisciplinary Program in Genetics & Genomics, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
11
|
Pollen AA, Kilik U, Lowe CB, Camp JG. Human-specific genetics: new tools to explore the molecular and cellular basis of human evolution. Nat Rev Genet 2023; 24:687-711. [PMID: 36737647 PMCID: PMC9897628 DOI: 10.1038/s41576-022-00568-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2022] [Indexed: 02/05/2023]
Abstract
Our ancestors acquired morphological, cognitive and metabolic modifications that enabled humans to colonize diverse habitats, develop extraordinary technologies and reshape the biosphere. Understanding the genetic, developmental and molecular bases for these changes will provide insights into how we became human. Connecting human-specific genetic changes to species differences has been challenging owing to an abundance of low-effect size genetic changes, limited descriptions of phenotypic differences across development at the level of cell types and lack of experimental models. Emerging approaches for single-cell sequencing, genetic manipulation and stem cell culture now support descriptive and functional studies in defined cell types with a human or ape genetic background. In this Review, we describe how the sequencing of genomes from modern and archaic hominins, great apes and other primates is revealing human-specific genetic changes and how new molecular and cellular approaches - including cell atlases and organoids - are enabling exploration of the candidate causal factors that underlie human-specific traits.
Collapse
Affiliation(s)
- Alex A Pollen
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA.
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA.
| | - Umut Kilik
- Institute of Human Biology (IHB), Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Craig B Lowe
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA.
| | - J Gray Camp
- Institute of Human Biology (IHB), Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland.
- University of Basel, Basel, Switzerland.
| |
Collapse
|
12
|
Kang JB, Raveane A, Nathan A, Soranzo N, Raychaudhuri S. Methods and Insights from Single-Cell Expression Quantitative Trait Loci. Annu Rev Genomics Hum Genet 2023; 24:277-303. [PMID: 37196361 PMCID: PMC10784788 DOI: 10.1146/annurev-genom-101422-100437] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Recent advancements in single-cell technologies have enabled expression quantitative trait locus (eQTL) analysis across many individuals at single-cell resolution. Compared with bulk RNA sequencing, which averages gene expression across cell types and cell states, single-cell assays capture the transcriptional states of individual cells, including fine-grained, transient, and difficult-to-isolate populations at unprecedented scale and resolution. Single-cell eQTL (sc-eQTL) mapping can identify context-dependent eQTLs that vary with cell states, including some that colocalize with disease variants identified in genome-wide association studies. By uncovering the precise contexts in which these eQTLs act, single-cell approaches can unveil previously hidden regulatory effects and pinpoint important cell states underlying molecular mechanisms of disease. Here, we present an overview of recently deployed experimental designs in sc-eQTL studies. In the process, we consider the influence of study design choices such as cohort, cell states, and ex vivo perturbations. We then discuss current methodologies, modeling approaches, and technical challenges as well as future opportunities and applications.
Collapse
Affiliation(s)
- Joyce B Kang
- Center for Data Sciences and Divisions of Genetics and Rheumatology, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA; ,
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA;
| | | | - Aparna Nathan
- Center for Data Sciences and Divisions of Genetics and Rheumatology, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA; ,
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA;
| | - Nicole Soranzo
- Human Technopole, Milan, Italy; ,
- Department of Human Genetics, Wellcome Sanger Institute, Hinxton, United Kingdom
- British Heart Foundation Centre of Research Excellence and Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Soumya Raychaudhuri
- Center for Data Sciences and Divisions of Genetics and Rheumatology, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA; ,
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA;
- Centre for Genetics and Genomics Versus Arthritis, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
13
|
Piccardi M, Gentiluomo M, Bertoncini S, Pezzilli R, Erőss B, Bunduc S, Uzunoglu FG, Talar-Wojnarowska R, Vanagas T, Sperti C, Oliverius M, Aoki MN, Ermini S, Hussein T, Boggi U, Jamroziak K, Maiello E, Morelli L, Vodickova L, Di Franco G, Landi S, Szentesi A, Lovecek M, Puzzono M, Tavano F, van Laarhoven HWM, Zerbi A, Mohelnikova-Duchonova B, Stocker H, Costello E, Capurso G, Ginocchi L, Lawlor RT, Vanella G, Bazzocchi F, Izbicki JR, Latiano A, Bueno-de-Mesquita B, Ponz de Leon Pisani R, Schöttker B, Soucek P, Hegyi P, Gazouli M, Hackert T, Kupcinskas J, Poskiene L, Tacelli M, Roth S, Carrara S, Perri F, Hlavac V, Theodoropoulos GE, Busch OR, Mambrini A, van Eijck CHJ, Arcidiacono P, Scarpa A, Pasquali C, Basso D, Lucchesi M, Milanetto AC, Neoptolemos JP, Cavestro GM, Janciauskas D, Chen X, Chammas R, Goetz M, Brenner H, Archibugi L, Dannemann M, Canzian F, Tofanelli S, Campa D. Exploring the Neandertal legacy of pancreatic ductal adenocarcinoma risk in Eurasians. Biol Res 2023; 56:46. [PMID: 37574541 PMCID: PMC10424372 DOI: 10.1186/s40659-023-00457-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/20/2023] [Indexed: 08/15/2023] Open
Abstract
BACKGROUND The genomes of present-day non-Africans are composed of 1-3% of Neandertal-derived DNA as a consequence of admixture events between Neandertals and anatomically modern humans about 50-60 thousand years ago. Neandertal-introgressed single nucleotide polymorphisms (aSNPs) have been associated with modern human disease-related traits, which are risk factors for pancreatic ductal adenocarcinoma (PDAC), such as obesity, type 2 diabetes, and inflammation. In this study, we aimed at investigating the role of aSNPs in PDAC in three Eurasian populations. RESULTS The high-coverage Vindija Neandertal genome was used to select aSNPs in non-African populations from 1000 Genomes project phase 3 data. Then, the association between aSNPs and PDAC risk was tested independently in Europeans and East Asians, using existing GWAS data on more than 200 000 individuals. We did not find any significant associations between aSNPs and PDAC in samples of European descent, whereas, in East Asians, we observed that the Chr10p12.1-rs117585753-T allele (MAF = 10%) increased the risk to develop PDAC (OR = 1.35, 95%CI 1.19-1.54, P = 3.59 × 10-6), with a P-value close to a threshold that takes into account multiple testing. CONCLUSIONS Our results show only a minimal contribution of Neandertal SNPs to PDAC risk.
Collapse
Affiliation(s)
- Margherita Piccardi
- Department of Biology, Unit of Genetics, University of Pisa, Via Derna 1, 56126, Pisa, Italy
| | - Manuel Gentiluomo
- Department of Biology, Unit of Genetics, University of Pisa, Via Derna 1, 56126, Pisa, Italy
| | - Stefania Bertoncini
- Department of Biology, Unit of Zoology and Anthropology, University of Pisa, Pisa, Italy
| | | | - Bálint Erőss
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Stefania Bunduc
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
- Center for Translational Medicine, Semmelweis University, Budapest, Hungary
- Division of Pancreatic Diseases, Heart and Vascular Center, Semmelweis University, Budapest, Hungary
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Faik G Uzunoglu
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Tomas Vanagas
- Department of Surgery, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Cosimo Sperti
- Department DISCOG, Chirurgia Generale 1, University of Padova, Padua, Italy
| | - Martin Oliverius
- Department of Surgery, Third Faculty of Medicine, University Hospital Kralovske Vinohrady, Charles University, Prague, Czech Republic
| | - Mateus Nóbrega Aoki
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Curitiba, Brazil
| | - Stefano Ermini
- Blood Transfusion Service, Azienda Ospedaliero-Universitaria Meyer, Children's Hospital, Florence, Italy
| | - Tamás Hussein
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Ugo Boggi
- Division of General and Transplantation Surgery, University of Pisa, Pisa, Italy
| | - Krzysztof Jamroziak
- Department of Hematology, Transplantation and Internal Medicine, University of Warsaw, Warsaw, Poland
| | - Evaristo Maiello
- Department of Oncology, Fondazione IRCCS "Casa Sollievo Della Sofferenza" Hospital, San Giovanni Rotondo, Foggia, Italy
| | - Luca Morelli
- Department of Translational Research and New Technologies in Medicine and Surgery, General Surgery Unit, University of Pisa, Pisa, Italy
| | - Ludmila Vodickova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Gregorio Di Franco
- Department of Translational Research and New Technologies in Medicine and Surgery, General Surgery Unit, University of Pisa, Pisa, Italy
| | - Stefano Landi
- Department of Biology, Unit of Genetics, University of Pisa, Via Derna 1, 56126, Pisa, Italy
| | - Andrea Szentesi
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
- Center for Translational Medicine, Semmelweis University, Budapest, Hungary
- János Szentágothai Research Center, University of Pécs, Pécs, Hungary
| | - Martin Lovecek
- Department of Surgery I, University Hospital Olomouc, Olomouc, Czech Republic
| | - Marta Puzzono
- Gastroenterology and Gastrointestinal Endoscopy Unit, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesca Tavano
- Division of Gastroenterology and Research Laboratory, Fondazione IRCCS "Casa Sollievo Della Sofferenza" Hospital, San Giovanni Rotondo, Foggia, Italy
| | - Hanneke W M van Laarhoven
- Department of Medical Oncology, Amsterdam UMC, Cancer Center Amsterdam, University of Amsterdam, Amsterdam, The Netherlands
| | - Alessandro Zerbi
- Pancreatic Unit, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | | | - Hannah Stocker
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Network Aging Research (NAR), Heidelberg University, Heidelberg, Germany
| | - Eithne Costello
- Department of Molecular & Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Gabriele Capurso
- Digestive and Liver Disease Unit, S Andrea Hospital, Rome, Italy
- Pancreas Translational and Clinical Research Center, Pancreato-Biliary Endoscopy and Endoscopic Ultrasound, San Raffaele Scientific Institute IRCCS, Milan, Italy
| | - Laura Ginocchi
- Oncological Department, Oncology of Massa Carrara, ASL Toscana Nord Ovest, Massa Carrara, Italy
| | - Rita T Lawlor
- ARC-NET Research Centre and Department of Diagnostics and Public Health, Section of Pathology, University of Verona, Verona, Italy
| | - Giuseppe Vanella
- Digestive and Liver Disease Unit, S Andrea Hospital, Rome, Italy
- Pancreas Translational and Clinical Research Center, Pancreato-Biliary Endoscopy and Endoscopic Ultrasound, San Raffaele Scientific Institute IRCCS, Milan, Italy
| | - Francesca Bazzocchi
- Department of Surgery, Fondazione IRCCS "Casa Sollievo Della Sofferenza" Hospital, San Giovanni Rotondo, Foggia, Italy
| | - Jakob R Izbicki
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anna Latiano
- Division of Gastroenterology and Research Laboratory, Fondazione IRCCS "Casa Sollievo Della Sofferenza" Hospital, San Giovanni Rotondo, Foggia, Italy
| | - Bas Bueno-de-Mesquita
- Centre for Nutrition, Prevention and Health Services, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Ruggero Ponz de Leon Pisani
- Pancreato-Biliary Endoscopy and Endoscopic Ultrasound, Pancreas Translational and Clinical Research Center, San Raffaele Scientific Institute IRCCS, Milan, Italy
| | - Ben Schöttker
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Network Aging Research (NAR), Heidelberg University, Heidelberg, Germany
| | - Pavel Soucek
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Péter Hegyi
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
- Center for Translational Medicine, Semmelweis University, Budapest, Hungary
- Division of Pancreatic Diseases, Heart and Vascular Center, Semmelweis University, Budapest, Hungary
- János Szentágothai Research Center, University of Pécs, Pécs, Hungary
| | - Maria Gazouli
- Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Thilo Hackert
- Department of General, Visceral, and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Juozas Kupcinskas
- Department of Gastroenterology and Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Lina Poskiene
- Department of Pathology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Matteo Tacelli
- Pancreato-Biliary Endoscopy and Endoscopic Ultrasound, Pancreas Translational and Clinical Research Center, San Raffaele Scientific Institute IRCCS, Milan, Italy
| | - Susanne Roth
- Department of General, Visceral, and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Silvia Carrara
- Department of Gastroenterology, Endoscopic Unit, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Francesco Perri
- Division of Gastroenterology and Research Laboratory, Fondazione IRCCS "Casa Sollievo Della Sofferenza" Hospital, San Giovanni Rotondo, Foggia, Italy
| | - Viktor Hlavac
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - George E Theodoropoulos
- First Department of Propaedeutic Surgery, Hippocration General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Olivier R Busch
- Department of Surgery, Amsterdam UMC, Cancer Center Amsterdam, University of Amsterdam, Amsterdam, the Netherlands
| | - Andrea Mambrini
- Oncological Department, Oncology of Massa Carrara, ASL Toscana Nord Ovest, Massa Carrara, Italy
| | - Casper H J van Eijck
- Department of Surgery, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Paolo Arcidiacono
- Pancreato-Biliary Endoscopy and Endoscopic Ultrasound, Pancreas Translational and Clinical Research Center, San Raffaele Scientific Institute IRCCS, Milan, Italy
| | - Aldo Scarpa
- ARC-NET Research Centre and Department of Diagnostics and Public Health, Section of Pathology, University of Verona, Verona, Italy
| | - Claudio Pasquali
- Department DISCOG, Chirurgia Generale 3, University of Padova, Padua, Italy
| | - Daniela Basso
- Department DIMED, Laboratory Medicine, University of Padova, Padua, Italy
| | - Maurizio Lucchesi
- Oncological Department, Oncology of Massa Carrara, ASL Toscana Nord Ovest, Massa Carrara, Italy
| | | | - John P Neoptolemos
- Department of General, Visceral, and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Giulia Martina Cavestro
- Gastroenterology and Gastrointestinal Endoscopy Unit, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Dainius Janciauskas
- Department of Pathology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Xuechen Chen
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Roger Chammas
- Department of Radiology and Oncology, Institute of Cancer of São Paulo (ICESP) São Paulo, Sao Paulo, Brazil
- Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Mara Goetz
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Livia Archibugi
- Digestive and Liver Disease Unit, S Andrea Hospital, Rome, Italy
- Pancreas Translational and Clinical Research Center, Pancreato-Biliary Endoscopy and Endoscopic Ultrasound, San Raffaele Scientific Institute IRCCS, Milan, Italy
| | - Michael Dannemann
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Federico Canzian
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sergio Tofanelli
- Department of Biology, Unit of Zoology and Anthropology, University of Pisa, Pisa, Italy
| | - Daniele Campa
- Department of Biology, Unit of Genetics, University of Pisa, Via Derna 1, 56126, Pisa, Italy.
| |
Collapse
|
14
|
Rong S, Neil CR, Welch A, Duan C, Maguire S, Meremikwu IC, Meyerson M, Evans BJ, Fairbrother WG. Large-scale functional screen identifies genetic variants with splicing effects in modern and archaic humans. Proc Natl Acad Sci U S A 2023; 120:e2218308120. [PMID: 37192163 PMCID: PMC10214146 DOI: 10.1073/pnas.2218308120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 04/12/2023] [Indexed: 05/18/2023] Open
Abstract
Humans coexisted and interbred with other hominins which later became extinct. These archaic hominins are known to us only through fossil records and for two cases, genome sequences. Here, we engineer Neanderthal and Denisovan sequences into thousands of artificial genes to reconstruct the pre-mRNA processing patterns of these extinct populations. Of the 5,169 alleles tested in this massively parallel splicing reporter assay (MaPSy), we report 962 exonic splicing mutations that correspond to differences in exon recognition between extant and extinct hominins. Using MaPSy splicing variants, predicted splicing variants, and splicing quantitative trait loci, we show that splice-disrupting variants experienced greater purifying selection in anatomically modern humans than that in Neanderthals. Adaptively introgressed variants were enriched for moderate-effect splicing variants, consistent with positive selection for alternative spliced alleles following introgression. As particularly compelling examples, we characterized a unique tissue-specific alternative splicing variant at the adaptively introgressed innate immunity gene TLR1, as well as a unique Neanderthal introgressed alternative splicing variant in the gene HSPG2 that encodes perlecan. We further identified potentially pathogenic splicing variants found only in Neanderthals and Denisovans in genes related to sperm maturation and immunity. Finally, we found splicing variants that may contribute to variation among modern humans in total bilirubin, balding, hemoglobin levels, and lung capacity. Our findings provide unique insights into natural selection acting on splicing in human evolution and demonstrate how functional assays can be used to identify candidate causal variants underlying differences in gene regulation and phenotype.
Collapse
Affiliation(s)
- Stephen Rong
- Center for Computational Molecular Biology, Brown University, Providence, RI02912
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI02912
| | - Christopher R. Neil
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI02912
| | - Anastasia Welch
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI02912
| | - Chaorui Duan
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI02912
| | - Samantha Maguire
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI02912
| | - Ijeoma C. Meremikwu
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI02912
| | - Malcolm Meyerson
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI02912
| | - Ben J. Evans
- Department of Biology, McMaster University, Hamilton, ONL8S 4K1, Canada
| | - William G. Fairbrother
- Center for Computational Molecular Biology, Brown University, Providence, RI02912
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI02912
- Hassenfeld Child Health Innovation Institute of Brown University, Providence, RI02912
| |
Collapse
|
15
|
Whalen S, Inoue F, Ryu H, Fair T, Markenscoff-Papadimitriou E, Keough K, Kircher M, Martin B, Alvarado B, Elor O, Laboy Cintron D, Williams A, Hassan Samee MA, Thomas S, Krencik R, Ullian EM, Kriegstein A, Rubenstein JL, Shendure J, Pollen AA, Ahituv N, Pollard KS. Machine learning dissection of human accelerated regions in primate neurodevelopment. Neuron 2023; 111:857-873.e8. [PMID: 36640767 PMCID: PMC10023452 DOI: 10.1016/j.neuron.2022.12.026] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/29/2022] [Accepted: 12/18/2022] [Indexed: 01/15/2023]
Abstract
Using machine learning (ML), we interrogated the function of all human-chimpanzee variants in 2,645 human accelerated regions (HARs), finding 43% of HARs have variants with large opposing effects on chromatin state and 14% on neurodevelopmental enhancer activity. This pattern, consistent with compensatory evolution, was confirmed using massively parallel reporter assays in chimpanzee and human neural progenitor cells. The species-specific enhancer activity of HARs was accurately predicted from the presence and absence of transcription factor footprints in each species. Despite these striking cis effects, activity of a given HAR sequence was nearly identical in human and chimpanzee cells. This suggests that HARs did not evolve to compensate for changes in the trans environment but instead altered their ability to bind factors present in both species. Thus, ML prioritized variants with functional effects on human neurodevelopment and revealed an unexpected reason why HARs may have evolved so rapidly.
Collapse
Affiliation(s)
- Sean Whalen
- Gladstone Institutes, San Francisco, CA 94158, USA
| | - Fumitaka Inoue
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA; Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Hane Ryu
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA; Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA; Pharmaceutical Sciences and Pharmacogenomics Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Tyler Fair
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | | | - Kathleen Keough
- Gladstone Institutes, San Francisco, CA 94158, USA; Pharmaceutical Sciences and Pharmacogenomics Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Martin Kircher
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany; Institute of Human Genetics, University Medical Center Schleswig-Holstein, University of Lübeck, 23562 Lübeck, Germany
| | - Beth Martin
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Beatriz Alvarado
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Orry Elor
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA; Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Dianne Laboy Cintron
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA; Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | | | | | - Sean Thomas
- Gladstone Institutes, San Francisco, CA 94158, USA
| | - Robert Krencik
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, USA
| | - Erik M Ullian
- Departments of Ophthalmology and Physiology, University of California, San Francisco, San Francisco, CA, USA; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, USA
| | - Arnold Kriegstein
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - John L Rubenstein
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute, Seattle, WA 98195, USA; Brotman Baty Institute for Precision Medicine, Seattle, WA 98195, USA
| | - Alex A Pollen
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Nadav Ahituv
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA; Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA.
| | - Katherine S Pollard
- Gladstone Institutes, San Francisco, CA 94158, USA; Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA; Department of Epidemiology and Biostatistics and Institute for Computational Health Sciences, University of California, San Francisco, San Francisco, CA, USA; Chan-Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
16
|
Turner MD. Possible Causes of Hypertrophic Osteoarthropathy in the La Ferrassie 1 Neanderthal. Cureus 2023; 15:e35721. [PMID: 37016656 PMCID: PMC10066876 DOI: 10.7759/cureus.35721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2023] [Indexed: 03/06/2023] Open
Abstract
For over a century, researchers have been perplexed by the unique osteological findings on La Ferrassie 1 (LF1), one of the most complete Neanderthal remains ever found. In 1997, Fennel and Trinkaus proposed that LF1 suffered from hypertrophic osteoarthropathy (HOA), likely secondary to chronic thoracic infection or pulmonary malignancy. This disease process can have many etiologies, and no study has fully explored the possible origin of LF1's HOA. Ultimately, it is most likely that LF1's HOA etiology arose from one of the many infectious diseases that prehistoric Neanderthals were exposed to, specifically a chronic pulmonary RNA virus.
Collapse
|
17
|
Yermakovich D, Pankratov V, Võsa U, Yunusbayev B, Dannemann M. Long-range regulatory effects of Neandertal DNA in modern humans. Genetics 2023; 223:6957427. [PMID: 36560850 PMCID: PMC9991505 DOI: 10.1093/genetics/iyac188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 10/13/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
The admixture between modern humans and Neandertals has resulted in ∼2% of the genomes of present-day non-Africans being composed of Neandertal DNA. Introgressed Neandertal DNA has been demonstrated to significantly affect the transcriptomic landscape in people today and via this molecular mechanism influence phenotype variation as well. However, little is known about how much of that regulatory impact is mediated through long-range regulatory effects that have been shown to explain ∼20% of expression variation. Here we identified 60 transcription factors (TFs) with their top cis-eQTL SNP in GTEx being of Neandertal ancestry and predicted long-range Neandertal DNA-induced regulatory effects by screening for the predicted target genes of those TFs. We show that the TFs form a significantly connected protein-protein interaction network. Among them are JUN and PRDM5, two brain-expressed TFs that have their predicted target genes enriched in regions devoid of Neandertal DNA. Archaic cis-eQTLs for the 60 TFs include multiple candidates for local adaptation, some of which show significant allele frequency increases over the last ∼10,000 years. A large proportion of the cis-eQTL-associated archaic SNPs have additional associations with various immune traits, schizophrenia, blood cell type composition and anthropometric measures. Finally, we demonstrate that our results are consistent with those of Neandertal DNA-associated empirical trans-eQTLs. Our results suggest that Neandertal DNA significantly influences regulatory networks, that its regulatory reach goes beyond the 40% of genomic sequence it still covers in present-day non-Africans and that via the investigated mechanism Neandertal DNA influences the phenotypic variation in people today.
Collapse
Affiliation(s)
- Danat Yermakovich
- Centre for Genomics, Evolution and Medicine, Institute of Genomics, University of Tartu, 51010 Tartu, Estonia
| | - Vasili Pankratov
- Centre for Genomics, Evolution and Medicine, Institute of Genomics, University of Tartu, 51010 Tartu, Estonia
| | - Urmo Võsa
- Estonian Genome Centre, Institute of Genomics, University of Tartu, 51010 Tartu, Estonia
| | - Bayazit Yunusbayev
- Centre for Genomics, Evolution and Medicine, Institute of Genomics, University of Tartu, 51010 Tartu, Estonia
| | | | - Michael Dannemann
- Centre for Genomics, Evolution and Medicine, Institute of Genomics, University of Tartu, 51010 Tartu, Estonia
| |
Collapse
|
18
|
Ganapathee DS, Gunz P. Insights into brain evolution through the genotype-phenotype connection. PROGRESS IN BRAIN RESEARCH 2023; 275:73-92. [PMID: 36841571 DOI: 10.1016/bs.pbr.2022.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
It has recently become possible to start exploring how the genotype translates into human brain morphology and behavior by combining detailed genomic and phenotypic data from thousands of present-day people with archaic genomes of extinct humans, and gene expression data. As a starting point into this emerging interdisciplinary domain, we highlight current debates about which aspects of the modern human brain are unique. We review recent developments from (1) comparative primate neuroscience-a fast-growing field offering an invaluable framework for understanding general mechanisms and the evolution of human-specific traits. (2) paleoanthropology-based on evidence from endocranial imprints in fossil skulls, we trace the evolution from the ape-like brain phenotype of early hominins more than 3 million years ago to the unusual globular brain shape of present-day people. (3) Genomics of present-day and extinct humans. The morphological and genetic differences between modern humans and our closest extinct cousins, the Neandertals, offer important clues about the genetic underpinnings of brain morphology and behavior. The functional consequences of these genetic differences can be tested in animal models, and brain organoids.
Collapse
Affiliation(s)
| | - Philipp Gunz
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
19
|
Gallego Romero I, Lea AJ. Leveraging massively parallel reporter assays for evolutionary questions. Genome Biol 2023; 24:26. [PMID: 36788564 PMCID: PMC9926830 DOI: 10.1186/s13059-023-02856-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 01/17/2023] [Indexed: 02/16/2023] Open
Abstract
A long-standing goal of evolutionary biology is to decode how gene regulation contributes to organismal diversity. Doing so is challenging because it is hard to predict function from non-coding sequence and to perform molecular research with non-model taxa. Massively parallel reporter assays (MPRAs) enable the testing of thousands to millions of sequences for regulatory activity simultaneously. Here, we discuss the execution, advantages, and limitations of MPRAs, with a focus on evolutionary questions. We propose solutions for extending MPRAs to rare taxa and those with limited genomic resources, and we underscore MPRA's broad potential for driving genome-scale, functional studies across organisms.
Collapse
Affiliation(s)
- Irene Gallego Romero
- Melbourne Integrative Genomics, University of Melbourne, Royal Parade, Parkville, Victoria, 3010, Australia. .,School of BioSciences, The University of Melbourne, Royal Parade, Parkville, 3010, Australia. .,The Centre for Stem Cell Systems, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, 30 Royal Parade, Parkville, Victoria, 3010, Australia. .,Center for Genomics, Evolution and Medicine, Institute of Genomics, University of Tartu, Riia 23b, 51010, Tartu, Estonia.
| | - Amanda J. Lea
- grid.152326.10000 0001 2264 7217Department of Biological Sciences, Vanderbilt University, Nashville, TN 37240 USA ,grid.152326.10000 0001 2264 7217Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN 37240 USA ,grid.152326.10000 0001 2264 7217Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37240 USA ,Child and Brain Development Program, Canadian Institute for Advanced Study, Toronto, Canada
| |
Collapse
|
20
|
Jagoda E, Marnetto D, Senevirathne G, Gonzalez V, Baid K, Montinaro F, Richard D, Falzarano D, LeBlanc EV, Colpitts CC, Banerjee A, Pagani L, Capellini TD. Regulatory dissection of the severe COVID-19 risk locus introgressed by Neanderthals. eLife 2023; 12:e71235. [PMID: 36763080 PMCID: PMC9917435 DOI: 10.7554/elife.71235] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 01/26/2023] [Indexed: 02/11/2023] Open
Abstract
Individuals infected with the SARS-CoV-2 virus present with a wide variety of symptoms ranging from asymptomatic to severe and even lethal outcomes. Past research has revealed a genetic haplotype on chromosome 3 that entered the human population via introgression from Neanderthals as the strongest genetic risk factor for the severe response to COVID-19. However, the specific variants along this introgressed haplotype that contribute to this risk and the biological mechanisms that are involved remain unclear. Here, we assess the variants present on the risk haplotype for their likelihood of driving the genetic predisposition to severe COVID-19 outcomes. We do this by first exploring their impact on the regulation of genes involved in COVID-19 infection using a variety of population genetics and functional genomics tools. We then perform a locus-specific massively parallel reporter assay to individually assess the regulatory potential of each allele on the haplotype in a multipotent immune-related cell line. We ultimately reduce the set of over 600 linked genetic variants to identify four introgressed alleles that are strong functional candidates for driving the association between this locus and severe COVID-19. Using reporter assays in the presence/absence of SARS-CoV-2, we find evidence that these variants respond to viral infection. These variants likely drive the locus' impact on severity by modulating the regulation of two critical chemokine receptor genes: CCR1 and CCR5. These alleles are ideal targets for future functional investigations into the interaction between host genomics and COVID-19 outcomes.
Collapse
Affiliation(s)
- Evelyn Jagoda
- Department of Human Evolutionary Biology, Harvard UniversityCambridgeUnited States
| | - Davide Marnetto
- Estonian Biocentre, Institute of Genomics, University of TartuTartuEstonia
| | - Gayani Senevirathne
- Department of Human Evolutionary Biology, Harvard UniversityCambridgeUnited States
| | - Victoria Gonzalez
- Department of Veterinary Microbiology, University of SaskatchewanSaskatoonCanada
- Vaccine and Infectious Disease Organization, University of SaskatchewanSaskatoonCanada
| | - Kaushal Baid
- Vaccine and Infectious Disease Organization, University of SaskatchewanSaskatoonCanada
| | - Francesco Montinaro
- Estonian Biocentre, Institute of Genomics, University of TartuTartuEstonia
- Department of Biology, University of BariBariItaly
| | - Daniel Richard
- Department of Human Evolutionary Biology, Harvard UniversityCambridgeUnited States
| | - Darryl Falzarano
- Department of Veterinary Microbiology, University of SaskatchewanSaskatoonCanada
- Vaccine and Infectious Disease Organization, University of SaskatchewanSaskatoonCanada
| | - Emmanuelle V LeBlanc
- Department of Biomedical and Molecular Sciences, Queen’s UniversityKingstonCanada
| | - Che C Colpitts
- Department of Biomedical and Molecular Sciences, Queen’s UniversityKingstonCanada
| | - Arinjay Banerjee
- Department of Veterinary Microbiology, University of SaskatchewanSaskatoonCanada
- Vaccine and Infectious Disease Organization, University of SaskatchewanSaskatoonCanada
- Department of Biology, University of WaterlooWaterlooCanada
- Department of Laboratory Medicine and Pathobiology, University of TorontoTorontoCanada
| | - Luca Pagani
- Estonian Biocentre, Institute of Genomics, University of TartuTartuEstonia
- Department of Biology, University of PadovaPadovaItaly
| | - Terence D Capellini
- Department of Human Evolutionary Biology, Harvard UniversityCambridgeUnited States
- Broad Institute of MIT and HarvardCambridgeUnited States
| |
Collapse
|
21
|
Vespasiani DM, Jacobs GS, Cook LE, Brucato N, Leavesley M, Kinipi C, Ricaut FX, Cox MP, Gallego Romero I. Denisovan introgression has shaped the immune system of present-day Papuans. PLoS Genet 2022; 18:e1010470. [PMID: 36480515 PMCID: PMC9731433 DOI: 10.1371/journal.pgen.1010470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 10/10/2022] [Indexed: 12/13/2022] Open
Abstract
Modern humans have admixed with multiple archaic hominins. Papuans, in particular, owe up to 5% of their genome to Denisovans, a sister group to Neanderthals whose remains have only been identified in Siberia and Tibet. Unfortunately, the biological and evolutionary significance of these introgression events remain poorly understood. Here we investigate the function of both Denisovan and Neanderthal alleles characterised within a set of 56 genomes from Papuan individuals. By comparing the distribution of archaic and non-archaic variants we assess the consequences of archaic admixture across a multitude of different cell types and functional elements. We observe an enrichment of archaic alleles within cis-regulatory elements and transcribed regions of the genome, with Denisovan variants strongly affecting elements active within immune-related cells. We identify 16,048 and 10,032 high-confidence Denisovan and Neanderthal variants that fall within annotated cis-regulatory elements and with the potential to alter the affinity of multiple transcription factors to their cognate DNA motifs, highlighting a likely mechanism by which introgressed DNA can impact phenotypes. Lastly, we experimentally validate these predictions by testing the regulatory potential of five Denisovan variants segregating within Papuan individuals, and find that two are associated with a significant reduction of transcriptional activity in plasmid reporter assays. Together, these data provide support for a widespread contribution of archaic DNA in shaping the present levels of modern human genetic diversity, with different archaic ancestries potentially affecting multiple phenotypic traits within non-Africans.
Collapse
Affiliation(s)
- Davide M. Vespasiani
- Melbourne Integrative Genomics, University of Melbourne, Parkville, Australia
- School of Biosciences, University of Melbourne, Parkville, Australia
| | - Guy S. Jacobs
- Department of Archaeology, University of Cambridge, Cambridge, Uniteed Kingdom
| | - Laura E. Cook
- Melbourne Integrative Genomics, University of Melbourne, Parkville, Australia
- School of Biosciences, University of Melbourne, Parkville, Australia
| | - Nicolas Brucato
- Laboratoire de Evolution et Diversite Biologique, Université de Toulouse Midi-Pyrénées, Toulouse, France
| | - Matthew Leavesley
- School of Humanities and Social Sciences, University of Papua New Guinea, Port Moresby, Papua New Guinea
- College of Arts, Society and Education, James Cook University, Cairns, Australia
- ARC Centre of Excellence for Australian Biodiversity and Heritage, University of Wollongong, Wollongong, Australia
| | - Christopher Kinipi
- School of Humanities and Social Sciences, University of Papua New Guinea, Port Moresby, Papua New Guinea
| | - François-Xavier Ricaut
- Laboratoire de Evolution et Diversite Biologique, Université de Toulouse Midi-Pyrénées, Toulouse, France
| | - Murray P. Cox
- School of Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Irene Gallego Romero
- Melbourne Integrative Genomics, University of Melbourne, Parkville, Australia
- School of Biosciences, University of Melbourne, Parkville, Australia
- Center for Stem Cell Systems, University of Melbourne, Parkville, Australia
- Center for Genomics, Evolution and Medicine, University of Tartu, Tartu, Estonia
- * E-mail:
| |
Collapse
|
22
|
Abstract
Human accelerated regions (HARs) are the fastest-evolving sequences in the human genome. When HARs were discovered in 2006, their function was mysterious due to scant annotation of the noncoding genome. Diverse technologies, from transgenic animals to machine learning, have consistently shown that HARs function as gene regulatory enhancers with significant enrichment in neurodevelopment. It is now possible to quantitatively measure the enhancer activity of thousands of HARs in parallel and model how each nucleotide contributes to gene expression. These strategies have revealed that many human HAR sequences function differently than their chimpanzee orthologs, though individual nucleotide changes in the same HAR may have opposite effects, consistent with compensatory substitutions. To fully evaluate the role of HARs in human evolution, it will be necessary to experimentally and computationally dissect them across more cell types and developmental stages.
Collapse
Affiliation(s)
- Sean Whalen
- Gladstone Institute of Data Science and Biotechnology, San Francisco, California, USA; ,
| | - Katherine S Pollard
- Gladstone Institute of Data Science and Biotechnology, San Francisco, California, USA; ,
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California, USA
- Chan Zuckerberg Biohub, San Francisco, California, USA
| |
Collapse
|
23
|
Cooper YA, Guo Q, Geschwind DH. Multiplexed functional genomic assays to decipher the noncoding genome. Hum Mol Genet 2022; 31:R84-R96. [PMID: 36057282 PMCID: PMC9585676 DOI: 10.1093/hmg/ddac194] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 11/14/2022] Open
Abstract
Linkage disequilibrium and the incomplete regulatory annotation of the noncoding genome complicates the identification of functional noncoding genetic variants and their causal association with disease. Current computational methods for variant prioritization have limited predictive value, necessitating the application of highly parallelized experimental assays to efficiently identify functional noncoding variation. Here, we summarize two distinct approaches, massively parallel reporter assays and CRISPR-based pooled screens and describe their flexible implementation to characterize human noncoding genetic variation at unprecedented scale. Each approach provides unique advantages and limitations, highlighting the importance of multimodal methodological integration. These multiplexed assays of variant effects are undoubtedly poised to play a key role in the experimental characterization of noncoding genetic risk, informing our understanding of the underlying mechanisms of disease-associated loci and the development of more robust predictive classification algorithms.
Collapse
Affiliation(s)
- Yonatan A Cooper
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Medical Scientist Training Program, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Center for Neurobehavioral Genetics, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, USA
| | - Qiuyu Guo
- Center for Neurobehavioral Genetics, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, USA
| | - Daniel H Geschwind
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Program in Neurogenetics, Department of Neurology, University of California Los Angeles, Los Angeles, CA, USA
- Center for Autism Research and Treatment, Semel Institute, University of California Los Angeles, Los Angeles, CA, USA
- Institute of Precision Health, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
24
|
Reilly PF, Tjahjadi A, Miller SL, Akey JM, Tucci S. The contribution of Neanderthal introgression to modern human traits. Curr Biol 2022; 32:R970-R983. [PMID: 36167050 PMCID: PMC9741939 DOI: 10.1016/j.cub.2022.08.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neanderthals, our closest extinct relatives, lived in western Eurasia from 400,000 years ago until they went extinct around 40,000 years ago. DNA retrieved from ancient specimens revealed that Neanderthals mated with modern human contemporaries. As a consequence, introgressed Neanderthal DNA survives scattered across the human genome such that 1-4% of the genome of present-day people outside Africa are inherited from Neanderthal ancestors. Patterns of Neanderthal introgressed genomic sequences suggest that Neanderthal alleles had distinct fates in the modern human genetic background. Some Neanderthal alleles facilitated human adaptation to new environments such as novel climate conditions, UV exposure levels and pathogens, while others had deleterious consequences. Here, we review the body of work on Neanderthal introgression over the past decade. We describe how evolutionary forces shaped the genomic landscape of Neanderthal introgression and highlight the impact of introgressed alleles on human biology and phenotypic variation.
Collapse
Affiliation(s)
| | - Audrey Tjahjadi
- Department of Anthropology, Yale University, New Haven, CT, USA
| | | | - Joshua M Akey
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.
| | - Serena Tucci
- Department of Anthropology, Yale University, New Haven, CT, USA; Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA.
| |
Collapse
|
25
|
Villanea FA, Witt KE. Underrepresented Populations at the Archaic Introgression Frontier. Front Genet 2022; 13:821170. [PMID: 35281795 PMCID: PMC8914065 DOI: 10.3389/fgene.2022.821170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Fernando A Villanea
- Department of Anthropology, College of Arts and Sciences, University of Colorado Boulder, Boulder, CO, United States
- *Correspondence: Fernando A Villanea,
| | - Kelsey E. Witt
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, United States
| |
Collapse
|