1
|
Bacha SAS, Kiran S, Cui FJ, Elboughdiri N, Ahmad Z, Sun WJ. The potential of advanced crop breeding technologies for sustainable food security. Int J Biol Macromol 2025; 309:143025. [PMID: 40216127 DOI: 10.1016/j.ijbiomac.2025.143025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/24/2025] [Accepted: 04/08/2025] [Indexed: 04/17/2025]
Abstract
Considering the increasing demands of a growing global population, shortages of resources, and climate change, exploring the potential of modern plant breeding technology seems to be an important and feasible method for ensuring food security. The current review shed light on the dramatic application of modern plant breeding techniques, which not only increase yields of crops but also lead a way for sustainable agriculture and resilience in dealing with of environmental challenges. Modern plant breeding technologies, such as Clustered regularly interspaced short palindromic repeats-associated protein (CRISPR-Cas) genome editing tools, omics, marker-Assisted Selection (MAS), and RNA Interference (RNAi) for Crop Enhancement exhibited the potential to significantly enhance crop production and diversity. Modern plant breeding technologies offers a method for developing crops that are resistant to the effects of climate change, pests, and diseases, improving crop yield and nutritional quality while decreasing the demand for harmful pesticides. Finally, this review emphasizes the enormous potential of modern plant breeding methods in ensuring global food security, as well as the importance of continued research, collaboration, and strategic application for a resilient and sustainable agricultural future.
Collapse
Affiliation(s)
- Syed Asim Shah Bacha
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Sadia Kiran
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Feng-Jie Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Noureddine Elboughdiri
- Chemical Engineering Department, College of Engineering, University of Ha'il, P.O. Box 2440, Ha'il 81441, Saudi Arabia
| | - Zubair Ahmad
- Applied College, Center of Bee Research and its Products (CBRP), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Wen-Jing Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|
2
|
Zhang L, Yang Y, Zhang Y, Yang F. Genome-Wide Investigation of MADS-Box Genes in Flower Development and Environmental Acclimation of Lumnitzera littorea (Jack) Voigt. Int J Mol Sci 2025; 26:1680. [PMID: 40004145 PMCID: PMC11855919 DOI: 10.3390/ijms26041680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/13/2025] [Accepted: 02/14/2025] [Indexed: 02/27/2025] Open
Abstract
Lumnitzera littorea (Jack) Voigt is an endangered mangrove species in China. Low fecundity and environmental pressure are supposed to be key factors limiting the population expansion of L. littorea. Transcription factors with the MADS-box domain are crucial regulators of plant flower development, reproduction, and stress response. In this study, we performed a comprehensive investigation into the features and functions of MADS-box genes of L. littorea. Sixty-three LlMADS genes with similar structure and motif composition were identified in the L. littorea genome, and these genes were unevenly distributed on the 11 chromosomes. Segmental duplication was suggested to make a main contribution to the expansion of the LlMADS gene family. Some LIMADS genes exhibited differential expression in different flower types or in response to cold stress. Overexpression of the B-class gene LlMADS37 had substantial effects on the flower morphology and flowering time of transgenic Arabidopsis plants, demonstrating its key role in regulating flower morphogenesis and inflorescence. These findings largely enrich our understanding of the functional importance of MADS-box genes in the inflorescence and stress acclimation of L. littorea and provide valuable resources for future genetic research to improve the conservation of this species.
Collapse
Affiliation(s)
- Linbi Zhang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China;
| | - Yuchen Yang
- School of Ecology, Sun Yat-sen University, Shenzhen 518107, China;
| | - Ying Zhang
- School of Life Science and Technology, Lingnan Normal University, Zhanjiang 524048, China
| | - Fusun Yang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China;
| |
Collapse
|
3
|
Dziasek K, Santos-González J, Wang K, Qiu Y, Zhu J, Rigola D, Nijbroek K, Köhler C. Dosage-sensitive maternal siRNAs determine hybridization success in Capsella. NATURE PLANTS 2024; 10:1969-1983. [PMID: 39528633 DOI: 10.1038/s41477-024-01844-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 10/10/2024] [Indexed: 11/16/2024]
Abstract
Hybrid seed failure arising from wide crosses between plant species is a recurring obstacle in plant breeding, impeding the transfer of desirable traits. This postzygotic reproductive barrier primarily occurs in the endosperm, a tissue that nourishes the embryo and functions similarly to the placenta in mammals. We found that incompatible seeds show a loss of DNA methylation and chromatin condensation in the endosperm, similar to seeds lacking maternal RNA polymerase IV activity. This similarity is linked to a decrease in small interfering RNAs in the endosperm (sirenRNAs), maternal RNA polymerase IV-dependent short interfering RNAs that regulate DNA methylation. Several AGAMOUS-like MADS-box transcription factor genes (AGLs), key regulators of endosperm development, are targeted by sirenRNAs in cis and in trans. This finding aligns with the enrichment of AGL target genes among deregulated genes. We propose that hybrid seed failure results from reduced maternal sirenRNAs combined with increased AGL expression, leading to abnormal gene regulation in the endosperm.
Collapse
Affiliation(s)
- Katarzyna Dziasek
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Centre for Plant Biology, Uppsala, Sweden
| | - Juan Santos-González
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Centre for Plant Biology, Uppsala, Sweden
| | - Kai Wang
- Department of Plant Reproductive Biology and Epigenetics, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Yichun Qiu
- Department of Plant Reproductive Biology and Epigenetics, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Jiali Zhu
- Department of Plant Reproductive Biology and Epigenetics, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | | | | | - Claudia Köhler
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Centre for Plant Biology, Uppsala, Sweden.
- Department of Plant Reproductive Biology and Epigenetics, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany.
| |
Collapse
|
4
|
Qiu Y, Li Z, Köhler C. Ancestral duplication of MADS-box genes in land plants empowered the functional divergence between sporophytes and gametophytes. THE NEW PHYTOLOGIST 2024; 244:358-363. [PMID: 39149858 DOI: 10.1111/nph.20065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 07/30/2024] [Indexed: 08/17/2024]
Affiliation(s)
- Yichun Qiu
- Department of Plant Reproductive Biology and Epigenetics, Max Planck Institute of Molecular Plant Physiology, Potsdam, 14476, Germany
| | - Zhen Li
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, 9052, Belgium
- VIB Center for Plant Systems Biology, VIB, Ghent, 9052, Belgium
| | - Claudia Köhler
- Department of Plant Reproductive Biology and Epigenetics, Max Planck Institute of Molecular Plant Physiology, Potsdam, 14476, Germany
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Centre for Plant Biology, Uppsala, 75007, Sweden
| |
Collapse
|
5
|
Sharma V, Ali MF, Kawashima T. Insights into dynamic coenocytic endosperm development: Unraveling molecular, cellular, and growth complexity. CURRENT OPINION IN PLANT BIOLOGY 2024; 81:102566. [PMID: 38830335 DOI: 10.1016/j.pbi.2024.102566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/02/2024] [Accepted: 05/13/2024] [Indexed: 06/05/2024]
Abstract
The endosperm, a product of double fertilization, is one of the keys to the evolution and success of angiosperms in conquering the land. While there are differences in endosperm development among flowering plants, the most common form is coenocytic growth, where the endosperm initially undergoes nuclear division without cytokinesis and eventually becomes cellularized. This complex process requires interplay among networks of transcription factors such as MADS-box, auxin response factors (ARFs), and phytohormones. The role of cytoskeletal elements in shaping the coenocytic endosperm and influencing seed growth also becomes evident. This review offers a recent understanding of the molecular and cellular dynamics in coenocytic endosperm development and their contributions to the final seed size.
Collapse
Affiliation(s)
- Vijyesh Sharma
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, USA
| | - Mohammad Foteh Ali
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, USA
| | - Tomokazu Kawashima
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
6
|
Del Toro-De León G, van Boven J, Santos-González J, Jiao WB, Peng H, Schneeberger K, Köhler C. Epigenetic and transcriptional consequences in the endosperm of chemically induced transposon mobilization in Arabidopsis. Nucleic Acids Res 2024; 52:8833-8848. [PMID: 38967011 PMCID: PMC11347142 DOI: 10.1093/nar/gkae572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/13/2024] [Accepted: 06/26/2024] [Indexed: 07/06/2024] Open
Abstract
Genomic imprinting, an epigenetic phenomenon leading to parent-of-origin-specific gene expression, has independently evolved in the endosperm of flowering plants and the placenta of mammals-tissues crucial for nurturing embryos. While transposable elements (TEs) frequently colocalize with imprinted genes and are implicated in imprinting establishment, direct investigations of the impact of de novo TE transposition on genomic imprinting remain scarce. In this study, we explored the effects of chemically induced transposition of the Copia element ONSEN on genomic imprinting in Arabidopsis thaliana. Through the combination of chemical TE mobilization and doubled haploid induction, we generated a line with 40 new ONSEN copies. Our findings reveal a preferential targeting of maternally expressed genes (MEGs) for transposition, aligning with the colocalization of H2A.Z and H3K27me3 in MEGs-both previously identified as promoters of ONSEN insertions. Additionally, we demonstrate that chemically-induced DNA hypomethylation induces global transcriptional deregulation in the endosperm, leading to the breakdown of MEG imprinting. This study provides insights into the consequences of chemically induced TE remobilization in the endosperm, revealing that chemically-induced epigenome changes can have long-term consequences on imprinted gene expression.
Collapse
Affiliation(s)
- Gerardo Del Toro-De León
- Department of Plant Reproductive Biology and Epigenetics, Max Planck Institute of Molecular Plant Physiology, Potsdam 14476, Germany
| | - Joram van Boven
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Centre for Plant Biology, Uppsala 75007, Sweden
| | - Juan Santos-González
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Centre for Plant Biology, Uppsala 75007, Sweden
| | - Wen-Biao Jiao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Haoran Peng
- Department of Plant Reproductive Biology and Epigenetics, Max Planck Institute of Molecular Plant Physiology, Potsdam 14476, Germany
| | - Korbinian Schneeberger
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne 50829, Germany
- Faculty for Biology, LMU Munich, Planegg-Martinsried 82152, Germany
- Cluster of Excellence on Plant Sciences, Heinrich-Heine University, Düsseldorf 40225, Germany
| | - Claudia Köhler
- Department of Plant Reproductive Biology and Epigenetics, Max Planck Institute of Molecular Plant Physiology, Potsdam 14476, Germany
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Centre for Plant Biology, Uppsala 75007, Sweden
| |
Collapse
|
7
|
Lempe J, Moser M, Asquini E, Si-Ammour A, Flachowsky H. Functional evidence on the involvement of the MADS-box gene MdDAM4 in bud dormancy regulation in apple. FRONTIERS IN PLANT SCIENCE 2024; 15:1433865. [PMID: 39077511 PMCID: PMC11284153 DOI: 10.3389/fpls.2024.1433865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 06/24/2024] [Indexed: 07/31/2024]
Abstract
Over the course of the year, temperate trees experience extremes in temperature and day length. In order to protect themselves from frost damage in winter, they enter a dormant state with no visible growth where all leaves are shed and buds are dormant. Also the young floral tissues need to withstand harsh winter conditions, as temperature fruit trees like apple develop their flower buds in the previous year of fruit development. So far, the genetic control of induction and release of dormancy is not fully understood. However, the transcription factor family of DORMANCY-Associated MADS-box (DAM) genes plays a major role in the control of winter dormancy. One of these genes is MdDAM4. This gene is expressed in the early phase of bud dormancy, but little is known about its function. Six transgenic apple lines were produced to study the function of MdDAM4 in apple. For plant transformation, the binary plasmid vector p9oN-35s-MdDAM4 was used that contains the coding sequence of MdDAM4 driven by the 35S promoter. Transgenicity of the lines was proven by PCR and southern hybridization. Based on siRNA sequencing and phenotypic observations, it was concluded that line M2024 overexpresses MdDAM4 whereas the gene is silenced in all other lines. Phenotyping of the transgenic lines provided evidence that the overexpression of MdDAM4 leads to an earlier induction and a later release of dormancy. Silencing this gene had exactly the opposite effects and thereby led to an increased duration of the vegetation period. Expression experiments revealed genes that were either potentially repressed or activated by MdDAM4. Among the potentially suppressed genes were several homologs of the cytokinin oxidase 5 (CKX5), five LOX homologs, and several expansins, which may indicate a link between MdDAM4 and the control of leaf senescence. Among the potentially activated genes is MdDAM1, which is in line with observed expression patterns during winter dormancy. MdDAM2, which shows little expression during endodormancy also appears to be activated by MdDAM4. Overall, this study provides experimental evidence with transgenic apple trees for MdDAM4 being an important regulator of the onset of bud dormancy in apple.
Collapse
Affiliation(s)
- Janne Lempe
- Julius Kühn Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Fruit Crops, Dresden, Germany
| | - Mirko Moser
- Research and Innovation Centre, Fondazione Edmund Mach (FEM), San Michele all’Adige, TN, Italy
| | - Elisa Asquini
- Research and Innovation Centre, Fondazione Edmund Mach (FEM), San Michele all’Adige, TN, Italy
| | - Azeddine Si-Ammour
- Research and Innovation Centre, Fondazione Edmund Mach (FEM), San Michele all’Adige, TN, Italy
| | - Henryk Flachowsky
- Julius Kühn Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Fruit Crops, Dresden, Germany
| |
Collapse
|
8
|
Qiao Z, Deng F, Zeng H, Li X, Lu L, Lei Y, Li L, Chen Y, Chen J. MADS-Box Family Genes in Lagerstroemia indica and Their Involvement in Flower Development. PLANTS (BASEL, SWITZERLAND) 2024; 13:709. [PMID: 38475555 DOI: 10.3390/plants13050709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/25/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024]
Abstract
MADS-box is a key transcription factor regulating the transition to flowering and flower development. Lagerstroemia indica 'Xiang Yun' is a new cultivar of crape myrtle characterized by its non-fruiting nature. To study the molecular mechanism underlying the non-fruiting characteristics of 'Xiang Yun', 82 MADS-box genes were identified from the genome of L. indica. The physicochemical properties of these genes were examined using bioinformatics methods, and their expression as well as endogenous hormone levels at various stages of flower development were analyzed. The results showed that LiMADS genes were primarily classified into two types: type I and type II, with the majority being type II that contained an abundance of cis-acting elements in their promoters. By screening nine core proteins by predicted protein interactions and performing qRT-PCR analysis as well as in combination with transcriptome data, we found that the expression levels of most MADS genes involved in flower development were significantly lower in 'Xiang Yun' than in the wild type 'Hong Ye'. Hormonal analysis indicated that 'Xiang Yun' had higher levels of iP, IPR, TZR, and zeatin during its early stages of flower development than 'Hong Ye', whereas the MeJA content was substantially lower at the late stage of flower development of 'Hong Ye'. Finally, correlation analysis showed that JA, IAA, SA, and TZR were positively correlated with the expression levels of most type II genes. Based on these analyses, a working model for the non-fruiting 'Xiang Yun' was proposed. During the course of flower development, plant hormone response pathways may affect the expression of MADS genes, resulting in their low expression in flower development, which led to the abnormal development of the stamen and embryo sac and ultimately affected the fruiting process of 'Xiang Yun'.
Collapse
Affiliation(s)
- Zhongquan Qiao
- Hunan Provincial Key Laboratory of Forest Clonal Breeding, Hunan Academy of Forestry, Changsha 410004, China
| | - Fuyuan Deng
- Hunan Provincial Key Laboratory of Forest Clonal Breeding, Hunan Academy of Forestry, Changsha 410004, China
| | - Huijie Zeng
- Hunan Provincial Key Laboratory of Forest Clonal Breeding, Hunan Academy of Forestry, Changsha 410004, China
| | - Xuelu Li
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
| | - Liushu Lu
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yuxing Lei
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
| | - Lu Li
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yi Chen
- Hunan Provincial Key Laboratory of Forest Clonal Breeding, Hunan Academy of Forestry, Changsha 410004, China
| | - Jianjun Chen
- Mid-Florida Research and Education Center, Environmental Horticulture Department, University of Florida, 2725 S. Binion Road, Apopka, FL 32703, USA
| |
Collapse
|
9
|
Bramsiepe J, Krabberød AK, Bjerkan KN, Alling RM, Johannessen IM, Hornslien KS, Miller JR, Brysting AK, Grini PE. Structural evidence for MADS-box type I family expansion seen in new assemblies of Arabidopsis arenosa and A. lyrata. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:942-961. [PMID: 37517071 DOI: 10.1111/tpj.16401] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 05/24/2023] [Accepted: 07/13/2023] [Indexed: 08/01/2023]
Abstract
Arabidopsis thaliana diverged from A. arenosa and A. lyrata at least 6 million years ago. The three species differ by genome-wide polymorphisms and morphological traits. The species are to a high degree reproductively isolated, but hybridization barriers are incomplete. A special type of hybridization barrier is based on the triploid endosperm of the seed, where embryo lethality is caused by endosperm failure to support the developing embryo. The MADS-box type I family of transcription factors is specifically expressed in the endosperm and has been proposed to play a role in endosperm-based hybridization barriers. The gene family is well known for its high evolutionary duplication rate, as well as being regulated by genomic imprinting. Here we address MADS-box type I gene family evolution and the role of type I genes in the context of hybridization. Using two de-novo assembled and annotated chromosome-level genomes of A. arenosa and A. lyrata ssp. petraea we analyzed the MADS-box type I gene family in Arabidopsis to predict orthologs, copy number, and structural genomic variation related to the type I loci. Our findings were compared to gene expression profiles sampled before and after the transition to endosperm cellularization in order to investigate the involvement of MADS-box type I loci in endosperm-based hybridization barriers. We observed substantial differences in type-I expression in the endosperm of A. arenosa and A. lyrata ssp. petraea, suggesting a genetic cause for the endosperm-based hybridization barrier between A. arenosa and A. lyrata ssp. petraea.
Collapse
Affiliation(s)
- Jonathan Bramsiepe
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, 0316, Oslo, Norway
- CEES, Department of Biosciences, University of Oslo, 0316, Oslo, Norway
| | - Anders K Krabberød
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, 0316, Oslo, Norway
| | - Katrine N Bjerkan
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, 0316, Oslo, Norway
- CEES, Department of Biosciences, University of Oslo, 0316, Oslo, Norway
| | - Renate M Alling
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, 0316, Oslo, Norway
- CEES, Department of Biosciences, University of Oslo, 0316, Oslo, Norway
| | - Ida M Johannessen
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, 0316, Oslo, Norway
| | - Karina S Hornslien
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, 0316, Oslo, Norway
| | - Jason R Miller
- College of STEM, Shepherd University, Shepherdstown, West Virginia, 25443-5000, USA
| | - Anne K Brysting
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, 0316, Oslo, Norway
- CEES, Department of Biosciences, University of Oslo, 0316, Oslo, Norway
| | - Paul E Grini
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, 0316, Oslo, Norway
| |
Collapse
|
10
|
Qiu Y, Li Z, Walther D, Köhler C. Updated Phylogeny and Protein Structure Predictions Revise the Hypothesis on the Origin of MADS-box Transcription Factors in Land Plants. Mol Biol Evol 2023; 40:msad194. [PMID: 37652031 PMCID: PMC10484287 DOI: 10.1093/molbev/msad194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/16/2023] [Accepted: 08/25/2023] [Indexed: 09/02/2023] Open
Abstract
MADS-box transcription factors (TFs), among the first TFs extensively studied, exhibit a wide distribution across eukaryotes and play diverse functional roles. Varying by domain architecture, MADS-box TFs in land plants are categorized into Type I (M-type) and Type II (MIKC-type). Type I and II genes have been considered orthologous to the SRF and MEF2 genes in animals, respectively, presumably originating from a duplication before the divergence of eukaryotes. Here, we exploited the increasing availability of eukaryotic MADS-box sequences and reassessed their evolution. While supporting the ancient duplication giving rise to SRF- and MEF2-types, we found that Type I and II genes originated from the MEF2-type genes through another duplication in the most recent common ancestor (MRCA) of land plants. Protein structures predicted by AlphaFold2 and OmegaFold support our phylogenetic analyses, with plant Type I and II TFs resembling the MEF2-type structure, rather than SRFs. We hypothesize that the ancestral SRF-type TFs were lost in the MRCA of Archaeplastida (the kingdom Plantae sensu lato). The retained MEF2-type TFs acquired a Keratin-like domain and became MIKC-type before the divergence of Streptophyta. Subsequently in the MRCA of land plants, M-type TFs evolved from a duplicated MIKC-type precursor through loss of the Keratin-like domain, leading to the Type I clade. Both Type I and II TFs expanded and functionally differentiated in concert with the increasing complexity of land plant body architecture. The recruitment of these originally stress-responsive TFs into developmental programs, including those underlying reproduction, may have facilitated the adaptation to the terrestrial environment.
Collapse
Affiliation(s)
- Yichun Qiu
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
- Swedish University of Agricultural Sciences & Linnean Center for Plant Biology, Uppsala BioCenter, Uppsala, Sweden
| | - Zhen Li
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Dirk Walther
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Claudia Köhler
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
- Swedish University of Agricultural Sciences & Linnean Center for Plant Biology, Uppsala BioCenter, Uppsala, Sweden
| |
Collapse
|
11
|
Rojek J, Ohad N. The phenomenon of autonomous endosperm in sexual and apomictic plants. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:4324-4348. [PMID: 37155961 PMCID: PMC10433939 DOI: 10.1093/jxb/erad168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 05/04/2023] [Indexed: 05/10/2023]
Abstract
Endosperm is a key nutritive tissue that supports the developing embryo or seedling, and serves as a major nutritional source for human and livestock feed. In sexually-reproducing flowering plants, it generally develops after fertilization. However, autonomous endosperm (AE) formation (i.e. independent of fertilization) is also possible. Recent findings of AE loci/ genes and aberrant imprinting in native apomicts, together with a successful initiation of parthenogenesis in rice and lettuce, have enhanced our understanding of the mechanisms bridging sexual and apomictic seed formation. However, the mechanisms driving AE development are not well understood. This review presents novel aspects related to AE development in sexual and asexual plants underlying stress conditions as the primary trigger for AE. Both application of hormones to unfertilized ovules and mutations that impair epigenetic regulation lead to AE development in sexual Arabidopsis thaliana, which may point to a common pathway for both phenomena. Apomictic-like AE development under experimental conditions can take place due to auxin-dependent gene expression and/or DNA methylation.
Collapse
Affiliation(s)
- Joanna Rojek
- Department of Plant Cytology and Embryology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Nir Ohad
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
12
|
Lin Y, Qi X, Wan Y, Chen Z, Fang H, Liang C. Genome-wide analysis of the MADS-box gene family in Lonicera japonica and a proposed floral organ identity model. BMC Genomics 2023; 24:447. [PMID: 37553575 PMCID: PMC10408238 DOI: 10.1186/s12864-023-09509-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 07/08/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND Lonicera japonica Thunb. is widely used in traditional Chinese medicine. Medicinal L. japonica mainly consists of dried flower buds and partially opened flowers, thus flowers are an important quality indicator. MADS-box genes encode transcription factors that regulate flower development. However, little is known about these genes in L. japonica. RESULTS In this study, 48 MADS-box genes were identified in L. japonica, including 20 Type-I genes (8 Mα, 2 Mβ, and 10 Mγ) and 28 Type-II genes (26 MIKCc and 2 MIKC*). The Type-I and Type-II genes differed significantly in gene structure, conserved domains, protein structure, chromosomal distribution, phylogenesis, and expression pattern. Type-I genes had a simpler gene structure, lacked the K domain, had low protein structure conservation, were tandemly distributed on the chromosomes, had more frequent lineage-specific duplications, and were expressed at low levels. In contrast, Type-II genes had a more complex gene structure; contained conserved M, I, K, and C domains; had highly conserved protein structure; and were expressed at high levels throughout the flowering period. Eleven floral homeotic MADS-box genes that are orthologous to the proposed Arabidopsis ABCDE model of floral organ identity determination, were identified in L. japonica. By integrating expression pattern and protein interaction data for these genes, we developed a possible model for floral organ identity determination. CONCLUSION This study genome-widely identified and characterized the MADS-box gene family in L. japonica. Eleven floral homeotic MADS-box genes were identified and a possible model for floral organ identity determination was also developed. This study contributes to our understanding of the MADS-box gene family and its possible involvement in floral organ development in L. japonica.
Collapse
Affiliation(s)
- Yi Lin
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Nanjing, 210014, Jiangsu Province, China
- Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xiwu Qi
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Nanjing, 210014, Jiangsu Province, China
| | - Yan Wan
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Nanjing, 210014, Jiangsu Province, China
- Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zequn Chen
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Nanjing, 210014, Jiangsu Province, China
| | - Hailing Fang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Nanjing, 210014, Jiangsu Province, China
| | - Chengyuan Liang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Nanjing, 210014, Jiangsu Province, China.
- Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
13
|
Genome-Wide Identification of MADS-Box Family Genes in Safflower ( Carthamus tinctorius L.) and Functional Analysis of CtMADS24 during Flowering. Int J Mol Sci 2023; 24:ijms24021026. [PMID: 36674539 PMCID: PMC9862418 DOI: 10.3390/ijms24021026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/14/2022] [Accepted: 12/27/2022] [Indexed: 01/07/2023] Open
Abstract
Safflower is an important economic crop with a plethora of industrial and medicinal applications around the world. The bioactive components of safflower petals are known to have pharmacological activity that promotes blood circulation and reduces blood stasis. However, fine-tuning the genetic mechanism of flower development in safflower is still required. In this study, we report the genome-wide identification of MADS-box transcription factors in safflower and the functional characterization of a putative CtMADS24 during vegetative and reproductive growth. In total, 77 members of MADS-box-encoding genes were identified from the safflower genome. The phylogenetic analysis divided CtMADS genes into two types and 15 subfamilies. Similarly, bioinformatic analysis, such as of conserved protein motifs, gene structures, and cis-regulatory elements, also revealed structural conservation of MADS-box genes in safflower. Furthermore, the differential expression pattern of CtMADS genes by RNA-seq data indicated that type II genes might play important regulatory roles in floral development. Similarly, the qRT-PCR analysis also revealed the transcript abundance of 12 CtMADS genes exhibiting tissue-specific expression in different flower organs. The nucleus-localized CtMADS24 of the AP1 subfamily was validated by transient transformation in tobacco using GFP translational fusion. Moreover, CtMADS24-overexpressed transgenic Arabidopsis exhibited early flowering and an abnormal phenotype, suggesting that CtMADS24 mediated the expression of genes involved in floral organ development. Taken together, these findings provide valuable information on the regulatory role of CtMADS24 during flower development in safflower and for the selection of important genes for future molecular breeding programs.
Collapse
|
14
|
Fang Y, Jiang J, Hou X, Guo J, Li X, Zhao D, Xie X. Plant protein-coding gene families: Their origin and evolution. FRONTIERS IN PLANT SCIENCE 2022; 13:995746. [PMID: 36160967 PMCID: PMC9490259 DOI: 10.3389/fpls.2022.995746] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 08/15/2022] [Indexed: 05/13/2023]
Abstract
Steady advances in genome sequencing methods have provided valuable insights into the evolutionary processes of several gene families in plants. At the core of plant biodiversity is an extensive genetic diversity with functional divergence and expansion of genes across gene families, representing unique phenomena. The evolution of gene families underpins the evolutionary history and development of plants and is the subject of this review. We discuss the implications of the molecular evolution of gene families in plants, as well as the potential contributions, challenges, and strategies associated with investigating phenotypic alterations to explain the origin of plants and their tolerance to environmental stresses.
Collapse
Affiliation(s)
- Yuanpeng Fang
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, China
| | - Junmei Jiang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Xiaolong Hou
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, China
| | - Jiyuan Guo
- Department of Resources and Environment, Moutai Institute, Zunyi, China
| | - Xiangyang Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Degang Zhao
- Key Laboratory of Mountain Plant Resources Protection and Germplasm Innovation, Ministry of Education, College of Life Sciences, Institute of Agricultural Bioengineering, Guizhou University, Guiyang, China
- Guizhou Conservation Technology Application Engineering Research Center, Guizhou Institute of Prataculture/Guizhou Institute of Biotechnology/Guizhou Academy of Agricultural Sciences, Guiyang, China
- *Correspondence: Degang Zhao,
| | - Xin Xie
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, China
- Guizhou Conservation Technology Application Engineering Research Center, Guizhou Institute of Prataculture/Guizhou Institute of Biotechnology/Guizhou Academy of Agricultural Sciences, Guiyang, China
- Xin Xie,
| |
Collapse
|