1
|
Xue Q, Hasan KS, Dweck O, Ebrahim SAM, Dweck HKM. Functional characterization and evolution of olfactory responses in coeloconic sensilla of the global fruit pest Drosophila suzukii. BMC Biol 2025; 23:50. [PMID: 39985002 PMCID: PMC11846463 DOI: 10.1186/s12915-025-02151-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 02/07/2025] [Indexed: 02/23/2025] Open
Abstract
BACKGROUND When a species changes its host preference, it often requires modifications in its sensory systems. Many of these changes remain largely uninvestigated in the global fruit pest Drosophila suzukii (also known as spotted wing Drosophila, SWD). This species, which shares a last common ancestor with the model organism D. melanogaster-a species that prefers overripe fruits- ~ 15 million years ago, has shifted its preference from overripe to ripe, soft-skinned fruits, causing significant damage to fruit industries worldwide. RESULTS Here, we functionally characterized the coeloconic sensilla in D. suzukii and compared their responses to those of its close relatives, D. biarmipes and D. melanogaster. We find that D. suzukii's responses are grouped into four functional types. These responses are consistent across sexes and reproductive status. The odorant receptor co-receptor Orco is required for certain responses. Comparative analysis across these species revealed evolutionary changes in physiological and behavioral responses to specific odorants, such as acetic acid, a key indicator of microbial fermentation, and phenylacetaldehyde, an aromatic compound found in a diverse range of fruits. Phenylacetaldehyde produced lower electrophysiological responses in D. suzukii compared to D. melanogaster and elicited strong attraction in D. suzukii but not in any of the other tested species. CONCLUSIONS The olfactory changes identified in this study likely play a significant role in the novel behavior of D. suzukii. This work also identifies phenylacetaldehyde as a potent attractant for D. suzukii, which can be used to develop targeted management strategies to mitigate the serious impact of this pest.
Collapse
Affiliation(s)
- Qi Xue
- Department of Entomology, The Connecticut Agricultural Experiment Station, New Haven, CT, 06511, USA
| | - Kazi Sifat Hasan
- Department of Entomology, The Connecticut Agricultural Experiment Station, New Haven, CT, 06511, USA
| | - Omar Dweck
- Department of Entomology, The Connecticut Agricultural Experiment Station, New Haven, CT, 06511, USA
- Wilbur Cross High School, 181 Mitchell Dr, New Haven, CT, 06511, USA
| | - Shimaa A M Ebrahim
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, 06511, USA
| | - Hany K M Dweck
- Department of Entomology, The Connecticut Agricultural Experiment Station, New Haven, CT, 06511, USA.
| |
Collapse
|
2
|
Pal Mahadevan V, Galagovsky D, Knaden M, Hansson BS. Preference for and resistance to a toxic sulfur volatile opens up a unique niche in Drosophila busckii. Nat Commun 2025; 16:767. [PMID: 39824833 PMCID: PMC11742422 DOI: 10.1038/s41467-025-55971-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 01/06/2025] [Indexed: 01/30/2025] Open
Abstract
The ability to tolerate otherwise toxic compounds can open up unique niches in nature. Among drosophilid flies, few examples of such adaptations are known and those which are known are typically from highly host-specific species. Here we show that the human commensal species Drosophila busckii uses dimethyldisulfide (DMDS) as a key mediator in its host selection. Despite DMDS's neurotoxic properties, D. busckii has evolved tolerance towards high concentrations and uses the compound as an olfactory cue to pinpoint food and oviposition sites. This adaptability is likely linked to insensitivity of the enzyme complex cytochrome c oxidase (COX), which is a DMDS target in other insects. Our findings position D. busckii as a potential model for studying resistance to toxic gases affecting COX and offers insight into evolutionary adaptations within specific ecological contexts.
Collapse
Affiliation(s)
- Venkatesh Pal Mahadevan
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
- Max Planck Center next Generation Insect Chemical Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Diego Galagovsky
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Markus Knaden
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
- Max Planck Center next Generation Insect Chemical Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Bill S Hansson
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany.
- Max Planck Center next Generation Insect Chemical Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany.
| |
Collapse
|
3
|
Tom MT, Brand P, Bucks S, Zhang J, Escobar Huezo ME, Hansson BS, Bisch-Knaden S. Gene expansion in the hawkmoth Manduca sexta drives evolution of food-associated odorant receptors. iScience 2024; 27:111317. [PMID: 39640564 PMCID: PMC11617253 DOI: 10.1016/j.isci.2024.111317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/30/2024] [Accepted: 10/30/2024] [Indexed: 12/07/2024] Open
Abstract
In insects, odorant receptors (ORs) are required for the detection of most olfactory cues. We investigated the function of a clade of four duplicated ORs in the hawkmoth Manduca sexta and found that these paralogs encode broadly tuned receptors with overlapping but distinct response spectra. Two paralogs, which arose after divergence from a related lineage, show high sensitivity to floral esters released by a nectar-rich plant frequently visited by M. sexta. Functional imaging in mutant moths lacking one of the paralogs suggests that olfactory sensory neurons expressing this OR target a previously identified feeding-associated glomerulus in the primary olfactory center of the brain. However, only the response of this glomerulus to the single ligand unique to the now mutated OR disappeared, suggesting neuronal coexpression of the paralogs. Our results suggest a link between the studied OR expansion and enhanced detection of odors emitted by valuable nectar sources in M. sexta.
Collapse
Affiliation(s)
- Megha Treesa Tom
- Department of Evolutionary Neuroethology, Max-Planck Institute for Chemical Ecology, Jena, Germany
| | - Philipp Brand
- Laboratory of Neurophysiology and Behavior, The Rockefeller University, New York, NY, USA
| | - Sascha Bucks
- Department of Evolutionary Neuroethology, Max-Planck Institute for Chemical Ecology, Jena, Germany
| | - Jin Zhang
- Department of Evolutionary Neuroethology, Max-Planck Institute for Chemical Ecology, Jena, Germany
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | | | - Bill S. Hansson
- Department of Evolutionary Neuroethology, Max-Planck Institute for Chemical Ecology, Jena, Germany
| | - Sonja Bisch-Knaden
- Department of Evolutionary Neuroethology, Max-Planck Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
4
|
Pal Mahadevan V, Stieber-Rödiger R, Knaden M, Hansson BS. Phenolics as ecologically relevant cues for slime flux breeding Drosophila virilis. iScience 2024; 27:111180. [PMID: 39555411 PMCID: PMC11567934 DOI: 10.1016/j.isci.2024.111180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/18/2024] [Accepted: 10/14/2024] [Indexed: 11/19/2024] Open
Abstract
Drosophila species belonging to the virilis group offer a unique opportunity for studying olfactory adaptations necessary for survival within forest ecosystems as many of these species breed within decaying plant vascular tissues. However, the knowledge regarding olfactory preferences within their ecological niche is extremely limited. Here, we focus on Drosophila virilis and identify over 120 distinct odors from a natural slime flux source. We identify lignin as an attractant and a positive oviposition cue for D. virilis. Furthermore, lignin-derived guaiacol is highlighted as a robust attractant for D. virilis. We demonstrate that guaiacol is detected by the DvirOr49b receptor, which exhibits a narrow sensitivity to methylphenols, including o-cresol. D. virilis and D. ezoana, both belonging to the virilis group, exhibit strong attraction to o-cresol. In summary, our research offers a comprehensive analysis of the diverse array of odorants encountered by D. virilis within its natural habitat and their behavioral significance.
Collapse
Affiliation(s)
- Venkatesh Pal Mahadevan
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
- Max Planck Center next Generation Insect Chemical Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Regina Stieber-Rödiger
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Markus Knaden
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
- Max Planck Center next Generation Insect Chemical Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Bill S. Hansson
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
- Max Planck Center next Generation Insect Chemical Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
5
|
Aguilar JM, Gloss AD, Suzuki HC, Verster KI, Singhal M, Hoff J, Grebenok R, Nabity PD, Behmer ST, Whiteman NK. Insights into the evolution of herbivory from a leaf-mining fly. Ecosphere 2024; 15:e4764. [PMID: 39247255 PMCID: PMC11378976 DOI: 10.1002/ecs2.4764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 09/08/2023] [Indexed: 09/10/2024] Open
Abstract
Herbivorous insects and their host plants comprise most known species on Earth. Illuminating how herbivory repeatedly evolved in insects from non-herbivorous lineages is critical to understanding how this biodiversity is created and maintained. We characterized the trophic niche of Scaptomyza flava, a representative of a lineage nested within the Drosophila that transitioned to herbivory ~10-15 million years ago. We used natural history studies to determine if S. flava is a true herbivore or a cryptic microbe-feeder, given that the ancestral character state for the family Drosophilidae is likely microbe-feeding. Specifically, we quantified oviposition substrate choice and larval viability across food-types, trophic-related morphological traits, and nitrogen isotope and sterol profiles across putatively herbivorous and non-herbivorous drosophilids. The results of these studies show that S. flava is an obligate herbivore of living plants. Paired with its genetic model host, Arabidopsis thaliana, S. flava is a novel and powerful system for exploring mechanisms underlying the evolution of herbivory, a complex trait that enabled the exceptional diversification of insects.
Collapse
Affiliation(s)
- Jessica M. Aguilar
- Department of Integrative Biology, University of California-Berkeley, Berkeley, CA 94720, USA
| | - Andrew D. Gloss
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Hiromu C. Suzuki
- Department of Integrative Biology, University of California-Berkeley, Berkeley, CA 94720, USA
| | - Kirsten I. Verster
- Department of Integrative Biology, University of California-Berkeley, Berkeley, CA 94720, USA
| | - Malvika Singhal
- Department of Integrative Biology, University of California-Berkeley, Berkeley, CA 94720, USA
| | - Jordan Hoff
- Department of Integrative Biology, University of California-Berkeley, Berkeley, CA 94720, USA
| | - Robert Grebenok
- Department of Biology, Canisius College, Buffalo, NY 14208, USA
| | - Paul D. Nabity
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Spencer T. Behmer
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
| | - Noah K. Whiteman
- Department of Integrative Biology, University of California-Berkeley, Berkeley, CA 94720, USA
- Department of Molecular & Cell Biology, University of California-Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
6
|
Ma Y, Yang TT, Ni S, Wang JX, He Y, Si YX, Zhang J, Dong SL, Yan Q. The Odorant Receptor Recognizing Camphor in a Camphor Tree Specialist Orthaga achatina (Lepidoptera: Pyralidae). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2689-2696. [PMID: 38267394 DOI: 10.1021/acs.jafc.3c08877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Camphor has been used as an effective repellent and pesticide to stored products for a long history, but Orthaga achatina (Lepidoptera: Pyralidae) has evolved to specifically feed on the camphor tree Cinnamomum camphora. However, the behavioral response of O. achatina to camphor and the molecular basis of camphor perception are totally unknown. Here, we demonstrated that both male and female adults were behaviorally attracted to camphor, suggesting the adaptation of O. achatina to and utilization of camphor as a signal of C. camphora. Second, in 40 O. achatina OR genes obtained by analyzing antenna transcriptomes, only OachOR16/Orco significantly responded to camphor in the Xenopus oocyte system. Finally, by molecular docking analysis and site-directed mutagenesis, the Ser209 residue is confirmed to be essential for binding of the oachOR16 with camphor. This study not only reveals the camphor-based host plant choice and olfactory mechanisms of O. achatina but also provides a molecular target for screening more potential insect repellents.
Collapse
Affiliation(s)
- Yu Ma
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Ting-Ting Yang
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuang Ni
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Ji-Xiang Wang
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu He
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu-Xiao Si
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Jin Zhang
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuang-Lin Dong
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Qi Yan
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
7
|
Chang H, Unni AP, Tom MT, Cao Q, Liu Y, Wang G, Llorca LC, Brase S, Bucks S, Weniger K, Bisch-Knaden S, Hansson BS, Knaden M. Odorant detection in a locust exhibits unusually low redundancy. Curr Biol 2023; 33:5427-5438.e5. [PMID: 38070506 DOI: 10.1016/j.cub.2023.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/11/2023] [Accepted: 11/08/2023] [Indexed: 12/21/2023]
Abstract
Olfactory coding, from insects to humans, is canonically considered to involve considerable across-fiber coding already at the peripheral level, thereby allowing recognition of vast numbers of odor compounds. We show that the migratory locust has evolved an alternative strategy built on highly specific odorant receptors feeding into a complex primary processing center in the brain. By collecting odors from food and different life stages of the locust, we identified 205 ecologically relevant odorants, which we used to deorphanize 48 locust olfactory receptors via ectopic expression in Drosophila. Contrary to the often broadly tuned olfactory receptors of other insects, almost all locust receptors were found to be narrowly tuned to one or very few ligands. Knocking out a single receptor using CRISPR abolished physiological and behavioral responses to the corresponding ligand. We conclude that the locust olfactory system, with most olfactory receptors being narrowly tuned, differs from the so-far described olfactory systems.
Collapse
Affiliation(s)
- Hetan Chang
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans Knoell Strasse 8, 07745 Jena, Germany; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Afairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Anjana P Unni
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans Knoell Strasse 8, 07745 Jena, Germany
| | - Megha Treesa Tom
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans Knoell Strasse 8, 07745 Jena, Germany
| | - Qian Cao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Guirong Wang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Afairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Lucas Cortés Llorca
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans Knoell Strasse 8, 07745 Jena, Germany
| | - Sabine Brase
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans Knoell Strasse 8, 07745 Jena, Germany
| | - Sascha Bucks
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans Knoell Strasse 8, 07745 Jena, Germany
| | - Kerstin Weniger
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans Knoell Strasse 8, 07745 Jena, Germany
| | - Sonja Bisch-Knaden
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans Knoell Strasse 8, 07745 Jena, Germany
| | - Bill S Hansson
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans Knoell Strasse 8, 07745 Jena, Germany
| | - Markus Knaden
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans Knoell Strasse 8, 07745 Jena, Germany.
| |
Collapse
|
8
|
Wei ZQ, Wang JX, Guo JM, Liu XL, Yan Q, Zhang J, Dong SL. An odorant receptor tuned to an attractive plant volatile vanillin in Spodoptera litura. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 196:105619. [PMID: 37945255 DOI: 10.1016/j.pestbp.2023.105619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/02/2023] [Accepted: 09/11/2023] [Indexed: 11/12/2023]
Abstract
The insect olfaction plays crucial roles in many important behaviors, in which ORs are key determinants for signal transduction and the olfactory specificity. Spodoptera litura is a typical polyphagous pest, possessing a large repertoire of ORs tuning to broad range of plant odorants. However, the specific functions of those ORs remain mostly unknown. In this study, we functionally characterized one S. litura OR (OR51) that was highly expressed in the adult antennae. First, by using Xenopus oocyte expression and two-electrode voltage clamp recording system (XOE-TEVC), OR51 was found to be strongly and specifically responsive to vanillin (a volatile of S. litura host plants) among 77 tested odorants. Second, electroantennogram (EAG) and Y-tube behavioral experiment showed that vanillin elicited significant EAG response and attraction behavior especially of female adults. This female attraction was further confirmed by the oviposition experiment, in which the soybean plants treated with vanillin were significantly preferred by females for egg-laying. Third, 3D structural modelling and molecular docking were conducted to explore the interaction between OR51 and vanillin, which showed a high affinity (-4.46 kcal/mol) and three residues (Gln163, Phe164 and Ala305) forming hydrogen bonds with vanillin, supporting the specific binding of OR51 to vanillin. In addition, OR51 and its homologs from other seven noctuid species shared high amino acid identities (78-97%) and the same three hydrogen bond forming residues, suggesting a conserved function of the OR in these insects. Taken together, our study provides some new insights into the olfactory mechanisms of host plant finding and suggests potential applications of vanillin in S. litura control.
Collapse
Affiliation(s)
- Zhi-Qiang Wei
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education / College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Ji-Xiang Wang
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education / College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Jin-Meng Guo
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education / College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiao-Long Liu
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education / College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Qi Yan
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education / College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Jin Zhang
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education / College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuang-Lin Dong
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education / College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
9
|
Peláez JN, Gloss AD, Goldman-Huertas B, Kim B, Lapoint RT, Pimentel-Solorio G, Verster KI, Aguilar JM, Nelson Dittrich AC, Singhal M, Suzuki HC, Matsunaga T, Armstrong EE, Charboneau JLM, Groen SC, Hembry DH, Ochoa CJ, O’Connor TK, Prost S, Zaaijer S, Nabity PD, Wang J, Rodas E, Liang I, Whiteman NK. Evolution of chemosensory and detoxification gene families across herbivorous Drosophilidae. G3 (BETHESDA, MD.) 2023; 13:jkad133. [PMID: 37317982 PMCID: PMC10411586 DOI: 10.1093/g3journal/jkad133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 03/19/2023] [Accepted: 05/31/2023] [Indexed: 06/16/2023]
Abstract
Herbivorous insects are exceptionally diverse, accounting for a quarter of all known eukaryotic species, but the genomic basis of adaptations that enabled this dietary transition remains poorly understood. Many studies have suggested that expansions and contractions of chemosensory and detoxification gene families-genes directly mediating interactions with plant chemical defenses-underlie successful plant colonization. However, this hypothesis has been challenging to test because the origins of herbivory in many insect lineages are ancient (>150 million years ago (mya)), obscuring genomic evolutionary patterns. Here, we characterized chemosensory and detoxification gene family evolution across Scaptomyza, a genus nested within Drosophila that includes a recently derived (<15 mya) herbivore lineage of mustard (Brassicales) specialists and carnation (Caryophyllaceae) specialists, and several nonherbivorous species. Comparative genomic analyses revealed that herbivorous Scaptomyza has among the smallest chemosensory and detoxification gene repertoires across 12 drosophilid species surveyed. Rates of gene turnover averaged across the herbivore clade were significantly higher than background rates in over half of the surveyed gene families. However, gene turnover was more limited along the ancestral herbivore branch, with only gustatory receptors and odorant-binding proteins experiencing strong losses. The genes most significantly impacted by gene loss, duplication, or changes in selective constraint were those involved in detecting compounds associated with feeding on living plants (bitter or electrophilic phytotoxins) or their ancestral diet (fermenting plant volatiles). These results provide insight into the molecular and evolutionary mechanisms of plant-feeding adaptations and highlight gene candidates that have also been linked to other dietary transitions in Drosophila.
Collapse
Affiliation(s)
- Julianne N Peláez
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720, USA
- Department of Biology, Brandeis University, Waltham, MA 02453, USA
| | - Andrew D Gloss
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
- Department of Biology and Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - Benjamin Goldman-Huertas
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720, USA
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Bernard Kim
- Department of Biology, Stanford University, Palo Alto, CA 94305, USA
| | - Richard T Lapoint
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | | | - Kirsten I Verster
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720, USA
- Department of Biology, Stanford University, Palo Alto, CA 94305, USA
| | - Jessica M Aguilar
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Anna C Nelson Dittrich
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, USA
| | - Malvika Singhal
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720, USA
- Department of Chemistry & Biochemistry, University of Oregon, Eugene, OR 97403, USA
| | - Hiromu C Suzuki
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Teruyuki Matsunaga
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Ellie E Armstrong
- Department of Biology, Stanford University, Palo Alto, CA 94305, USA
| | - Joseph L M Charboneau
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Simon C Groen
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720, USA
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
- Department of Biology and Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
- Department of Nematology, University of California Riverside, Riverside, CA 92521, USA
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA 92521, USA
- Center for Plant Cell Biology and Institute for Integrative Genome Biology, University of California Riverside, Riverside, CA 92521, USA
| | - David H Hembry
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
- Department of Biology, University of Texas Permian Basin, Odessa, TX 79762, USA
| | - Christopher J Ochoa
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720, USA
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Timothy K O’Connor
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Stefan Prost
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720, USA
- Department of Biology, Stanford University, Palo Alto, CA 94305, USA
| | - Sophie Zaaijer
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
- Jacobs Institute, Cornell Tech, New York, NY 10044, USA
- FIND Genomics, New York, NY 10044, USA
| | - Paul D Nabity
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA 92521, USA
| | - Jiarui Wang
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720, USA
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90007, USA
| | - Esteban Rodas
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Irene Liang
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Noah K Whiteman
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
10
|
Pelaez JN, Gloss AD, Goldman-Huertas B, Kim B, Lapoint RT, Pimentel-Solorio G, Verster KI, Aguilar JM, Dittrich ACN, Singhal M, Suzuki HC, Matsunaga T, Armstrong EE, Charboneau JL, Groen SC, Hembry DH, Ochoa CJ, O’Connor TK, Prost S, Zaaijer S, Nabity PD, Wang J, Rodas E, Liang I, Whiteman NK. Evolution of chemosensory and detoxification gene families across herbivorous Drosophilidae. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.16.532987. [PMID: 36993186 PMCID: PMC10055167 DOI: 10.1101/2023.03.16.532987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Herbivorous insects are exceptionally diverse, accounting for a quarter of all known eukaryotic species, but the genetic basis of adaptations that enabled this dietary transition remains poorly understood. Many studies have suggested that expansions and contractions of chemosensory and detoxification gene families - genes directly mediating interactions with plant chemical defenses - underlie successful plant colonization. However, this hypothesis has been challenging to test because the origins of herbivory in many lineages are ancient (>150 million years ago [mya]), obscuring genomic evolutionary patterns. Here, we characterized chemosensory and detoxification gene family evolution across Scaptomyza, a genus nested within Drosophila that includes a recently derived (<15 mya) herbivore lineage of mustard (Brassicales) specialists and carnation (Caryophyllaceae) specialists, and several non-herbivorous species. Comparative genomic analyses revealed that herbivorous Scaptomyza have among the smallest chemosensory and detoxification gene repertoires across 12 drosophilid species surveyed. Rates of gene turnover averaged across the herbivore clade were significantly higher than background rates in over half of the surveyed gene families. However, gene turnover was more limited along the ancestral herbivore branch, with only gustatory receptors and odorant binding proteins experiencing strong losses. The genes most significantly impacted by gene loss, duplication, or changes in selective constraint were those involved in detecting compounds associated with feeding on plants (bitter or electrophilic phytotoxins) or their ancestral diet (yeast and fruit volatiles). These results provide insight into the molecular and evolutionary mechanisms of plant-feeding adaptations and highlight strong gene candidates that have also been linked to other dietary transitions in Drosophila .
Collapse
Affiliation(s)
- Julianne N. Pelaez
- Department of Integrative Biology, University of California-Berkeley, Berkeley, CA 94720, USA
- Department of Biology, Brandeis University, Waltham, MA 02453, USA
| | - Andrew D. Gloss
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
- Department of Biology and Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - Benjamin Goldman-Huertas
- Department of Integrative Biology, University of California-Berkeley, Berkeley, CA 94720, USA
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Bernard Kim
- Department of Biology, Stanford University, Palo Alto, CA 94305, USA
| | - Richard T. Lapoint
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
- National Center for Biotechnology Information, Bethesda, MD 20894, USA
| | | | - Kirsten I. Verster
- Department of Integrative Biology, University of California-Berkeley, Berkeley, CA 94720, USA
- Department of Biology, Stanford University, Palo Alto, CA 94305, USA
| | - Jessica M. Aguilar
- Department of Integrative Biology, University of California-Berkeley, Berkeley, CA 94720, USA
| | - Anna C. Nelson Dittrich
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
- Boyce Thompson Institute, Ithaca NY 14853 USA
| | - Malvika Singhal
- Department of Integrative Biology, University of California-Berkeley, Berkeley, CA 94720, USA
- Department of Chemistry & Biochemistry, University of Oregon, OR, CA 97403, USA
| | - Hiromu C. Suzuki
- Department of Integrative Biology, University of California-Berkeley, Berkeley, CA 94720, USA
| | - Teruyuki Matsunaga
- Department of Integrative Biology, University of California-Berkeley, Berkeley, CA 94720, USA
| | | | - Joseph L.M. Charboneau
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Simon C. Groen
- Department of Integrative Biology, University of California-Berkeley, Berkeley, CA 94720, USA
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
- Department of Biology and Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
- Department of Nematology, University of California-Riverside, Riverside, CA 92521, USA
- Department of Botany and Plant Sciences, University of California-Riverside, Riverside, CA 92521, USA
- Center for Plant Cell Biology and Institute for Integrative Genome Biology, University of California-Riverside, Riverside, CA 92521, USA
| | - David H. Hembry
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
- Department of Biology, University of Texas Permian Basin, Odessa, TX 79762, USA
| | - Christopher J. Ochoa
- Department of Integrative Biology, University of California-Berkeley, Berkeley, CA 94720, USA
- Molecular Biology Institute, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | - Timothy K. O’Connor
- Department of Integrative Biology, University of California-Berkeley, Berkeley, CA 94720, USA
| | - Stefan Prost
- Department of Integrative Biology, University of California-Berkeley, Berkeley, CA 94720, USA
- Department of Biology, Stanford University, Palo Alto, CA 94305, USA
| | - Sophie Zaaijer
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
- Jacobs Institute, Cornell Tech, New York, NY 10044, USA
- FIND Genomics, New York, NY 10044, USA
| | - Paul D. Nabity
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
- Department of Botany and Plant Sciences, University of California-Riverside, Riverside, CA 92521, USA
| | - Jiarui Wang
- Department of Integrative Biology, University of California-Berkeley, Berkeley, CA 94720, USA
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90007, USA
| | - Esteban Rodas
- Department of Integrative Biology, University of California-Berkeley, Berkeley, CA 94720, USA
| | - Irene Liang
- Department of Integrative Biology, University of California-Berkeley, Berkeley, CA 94720, USA
| | - Noah K. Whiteman
- Department of Integrative Biology, University of California-Berkeley, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
11
|
Reisenman CE, Wong J, Vedagarbha N, Livelo C, Scott K. Taste adaptations associated with host specialization in the specialist Drosophila sechellia. J Exp Biol 2023; 226:jeb244641. [PMID: 36637369 PMCID: PMC10088416 DOI: 10.1242/jeb.244641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 01/09/2023] [Indexed: 01/14/2023]
Abstract
Chemosensory-driven host plant specialization is a major force mediating insect ecological adaptation and speciation. Drosophila sechellia, a species endemic to the Seychelles islands, feeds and oviposits on Morinda citrifolia almost exclusively. This fruit is harmless to D. sechellia but toxic to other Drosophilidae, including the closely related generalists D. simulans and D. melanogaster, because of its high content of fatty acids. While several olfactory adaptations mediating D. sechellia's preference for its host have been uncovered, the role of taste has been much less examined. We found that D. sechellia has reduced taste and feeding aversion to bitter compounds and host fatty acids that are aversive to D. melanogaster and D. simulans. The loss of aversion to canavanine, coumarin and fatty acids arose in the D. sechellia lineage, as its sister species D. simulans showed responses akin to those of D. melanogaster. Drosophila sechellia has increased taste and feeding responses towards M. citrifolia. These results are in line with D. sechellia's loss of genes that encode bitter gustatory receptors (GRs) in D. melanogaster. We found that two GR genes which are lost in D. sechellia, GR39a.a and GR28b.a, influence the reduction of aversive responses to some bitter compounds. Also, D. sechellia has increased appetite for a prominent host fatty acid compound that is toxic to its relatives. Our results support the hypothesis that changes in the taste system, specifically a reduction of sensitivity to bitter compounds that deter generalist ancestors, contribute to the specialization of D. sechellia for its host.
Collapse
Affiliation(s)
- Carolina E. Reisenman
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3200, USA
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720-3200, USA
- Essig Museum of Entomology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Joshua Wong
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3200, USA
| | - Namrata Vedagarbha
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3200, USA
| | | | - Kristin Scott
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3200, USA
| |
Collapse
|
12
|
Abstract
Among the many wonders of nature, the sense of smell of the fly Drosophila melanogaster might seem, at first glance, of esoteric interest. Nevertheless, for over a century, the 'nose' of this insect has been an extraordinary system to explore questions in animal behaviour, ecology and evolution, neuroscience, physiology and molecular genetics. The insights gained are relevant for our understanding of the sensory biology of vertebrates, including humans, and other insect species, encompassing those detrimental to human health. Here, I present an overview of our current knowledge of D. melanogaster olfaction, from molecules to behaviours, with an emphasis on the historical motivations of studies and illustration of how technical innovations have enabled advances. I also highlight some of the pressing and long-term questions.
Collapse
Affiliation(s)
- Richard Benton
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
13
|
Yang Y, Hua D, Zhu J, Wang F, Zhang Y. Chemosensory protein 4 is required for Bradysia odoriphaga to be olfactory attracted to sulfur compounds released from Chinese chives. Front Physiol 2022; 13:989601. [PMID: 36237523 PMCID: PMC9552003 DOI: 10.3389/fphys.2022.989601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Bradysia odoriphaga (Diptera: Sciaridae) is a serious pest of Chinese chives cultivated in China. Chemosensory proteins (CSPs) are important components of insect olfactory systems that capture and bind environmental semiochemicals which are then transported to olfactory receptors. Despite their importance, the mechanism of olfaction and related behavioral processes in B. odoriphaga have not been characterized. Here, we found that BodoCSP4 has an important olfactory function. RT-qPCR indicated that BodoCSP4 expression was highest in the heads (antennae removed) of adult males, followed by the antennae of adult males. Competitive binding assays with 33 ligands indicated that BodoCSP4 binds well with methyl allyl disulfide, diallyl disulfide, and n-heptadecane; the corresponding dissolution constants (Ki) were as high as 5.71, 5.71, and 6.85 μM, respectively. 3D-structural and molecular docking indicated that BodoCSP4 has five α-helices and surrounds the ligand with certain hydrophobic residues including Leu60, Leu63, Leu64, Ala67, Val28, Ile30, Ile33, Leu34, and Val86, suggesting these residues help BodoCSP4 bind to ligands. Silencing of BodoCSP4 significantly decreased the attraction of B. odoriphaga males to diallyl disulfide and n-heptadecane but not to methyl allyl disulfide in Y-tube olfaction assays. These results increase our understanding of how BodoCSP4 contributes to host and female localization by B. odoriphaga males.
Collapse
Affiliation(s)
- Yuting Yang
- Hubei Engineering Technology Center for Pest Forewarning and Management, Institute of Insect Sciences, Yangtze University, Jingzhou, Hubei, China
| | - Dengke Hua
- Institute of Agricultural Quality Standards and Testing Technology Research, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Nutritional Quality and Safety of Agro Products, Wuhan, Hubei, China
| | - Jiaqi Zhu
- Hubei Engineering Technology Center for Pest Forewarning and Management, Institute of Insect Sciences, Yangtze University, Jingzhou, Hubei, China
| | - Fu Wang
- Hubei Engineering Technology Center for Pest Forewarning and Management, Institute of Insect Sciences, Yangtze University, Jingzhou, Hubei, China
| | - Youjun Zhang
- Hubei Engineering Technology Center for Pest Forewarning and Management, Institute of Insect Sciences, Yangtze University, Jingzhou, Hubei, China
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Youjun Zhang,
| |
Collapse
|
14
|
Yin N, Xiao H, Yang A, Wu C, Liu N. Genome-Wide Analysis of Odorant and Gustatory Receptors in Six Papilio Butterflies (Lepidoptera: Papilionidae). INSECTS 2022; 13:779. [PMID: 36135480 PMCID: PMC9500883 DOI: 10.3390/insects13090779] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/20/2022] [Accepted: 08/26/2022] [Indexed: 06/16/2023]
Abstract
The chemical interactions of insects and host plants are shaping the evolution of chemosensory receptor gene families. However, the correlation between host range and chemoreceptor gene repertoire sizes is still elusive in Papilionidae. Here, we addressed the issue of whether host plant diversities are correlated with the expansions of odorant (ORs) or gustatory (GRs) receptors in six Papilio butterflies. By combining genomics, transcriptomics and bioinformatics approaches, 381 ORs and 328 GRs were annotated in the genomes of a generalist P. glaucus and five specialists, P. xuthus, P. polytes, P. memnon, P. machaon and P. dardanus. Orthologous ORs or GRs in Papilio had highly conserved gene structure. Five Papilio specialists exhibited a similar frequency of intron lengths for ORs or GRs, but which was different from those in the generalist. Phylogenetic analysis revealed 60 orthologous OR groups, 45 of which shared one-to-one relationships. Such a single gene in each butterfly also occurred in 26 GR groups. Intriguingly, bitter GRs had fewer introns than other GRs and clustered into a large clade. Focusing on the two chemoreceptor gene families in P. xuthus, most PxutORs (52/58) were expressed in antennae and 31 genes in reproductive tissues. Eleven out of 28 foretarsus-expressed PxutGRs were female-biased genes, as strong candidates for sensing oviposition stimulants. These results indicate that the host range may not shape the large-scale expansions of ORs and GRs in Papilio butterflies and identify important molecular targets involved in olfaction, oviposition or reproduction in P. xuthus.
Collapse
Affiliation(s)
| | | | | | | | - Naiyong Liu
- Correspondence: ; Tel./Fax: +86-871-63862665
| |
Collapse
|
15
|
Snoeck S, Guayazán-Palacios N, Steinbrenner AD. Molecular tug-of-war: Plant immune recognition of herbivory. THE PLANT CELL 2022; 34:1497-1513. [PMID: 35026025 PMCID: PMC9048929 DOI: 10.1093/plcell/koac009] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 01/07/2022] [Indexed: 05/22/2023]
Abstract
Plant defense responses against insect herbivores are induced through wound-induced signaling and the specific perception of herbivore-associated molecular patterns (HAMPs). In addition, herbivores can deliver effectors that suppress plant immunity. Here we review plant immune recognition of HAMPs and effectors, and argue that these initial molecular interactions upon a plant-herbivore encounter mediate and structure effective resistance. While the number of distinct HAMPs and effectors from both chewing and piercing-sucking herbivores has expanded rapidly with omics-enabled approaches, paired receptors and targets in the host are still not well characterized. Herbivore-derived effectors may also be recognized as HAMPs depending on the host plant species, potentially through the evolution of novel immune receptor functions. We compile examples of HAMPs and effectors where natural variation between species may inform evolutionary patterns and mechanisms of plant-herbivore interactions. Finally, we discuss the combined effects of wounding and HAMP recognition, and review potential signaling hubs, which may integrate both sensing functions. Understanding the precise mechanisms for plant sensing of herbivores will be critical for engineering resistance in agriculture.
Collapse
Affiliation(s)
- Simon Snoeck
- Department of Biology, University of Washington, Seattle, Washington, USA
| | | | | |
Collapse
|