1
|
Hoang NV, Walden N, Caracciolo L, Luoni SB, Retta M, Li R, Wolters FC, Woldu T, Becker FFM, Verbaarschot P, Harbinson J, Driever SM, Struik PC, van Amerongen H, de Ridder D, Aarts MGM, Schranz ME. Expanding the Triangle of U: Comparative analysis of the Hirschfeldia incana genome provides insights into chromosomal evolution, phylogenomics and high photosynthesis-related traits. ANNALS OF BOTANY 2024:mcae179. [PMID: 39446469 DOI: 10.1093/aob/mcae179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Indexed: 02/14/2025]
Abstract
BACKGROUND AND AIMS The Brassiceae tribe encompasses many economically important crops and exhibits high intraspecific and interspecific phenotypic variation. After a shared whole-genome triplication (WGT) event (Br-α, ~15.9 million years ago), differential lineage diversification and genomic changes contributed to an array of divergence in morphology, biochemistry, and physiology underlying photosynthesis-related traits. Here, the C3 species Hirschfeldia incana is studied as it displays high photosynthetic rates under high-light conditions. Our aim was to elucidate the evolution that gave rise to the genome of H. incana and its high-photosynthesis traits. METHODS We reconstructed a chromosome-level genome assembly for H. incana (Nijmegen, v2.0) using nanopore and chromosome conformation capture (Hi-C) technologies, with 409Mb in size and an N50 of 52Mb (a 10× improvement over the previously published scaffold-level v1.0 assembly). The updated assembly and annotation was subsequently employed to investigate the WGT history of H. incana in a comparative phylogenomic framework from the Brassiceae ancestral genomic blocks and related diploidized crops. KEY RESULTS Hirschfeldia incana (x=7) shares extensive genome collinearity with Raphanus sativus (x=9). These two species share some commonalities with Brassica rapa and B. oleracea (A genome, x=10 and C genome, x=9, respectively) and other similarities with B. nigra (B genome, x=8). Phylogenetic analysis revealed that H. incana and R. sativus form a monophyletic clade in between the Brassica A/C and B genomes. We postulate that H. incana and R. sativus genomes are results of hybridization or introgression of the Brassica A/C and B genome types. Our results might explain the discrepancy observed in published studies regarding phylogenetic placement of H. incana and R. sativus in relation to the "Triangle of U" species. Expression analysis of WGT retained gene copies revealed sub-genome expression divergence, likely due to neo- or sub-functionalization. Finally, we highlighted genes associated with physio-biochemical-anatomical adaptive changes observed in H. incana which likely facilitate its high-photosynthesis traits under high light. CONCLUSIONS The improved H. incana genome assembly, annotation and results presented in this work will be a valuable resource for future research to unravel the genetic basis of its ability to maintain a high photosynthetic efficiency in high-light conditions and thereby improve photosynthesis for enhanced agricultural production.
Collapse
Affiliation(s)
- Nam V Hoang
- Biosystematics Group, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Nora Walden
- Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Ludovico Caracciolo
- Laboratory of Biophysics, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Sofia Bengoa Luoni
- Laboratory of Genetics, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Moges Retta
- Centre for Crop Systems Analysis, Wageningen University and Research, P.O. Box 430, 6700 AK Wageningen, The Netherlands
| | - Run Li
- Biosystematics Group, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Felicia C Wolters
- Biosystematics Group, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Bioinformatics Group, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Tina Woldu
- Bioinformatics Group, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Frank F M Becker
- Laboratory of Genetics, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Patrick Verbaarschot
- Biosystematics Group, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Jeremy Harbinson
- Laboratory of Biophysics, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Steven M Driever
- Centre for Crop Systems Analysis, Wageningen University and Research, P.O. Box 430, 6700 AK Wageningen, The Netherlands
| | - Paul C Struik
- Centre for Crop Systems Analysis, Wageningen University and Research, P.O. Box 430, 6700 AK Wageningen, The Netherlands
| | - Herbert van Amerongen
- Laboratory of Biophysics, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Dick de Ridder
- Bioinformatics Group, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Mark G M Aarts
- Laboratory of Genetics, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - M Eric Schranz
- Biosystematics Group, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
2
|
Gao S, Jia Y, Guo H, Xu T, Wang B, Bush SJ, Wan S, Zhang Y, Yang X, Ye K. The centromere landscapes of four karyotypically diverse Papaver species provide insights into chromosome evolution and speciation. CELL GENOMICS 2024; 4:100626. [PMID: 39084227 PMCID: PMC11406182 DOI: 10.1016/j.xgen.2024.100626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/16/2024] [Accepted: 07/09/2024] [Indexed: 08/02/2024]
Abstract
Understanding the roles played by centromeres in chromosome evolution and speciation is complicated by the fact that centromeres comprise large arrays of tandemly repeated satellite DNA, which hinders high-quality assembly. Here, we used long-read sequencing to generate nearly complete genome assemblies for four karyotypically diverse Papaver species, P. setigerum (2n = 44), P. somniferum (2n = 22), P. rhoeas (2n = 14), and P. bracteatum (2n = 14), collectively representing 45 gapless centromeres. We identified four centromere satellite (cenSat) families and experimentally validated two representatives. For the two allopolyploid genomes (P. somniferum and P. setigerum), we characterized the subgenomic distribution of each satellite and identified a "homogenizing" phase of centromere evolution in the aftermath of hybridization. An interspecies comparison of the peri-centromeric regions further revealed extensive centromere-mediated chromosome rearrangements. Taking these results together, we propose a model for studying cenSat competition after hybridization and shed further light on the complex role of the centromere in speciation.
Collapse
Affiliation(s)
- Shenghan Gao
- School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China; School of Computer Science and Technology, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China; MOE Key Lab for Intelligent Networks & Networks Security, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Yanyan Jia
- School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Hongtao Guo
- School of Computer Science and Technology, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Tun Xu
- School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China; MOE Key Lab for Intelligent Networks & Networks Security, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Bo Wang
- School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Stephen J Bush
- School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Shijie Wan
- School of Computer Science and Technology, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Yimeng Zhang
- School of Computer Science and Technology, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Xiaofei Yang
- School of Computer Science and Technology, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China; MOE Key Lab for Intelligent Networks & Networks Security, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
| | - Kai Ye
- School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China; MOE Key Lab for Intelligent Networks & Networks Security, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China; Center for Mathematical Medical, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Genome Institute, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China; Faculty of Science, Leiden University, Leiden 2311EZ, the Netherlands.
| |
Collapse
|
3
|
Liu J, Zhou SZ, Liu YL, Zhao BY, Yu D, Zhong MC, Jiang XD, Cui WH, Zhao JX, Qiu J, Liu LM, Guo ZH, Li HT, Tan DY, Hu JY, Li DZ. Genomes of Meniocus linifolius and Tetracme quadricornis reveal the ancestral karyotype and genomic features of core Brassicaceae. PLANT COMMUNICATIONS 2024; 5:100878. [PMID: 38475995 PMCID: PMC11287156 DOI: 10.1016/j.xplc.2024.100878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 03/03/2024] [Accepted: 03/11/2024] [Indexed: 03/14/2024]
Abstract
Brassicaceae represents an important plant family from both a scientific and economic perspective. However, genomic features related to the early diversification of this family have not been fully characterized, especially upon the uplift of the Tibetan Plateau, which was followed by increasing aridity in the Asian interior, intensifying monsoons in Eastern Asia, and significantly fluctuating daily temperatures. Here, we reveal the genomic architecture that accompanied early Brassicaceae diversification by analyzing two high-quality chromosome-level genomes for Meniocus linifolius (Arabodae; clade D) and Tetracme quadricornis (Hesperodae; clade E), together with genomes representing all major Brassicaceae clades and the basal Aethionemeae. We reconstructed an ancestral core Brassicaceae karyotype (CBK) containing 9 pseudochromosomes with 65 conserved syntenic genomic blocks and identified 9702 conserved genes in Brassicaceae. We detected pervasive conflicting phylogenomic signals accompanied by widespread ancient hybridization events, which correlate well with the early divergence of core Brassicaceae. We identified a successive Brassicaceae-specific expansion of the class I TREHALOSE-6-PHOSPHATE SYNTHASE 1 (TPS1) gene family, which encodes enzymes with essential regulatory roles in flowering time and embryo development. The TPS1s were mainly randomly amplified, followed by expression divergence. Our results provide fresh insights into historical genomic features coupled with Brassicaceae evolution and offer a potential model for broad-scale studies of adaptive radiation under an ever-changing environment.
Collapse
Affiliation(s)
- Jie Liu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shi-Zhao Zhou
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yun-Long Liu
- Germplasm Bank of Wild Species & Yunnan Key Laboratory for Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Bin-Yan Zhao
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongmei Yu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Mi-Cai Zhong
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Xiao-Dong Jiang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Wei-Hua Cui
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Jiu-Xia Zhao
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Juan Qiu
- College of Life Sciences, Xinjiang Agricultural University, Ürümqi 830052, China
| | - Liang-Min Liu
- Germplasm Bank of Wild Species & Yunnan Key Laboratory for Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen-Hua Guo
- Germplasm Bank of Wild Species & Yunnan Key Laboratory for Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Hong-Tao Li
- Germplasm Bank of Wild Species & Yunnan Key Laboratory for Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Dun-Yan Tan
- College of Life Sciences, Xinjiang Agricultural University, Ürümqi 830052, China
| | - Jin-Yong Hu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
| | - De-Zhu Li
- Germplasm Bank of Wild Species & Yunnan Key Laboratory for Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
| |
Collapse
|
4
|
Feng L, Teng F, Li N, Zhang JC, Zhang BJ, Tsai SN, Yue XL, Gu LF, Meng GH, Deng TQ, Tong SW, Wang CM, Li Y, Shi W, Zeng YL, Jiang YM, Yu W, Ngai SM, An LZ, Lam HM, He JX. A reference-grade genome of the xerophyte Ammopiptanthus mongolicus sheds light on its evolution history in legumes and drought-tolerance mechanisms. PLANT COMMUNICATIONS 2024; 5:100891. [PMID: 38561965 PMCID: PMC11287142 DOI: 10.1016/j.xplc.2024.100891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 02/26/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024]
Abstract
Plants that grow in extreme environments represent unique sources of stress-resistance genes and mechanisms. Ammopiptanthus mongolicus (Leguminosae) is a xerophytic evergreen broadleaf shrub native to semi-arid and desert regions; however, its drought-tolerance mechanisms remain poorly understood. Here, we report the assembly of a reference-grade genome for A. mongolicus, describe its evolutionary history within the legume family, and examine its drought-tolerance mechanisms. The assembled genome is 843.07 Mb in length, with 98.7% of the sequences successfully anchored to the nine chromosomes of A. mongolicus. The genome is predicted to contain 47 611 protein-coding genes, and 70.71% of the genome is composed of repetitive sequences; these are dominated by transposable elements, particularly long-terminal-repeat retrotransposons. Evolutionary analyses revealed two whole-genome duplication (WGD) events at 130 and 58 million years ago (mya) that are shared by the genus Ammopiptanthus and other legumes, but no species-specific WGDs were found within this genus. Ancestral genome reconstruction revealed that the A. mongolicus genome has undergone fewer rearrangements than other genomes in the legume family, confirming its status as a "relict plant". Transcriptomic analyses demonstrated that genes involved in cuticular wax biosynthesis and transport are highly expressed, both under normal conditions and in response to polyethylene glycol-induced dehydration. Significant induction of genes related to ethylene biosynthesis and signaling was also observed in leaves under dehydration stress, suggesting that enhanced ethylene response and formation of thick waxy cuticles are two major mechanisms of drought tolerance in A. mongolicus. Ectopic expression of AmERF2, an ethylene response factor unique to A. mongolicus, can markedly increase the drought tolerance of transgenic Arabidopsis thaliana plants, demonstrating the potential for application of A. mongolicus genes in crop improvement.
Collapse
Affiliation(s)
- Lei Feng
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Sha Tin, New Territories, Hong Kong, China; Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Fei Teng
- BGI-Shenzhen Tech Co., Ltd., Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
| | - Na Li
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Sha Tin, New Territories, Hong Kong, China
| | - Jia-Cheng Zhang
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Sha Tin, New Territories, Hong Kong, China
| | - Bian-Jiang Zhang
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Sha Tin, New Territories, Hong Kong, China
| | - Sau-Na Tsai
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Sha Tin, New Territories, Hong Kong, China
| | - Xiu-Le Yue
- School of Life Sciences and Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou University, Lanzhou 730030, China
| | - Li-Fei Gu
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Sha Tin, New Territories, Hong Kong, China
| | - Guang-Hua Meng
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Sha Tin, New Territories, Hong Kong, China
| | - Tian-Quan Deng
- BGI-Shenzhen Tech Co., Ltd., Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
| | - Suk-Wah Tong
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Sha Tin, New Territories, Hong Kong, China
| | - Chun-Ming Wang
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Sha Tin, New Territories, Hong Kong, China
| | - Yan Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Wei Shi
- BGI-Shenzhen Tech Co., Ltd., Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
| | - Yong-Lun Zeng
- State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Yue-Ming Jiang
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Weichang Yu
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Sai-Ming Ngai
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Sha Tin, New Territories, Hong Kong, China
| | - Li-Zhe An
- School of Life Sciences and Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou University, Lanzhou 730030, China; State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China.
| | - Hon-Ming Lam
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Sha Tin, New Territories, Hong Kong, China.
| | - Jun-Xian He
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Sha Tin, New Territories, Hong Kong, China.
| |
Collapse
|
5
|
Wang B, Jia Y, Dang N, Yu J, Bush SJ, Gao S, He W, Wang S, Guo H, Yang X, Ma W, Ye K. Near telomere-to-telomere genome assemblies of two Chlorella species unveil the composition and evolution of centromeres in green algae. BMC Genomics 2024; 25:356. [PMID: 38600443 PMCID: PMC11005252 DOI: 10.1186/s12864-024-10280-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND Centromeres play a crucial and conserved role in cell division, although their composition and evolutionary history in green algae, the evolutionary ancestors of land plants, remains largely unknown. RESULTS We constructed near telomere-to-telomere (T2T) assemblies for two Trebouxiophyceae species, Chlorella sorokiniana NS4-2 and Chlorella pyrenoidosa DBH, with chromosome numbers of 12 and 13, and genome sizes of 58.11 Mb and 53.41 Mb, respectively. We identified and validated their centromere sequences using CENH3 ChIP-seq and found that, similar to humans and higher plants, the centromeric CENH3 signals of green algae display a pattern of hypomethylation. Interestingly, the centromeres of both species largely comprised transposable elements, although they differed significantly in their composition. Species within the Chlorella genus display a more diverse centromere composition, with major constituents including members of the LTR/Copia, LINE/L1, and LINE/RTEX families. This is in contrast to green algae including Chlamydomonas reinhardtii, Coccomyxa subellipsoidea, and Chromochloris zofingiensis, in which centromere composition instead has a pronounced single-element composition. Moreover, we observed significant differences in the composition and structure of centromeres among chromosomes with strong collinearity within the Chlorella genus, suggesting that centromeric sequence evolves more rapidly than sequence in non-centromeric regions. CONCLUSIONS This study not only provides high-quality genome data for comparative genomics of green algae but gives insight into the composition and evolutionary history of centromeres in early plants, laying an important foundation for further research on their evolution.
Collapse
Affiliation(s)
- Bo Wang
- School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, China
- MOE Key Lab for Intelligent Networks & Networks Security, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Yanyan Jia
- School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, China
- MOE Key Lab for Intelligent Networks & Networks Security, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Ningxin Dang
- School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, China
- Genome Institute, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jie Yu
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Stephen J Bush
- School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Shenghan Gao
- School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Wenxi He
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Sirui Wang
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Hongtao Guo
- School of Computer Science and Technology, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Xiaofei Yang
- School of Computer Science and Technology, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Weimin Ma
- College of Life Sciences, Shanghai Normal University, Shanghai, China.
| | - Kai Ye
- School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, China.
- MOE Key Lab for Intelligent Networks & Networks Security, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, China.
- Genome Institute, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China.
- Faculty of Science, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
6
|
Ma PF, Liu YL, Guo C, Jin G, Guo ZH, Mao L, Yang YZ, Niu LZ, Wang YJ, Clark LG, Kellogg EA, Xu ZC, Ye XY, Liu JX, Zhou MY, Luo Y, Yang Y, Soltis DE, Bennetzen JL, Soltis PS, Li DZ. Genome assemblies of 11 bamboo species highlight diversification induced by dynamic subgenome dominance. Nat Genet 2024; 56:710-720. [PMID: 38491323 PMCID: PMC11018529 DOI: 10.1038/s41588-024-01683-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 02/08/2024] [Indexed: 03/18/2024]
Abstract
Polyploidy (genome duplication) is a pivotal force in evolution. However, the interactions between parental genomes in a polyploid nucleus, frequently involving subgenome dominance, are poorly understood. Here we showcase analyses of a bamboo system (Poaceae: Bambusoideae) comprising a series of lineages from diploid (herbaceous) to tetraploid and hexaploid (woody), with 11 chromosome-level de novo genome assemblies and 476 transcriptome samples. We find that woody bamboo subgenomes exhibit stunning karyotype stability, with parallel subgenome dominance in the two tetraploid clades and a gradual shift of dominance in the hexaploid clade. Allopolyploidization and subgenome dominance have shaped the evolution of tree-like lignified culms, rapid growth and synchronous flowering characteristic of woody bamboos as large grasses. Our work provides insights into genome dominance in a remarkable polyploid system, including its dependence on genomic context and its ability to switch which subgenomes are dominant over evolutionary time.
Collapse
Affiliation(s)
- Peng-Fei Ma
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Yun-Long Liu
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Cen Guo
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- Center for Integrative Conservation & Yunnan Key Laboratory for the Conservation of Tropical Rainforests and Asian Elephants, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan, China
| | - Guihua Jin
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Zhen-Hua Guo
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Ling Mao
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Yi-Zhou Yang
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Liang-Zhong Niu
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Yu-Jiao Wang
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Lynn G Clark
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, 345 Bessey, Ames, IA, USA
| | | | - Zu-Chang Xu
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Xia-Ying Ye
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Jing-Xia Liu
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Meng-Yuan Zhou
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Yan Luo
- Center for Integrative Conservation & Yunnan Key Laboratory for the Conservation of Tropical Rainforests and Asian Elephants, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan, China
| | - Yang Yang
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Douglas E Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
- Department of Biology, University of Florida, Gainesville, FL, USA
| | | | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - De-Zhu Li
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China.
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China.
- Key Laboratory for Plant Diversity and Biogeography in East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China.
| |
Collapse
|
7
|
Zhang H, He Q, Xing L, Wang R, Wang Y, Liu Y, Zhou Q, Li X, Jia Z, Liu Z, Miao Y, Lin T, Li W, Du H. The haplotype-resolved genome assembly of autotetraploid rhubarb Rheum officinale provides insights into its genome evolution and massive accumulation of anthraquinones. PLANT COMMUNICATIONS 2024; 5:100677. [PMID: 37634079 PMCID: PMC10811376 DOI: 10.1016/j.xplc.2023.100677] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/05/2023] [Accepted: 08/24/2023] [Indexed: 08/28/2023]
Abstract
Rheum officinale, a member of the Polygonaceae family, is an important medicinal plant that is widely used in traditional Chinese medicine. Here, we report a 7.68-Gb chromosome-scale assembly of R. officinale with a contig N50 of 3.47 Mb, which was clustered into 44 chromosomes across four homologous groups. Comparative genomics analysis revealed that transposable elements have made a significant contribution to its genome evolution, gene copy number variation, and gene regulation and expression, particularly of genes involved in metabolite biosynthesis, stress resistance, and root development. We placed the recent autotetraploidization of R. officinale at ∼0.58 mya and analyzed the genomic features of its homologous chromosomes. Although no dominant monoploid genomes were observed at the overall expression level, numerous allele-differentially-expressed genes were identified, mainly with different transposable element insertions in their regulatory regions, suggesting that they functionally diverged after polyploidization. Combining genomics, transcriptomics, and metabolomics, we explored the contributions of gene family amplification and tetraploidization to the abundant anthraquinone production of R. officinale, as well as gene expression patterns and differences in anthraquinone content among tissues. Our report offers unprecedented genomic resources for fundamental research on the autopolyploid herb R. officinale and guidance for polyploid breeding of herbs.
Collapse
Affiliation(s)
- Hongyu Zhang
- School of Life Sciences, Institute of Life Sciences and Green Development, Basic Science Center for Biotic Interaction in Hebei, Hebei University, Baoding 071000, China
| | - Qiang He
- School of Life Sciences, Institute of Life Sciences and Green Development, Basic Science Center for Biotic Interaction in Hebei, Hebei University, Baoding 071000, China
| | - Longsheng Xing
- School of Life Sciences, Institute of Life Sciences and Green Development, Basic Science Center for Biotic Interaction in Hebei, Hebei University, Baoding 071000, China
| | - Ruyu Wang
- School of Life Sciences, Institute of Life Sciences and Green Development, Basic Science Center for Biotic Interaction in Hebei, Hebei University, Baoding 071000, China
| | - Yu Wang
- School of Life Sciences, Institute of Life Sciences and Green Development, Basic Science Center for Biotic Interaction in Hebei, Hebei University, Baoding 071000, China
| | - Yu Liu
- School of Life Sciences, Institute of Life Sciences and Green Development, Basic Science Center for Biotic Interaction in Hebei, Hebei University, Baoding 071000, China
| | - Qinghong Zhou
- School of Life Sciences, Institute of Life Sciences and Green Development, Basic Science Center for Biotic Interaction in Hebei, Hebei University, Baoding 071000, China
| | - Xuanzhao Li
- School of Life Sciences, Institute of Life Sciences and Green Development, Basic Science Center for Biotic Interaction in Hebei, Hebei University, Baoding 071000, China
| | - Zheng Jia
- School of Life Sciences, Institute of Life Sciences and Green Development, Basic Science Center for Biotic Interaction in Hebei, Hebei University, Baoding 071000, China
| | - Ze Liu
- School of Life Sciences, Institute of Life Sciences and Green Development, Basic Science Center for Biotic Interaction in Hebei, Hebei University, Baoding 071000, China
| | - Yuqing Miao
- School of Life Sciences, Institute of Life Sciences and Green Development, Basic Science Center for Biotic Interaction in Hebei, Hebei University, Baoding 071000, China
| | - Tao Lin
- College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Wei Li
- School of Life Sciences, Institute of Life Sciences and Green Development, Basic Science Center for Biotic Interaction in Hebei, Hebei University, Baoding 071000, China
| | - Huilong Du
- School of Life Sciences, Institute of Life Sciences and Green Development, Basic Science Center for Biotic Interaction in Hebei, Hebei University, Baoding 071000, China.
| |
Collapse
|
8
|
He J, Tian D, Li X, Wang X, Wang T, Wang Z, Zang H, He X, Zhang T, Yun Q, Zhang R, Jiang J, Jia S, Zhang Y. A chromosome-level genome assembly for Onobrychis viciifolia reveals gene copy number gain underlying enhanced proanthocyanidin biosynthesis. Commun Biol 2024; 7:19. [PMID: 38182881 PMCID: PMC10770414 DOI: 10.1038/s42003-023-05754-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 12/28/2023] [Indexed: 01/07/2024] Open
Abstract
Sainfoin (Onobrychis viciifolia), which belongs to subfamily Papilionoideae of Leguminosae, is a vital perennial forage known as "holy hay" due to its high contents of crude proteins and proanthocyanidins (PAs, also called condensed tannins) that have various pharmacological properties in animal feed, such as alleviating rumen tympanic disease in ruminants. In this study, we select an autotetraploid common sainfoin (2n = 4x = 28) and report its high-quality chromosome-level genome assembly with 28 pseudochromosomes and four haplotypes (~1950.14 Mb, contig N50 = 10.91 Mb). The copy numbers of genes involved in PA biosynthesis in sainfoin are significantly greater than those in four selected Fabales species, namely, autotetraploid Medicago sativa and three other diploid species, Lotus japonicus, Medicago truncatula, and Glycine max. Furthermore, gene expansion is confirmed to be the key contributor to the increased expression of these genes and subsequent PA enhancement in sainfoin. Transcriptomic analyses reveal that the expression of genes involved in the PA biosynthesis pathway is significantly increased in the lines with high PA content compared to the lines with medium and low PA content. The sainfoin genome assembly will improve our understanding of leguminous genome evolution and biosynthesis of secondary metabolites in sainfoin.
Collapse
Affiliation(s)
- Junyi He
- College of Grassland Science and Technology, China Agricultural University, 100193, Beijing, China
| | - Danyang Tian
- College of Grassland Science and Technology, China Agricultural University, 100193, Beijing, China
| | - Xue Li
- College of Grassland Science and Technology, China Agricultural University, 100193, Beijing, China
| | - Xuemeng Wang
- College of Grassland Science and Technology, China Agricultural University, 100193, Beijing, China
| | - Tingting Wang
- College of Grassland Science and Technology, China Agricultural University, 100193, Beijing, China
| | - Ziyao Wang
- College of Grassland Science and Technology, China Agricultural University, 100193, Beijing, China
| | - Hui Zang
- College of Grassland Science and Technology, China Agricultural University, 100193, Beijing, China
| | - Xiaofan He
- School of Grassland Science, Beijing Forestry University, 100083, Beijing, China
| | - Tiejun Zhang
- School of Grassland Science, Beijing Forestry University, 100083, Beijing, China
| | - Quanzheng Yun
- Department of Bioinformatics, Ori (Shandong) Gene Science and Technology Co., Ltd., Weifang, 261322, China
| | - Rengang Zhang
- Department of Bioinformatics, Ori (Shandong) Gene Science and Technology Co., Ltd., Weifang, 261322, China
| | - Jishan Jiang
- College of Grassland Science and Technology, China Agricultural University, 100193, Beijing, China
| | - Shangang Jia
- College of Grassland Science and Technology, China Agricultural University, 100193, Beijing, China.
| | - Yunwei Zhang
- College of Grassland Science and Technology, China Agricultural University, 100193, Beijing, China.
| |
Collapse
|
9
|
Xing L, Wang M, He Q, Zhang H, Liang H, Zhou Q, Liu Y, Liu Z, Wang Y, Du C, Xiao Y, Liu J, Li W, Liu G, Du H. Differential subgenome expression underlies biomass accumulation in allotetraploid Pennisetum giganteum. BMC Biol 2023; 21:161. [PMID: 37480118 PMCID: PMC10362693 DOI: 10.1186/s12915-023-01643-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 06/06/2023] [Indexed: 07/23/2023] Open
Abstract
BACKGROUND Pennisetum giganteum (AABB, 2n = 4x = 28) is a C4 plant in the genus Pennisetum with origin in Africa but currently also grown in Asia and America. It is a crucial forage and potential energy grass with significant advantages in yield, stress resistance, and environmental adaptation. However, the mechanisms underlying these advantageous traits remain largely unexplored. Here, we present a high-quality genome assembly of the allotetraploid P. giganteum aiming at providing insights into biomass accumulation. RESULTS Our assembly has a genome size 2.03 Gb and contig N50 of 88.47 Mb that was further divided into A and B subgenomes. Genome evolution analysis revealed the evolutionary relationships across the Panicoideae subfamily lineages and identified numerous genome rearrangements that had occurred in P. giganteum. Comparative genomic analysis showed functional differentiation between the subgenomes. Transcriptome analysis found no subgenome dominance at the overall gene expression level; however, differentially expressed homoeologous genes and homoeolog-specific expressed genes between the two subgenomes were identified, suggesting that complementary effects between the A and B subgenomes contributed to biomass accumulation of P. giganteum. Besides, C4 photosynthesis-related genes were significantly expanded in P. giganteum and their sequences and expression patterns were highly conserved between the two subgenomes, implying that both subgenomes contributed greatly and almost equally to the highly efficient C4 photosynthesis in P. giganteum. We also identified key candidate genes in the C4 photosynthesis pathway that showed sustained high expression across all developmental stages of P. giganteum. CONCLUSIONS Our study provides important genomic resources for elucidating the genetic basis of advantageous traits in polyploid species, and facilitates further functional genomics research and genetic improvement of P. giganteum.
Collapse
Affiliation(s)
- Longsheng Xing
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071000, China
- Hebei Basic Science Center for Biotic Interaction, Baoding, 071000, China
| | - Meijia Wang
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071000, China
| | - Qiang He
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071000, China
- Hebei Basic Science Center for Biotic Interaction, Baoding, 071000, China
| | - Hongyu Zhang
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071000, China
| | - Hanfei Liang
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071000, China
| | - Qinghong Zhou
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071000, China
| | - Yu Liu
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071000, China
| | - Ze Liu
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071000, China
| | - Yu Wang
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071000, China
| | - Cailian Du
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071000, China
| | - Yao Xiao
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071000, China
| | - Jianan Liu
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071000, China
| | - Wei Li
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071000, China
- Hebei Basic Science Center for Biotic Interaction, Baoding, 071000, China
| | - Guixia Liu
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071000, China.
- Hebei Basic Science Center for Biotic Interaction, Baoding, 071000, China.
| | - Huilong Du
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071000, China.
- Hebei Basic Science Center for Biotic Interaction, Baoding, 071000, China.
| |
Collapse
|
10
|
Zabelkin A, Avdeyev P, Alexeev N. TruEst: a better estimator of evolutionary distance under the INFER model. J Math Biol 2023; 87:25. [PMID: 37423919 DOI: 10.1007/s00285-023-01955-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 06/11/2023] [Accepted: 06/15/2023] [Indexed: 07/11/2023]
Abstract
Genome rearrangements are evolutionary events that shuffle genomic architectures. The number of genome rearrangements that happened between two genomes is often used as the evolutionary distance between these species. This number is often estimated as the minimum number of genome rearrangements required to transform one genome into another which are only reliable for closely-related genomes. These estimations often underestimate the evolutionary distance for genomes that have substantially evolved from each other, and advanced statistical methods can be used to improve accuracy. Several statistical estimators have been developed, under various evolutionary models, of which the most complete one, INFER, takes into account different degrees of genome fragility. We present TruEst-an efficient tool that estimates the evolutionary distance between the genomes under the INFER model of genome rearrangements. We apply our method to both simulated and real data. It shows high accuracy on the simulated data. On the real datasets of mammal genomes the method found several pairs of genomes for which the estimated distances are in high consistency with the previous ancestral reconstruction studies.
Collapse
Affiliation(s)
- Alexey Zabelkin
- International Laboratory "Computer Technologies", ITMO University, Saint Petersburg, Russia.
| | - Pavel Avdeyev
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | |
Collapse
|