1
|
Russo CJ, Husain K, Murugan A. Soft Modes as a Predictive Framework for Low-Dimensional Biological Systems Across Scales. Annu Rev Biophys 2025; 54:401-426. [PMID: 39971349 PMCID: PMC12079786 DOI: 10.1146/annurev-biophys-081624-030543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
All biological systems are subject to perturbations arising from thermal fluctuations, external environments, or mutations. Yet, while biological systems consist of thousands of interacting components, recent high-throughput experiments have shown that their response to perturbations is surprisingly low dimensional: confined to only a few stereotyped changes out of the many possible. In this review, we explore a unifying dynamical systems framework-soft modes-to explain and analyze low dimensionality in biology, from molecules to ecosystems. We argue that this soft mode framework makes nontrivial predictions that generalize classic ideas from developmental biology to disparate systems, namely phenocopying, dual buffering, and global epistasis. While some of these predictions have been borne out in experiments, we discuss how soft modes allow for a surprisingly far-reaching and unifying framework in which to analyze data from protein biophysics to microbial ecology.
Collapse
Affiliation(s)
- Christopher Joel Russo
- James Franck Institute, University of Chicago, Chicago, Illinois, USA
- Program in Biophysical Sciences, University of Chicago, Chicago, Illinois, USA
| | - Kabir Husain
- James Franck Institute, University of Chicago, Chicago, Illinois, USA
- Department of Physics, University College London, London, United Kingdom
| | - Arvind Murugan
- James Franck Institute, University of Chicago, Chicago, Illinois, USA
- Department of Physics, University of Chicago, Chicago, Illinois, USA;
| |
Collapse
|
2
|
Mihajlovic L, Iyengar BR, Baier F, Barbier I, Iwaszkiewicz J, Zoete V, Wagner A, Schaerli Y. A direct experimental test of Ohno's hypothesis. eLife 2025; 13:RP97216. [PMID: 40172958 PMCID: PMC11964449 DOI: 10.7554/elife.97216] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025] Open
Abstract
Gene duplication drives evolution by providing raw material for proteins with novel functions. An influential hypothesis by Ohno (1970) posits that gene duplication helps genes tolerate new mutations and thus facilitates the evolution of new phenotypes. Competing hypotheses argue that deleterious mutations will usually inactivate gene duplicates too rapidly for Ohno's hypothesis to work. We experimentally tested Ohno's hypothesis by evolving one or exactly two copies of a gene encoding a fluorescent protein in Escherichia coli through several rounds of mutation and selection. We analyzed the genotypic and phenotypic evolutionary dynamics of the evolving populations through high-throughput DNA sequencing, biochemical assays, and engineering of selected variants. In support of Ohno's hypothesis, populations carrying two gene copies displayed higher mutational robustness than those carrying a single gene copy. Consequently, the double-copy populations experienced relaxed purifying selection, evolved higher phenotypic and genetic diversity, carried more mutations and accumulated combinations of key beneficial mutations earlier. However, their phenotypic evolution was not accelerated, possibly because one gene copy rapidly became inactivated by deleterious mutations. Our work provides an experimental platform to test models of evolution by gene duplication, and it supports alternatives to Ohno's hypothesis that point to the importance of gene dosage.
Collapse
Affiliation(s)
- Ljiljana Mihajlovic
- Department of Fundamental Microbiology, University of LausanneLausanneSwitzerland
| | - Bharat Ravi Iyengar
- Department of Evolutionary Biology and Environmental Studies, University of ZurichZurichSwitzerland
- Institute for Evolution and Biodiversity, University of MünsterMünsterGermany
| | - Florian Baier
- Department of Fundamental Microbiology, University of LausanneLausanneSwitzerland
| | - Içvara Barbier
- Department of Fundamental Microbiology, University of LausanneLausanneSwitzerland
| | | | - Vincent Zoete
- Molecular Modeling Group, Swiss Institute of BioinformaticsLausanneSwitzerland
- Department of Oncology UNIL-CHUV, Ludwig Institute for Cancer Research, University of LausanneEpalingesSwitzerland
| | - Andreas Wagner
- Department of Evolutionary Biology and Environmental Studies, University of ZurichZurichSwitzerland
- The Swiss Institute of BioinformaticsLausanneSwitzerland
- The Santa Fe InstituteSanta FeUnited States
| | - Yolanda Schaerli
- Department of Fundamental Microbiology, University of LausanneLausanneSwitzerland
| |
Collapse
|
3
|
Diaz Arenas C, Alvarez M, Wilson RH, Shakhnovich EI, Ogbunugafor CB. Protein Quality Control is a Master Modulator of Molecular Evolution in Bacteria. Genome Biol Evol 2025; 17:evaf010. [PMID: 39837347 PMCID: PMC11789785 DOI: 10.1093/gbe/evaf010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 01/05/2025] [Accepted: 01/15/2025] [Indexed: 01/23/2025] Open
Abstract
The bacterial protein quality control (PQC) network comprises a set of genes that promote proteostasis (proteome homeostasis) through proper protein folding and function via chaperones, proteases, and protein translational machinery. It participates in vital cellular processes and influences organismal development and evolution. In this review, we examine the mechanistic bases for how the bacterial PQC network influences molecular evolution. We discuss the relevance of PQC components to contemporary issues in evolutionary biology including epistasis, evolvability, and the navigability of protein space. We examine other areas where proteostasis affects aspects of evolution and physiology, including host-parasite interactions. More generally, we demonstrate that the study of bacterial systems can aid in broader efforts to understand the relationship between genotype and phenotype across the biosphere.
Collapse
Affiliation(s)
- Carolina Diaz Arenas
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
| | - Maristella Alvarez
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
| | - Robert H Wilson
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Eugene I Shakhnovich
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - C Brandon Ogbunugafor
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Santa Fe Institute, Santa Fe, NM 87501, USA
| |
Collapse
|
4
|
Russo CJ, Husain K, Murugan A. Soft Modes as a Predictive Framework for Low Dimensional Biological Systems across Scales. ARXIV 2024:arXiv:2412.13637v1. [PMID: 39764393 PMCID: PMC11702803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/21/2025]
Abstract
All biological systems are subject to perturbations: due to thermal fluctuations, external environments, or mutations. Yet, while biological systems are composed of thousands of interacting components, recent high-throughput experiments show that their response to perturbations is surprisingly low-dimensional: confined to only a few stereotyped changes out of the many possible. Here, we explore a unifying dynamical systems framework - soft modes - to explain and analyze low-dimensionality in biology, from molecules to eco-systems. We argue that this one framework of soft modes makes non-trivial predictions that generalize classic ideas from developmental biology to disparate systems, namely: phenocopying, dual buffering, and global epistasis. While some of these predictions have been borne out in experiments, we discuss how soft modes allow for a surprisingly far-reaching and unifying framework in which to analyze data from protein biophysics to microbial ecology.
Collapse
Affiliation(s)
- Christopher Joel Russo
- James Franck Institute, University of Chicago, Chicago, United States
- Program in Biophysical Sciences, University of Chicago, Chicago, United States
| | - Kabir Husain
- James Franck Institute, University of Chicago, Chicago, United States
- Department of Physics, University College London, London, United Kingdom
| | - Arvind Murugan
- James Franck Institute, University of Chicago, Chicago, United States
- Department of Physics, University of Chicago, Chicago, United States
| |
Collapse
|
5
|
Condic N, Amiji H, Patel D, Shropshire WC, Lermi NO, Sabha Y, John B, Hanson B, Karras GI. Selection for robust metabolism in domesticated yeasts is driven by adaptation to Hsp90 stress. Science 2024; 385:eadi3048. [PMID: 39052788 PMCID: PMC11410103 DOI: 10.1126/science.adi3048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 12/31/2023] [Accepted: 05/24/2024] [Indexed: 07/27/2024]
Abstract
Protein folding both promotes and constrains adaptive evolution. We uncover this surprising duality in the role of the protein-folding chaperone heat shock protein 90 (Hsp90) in maintaining the integrity of yeast metabolism amid proteotoxic stressors within industrial domestication niches. Ethanol disrupts critical Hsp90-dependent metabolic pathways and exerts strong selective pressure for redundant duplications of key genes within these pathways, yielding the classical genomic signatures of beer and bread domestication. This work demonstrates a mechanism of adaptive canalization in an ecology of major economic importance and highlights Hsp90-dependent variation as an important source of phantom heritability in complex traits.
Collapse
Affiliation(s)
- Natalia Condic
- Department of Genetics, The University of Texas MD Anderson Cancer Center; Houston, TX 77030, USA
| | - Hatim Amiji
- Department of Genetics, The University of Texas MD Anderson Cancer Center; Houston, TX 77030, USA
| | - Dipak Patel
- Department of Genetics, The University of Texas MD Anderson Cancer Center; Houston, TX 77030, USA
| | - William Charles Shropshire
- Center for Infectious Diseases, Department of Epidemiology, Human Genetics and Environmental Sciences, UTHealth School of Public Health at Houston, University of Texas Health Science Center, McGovern Medical School; Houston, TX, USA
- Center for Antimicrobial Resistance and Microbial Genomics, University of Texas Health Science Center McGovern Medical School; Houston, TX, USA
- Current address: The University of Texas MD Anderson Cancer Center; Houston, TX 77030, USA
| | - Nejla Ozirmak Lermi
- Department of Genetics, The University of Texas MD Anderson Cancer Center; Houston, TX 77030, USA
| | - Youssef Sabha
- Department of Genetics, The University of Texas MD Anderson Cancer Center; Houston, TX 77030, USA
| | - Beryl John
- Department of Genetics, The University of Texas MD Anderson Cancer Center; Houston, TX 77030, USA
| | - Blake Hanson
- Center for Infectious Diseases, Department of Epidemiology, Human Genetics and Environmental Sciences, UTHealth School of Public Health at Houston, University of Texas Health Science Center, McGovern Medical School; Houston, TX, USA
- Center for Antimicrobial Resistance and Microbial Genomics, University of Texas Health Science Center McGovern Medical School; Houston, TX, USA
| | - Georgios Ioannis Karras
- Department of Genetics, The University of Texas MD Anderson Cancer Center; Houston, TX 77030, USA
- Genetics and Epigenetics Graduate Program, The University of Texas MD Anderson Cancer Center, UTHealth Houston Graduate School of Biomedical Sciences; Houston, TX, USA
| |
Collapse
|
6
|
Tawfeeq MT, Voordeckers K, van den Berg P, Govers SK, Michiels J, Verstrepen KJ. Mutational robustness and the role of buffer genes in evolvability. EMBO J 2024; 43:2294-2307. [PMID: 38719995 PMCID: PMC11183146 DOI: 10.1038/s44318-024-00109-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/19/2024] [Accepted: 04/17/2024] [Indexed: 06/19/2024] Open
Abstract
Organisms rely on mutations to fuel adaptive evolution. However, many mutations impose a negative effect on fitness. Cells may have therefore evolved mechanisms that affect the phenotypic effects of mutations, thus conferring mutational robustness. Specifically, so-called buffer genes are hypothesized to interact directly or indirectly with genetic variation and reduce its effect on fitness. Environmental or genetic perturbations can change the interaction between buffer genes and genetic variation, thereby unmasking the genetic variation's phenotypic effects and thus providing a source of variation for natural selection to act on. This review provides an overview of our understanding of mutational robustness and buffer genes, with the chaperone gene HSP90 as a key example. It discusses whether buffer genes merely affect standing variation or also interact with de novo mutations, how mutational robustness could influence evolution, and whether mutational robustness might be an evolved trait or rather a mere side-effect of complex genetic interactions.
Collapse
Affiliation(s)
- Mohammed T Tawfeeq
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
- Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
| | - Karin Voordeckers
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
- Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
| | - Pieter van den Berg
- Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
- Department of Biology, KU Leuven, Leuven, Belgium
| | | | - Jan Michiels
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
- Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
| | - Kevin J Verstrepen
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium.
- Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium.
| |
Collapse
|
7
|
Tan KXY, Shigenobu S. In vivo interference of pea aphid endosymbiont Buchnera groEL gene by synthetic peptide nucleic acids. Sci Rep 2024; 14:5378. [PMID: 38438424 PMCID: PMC10912616 DOI: 10.1038/s41598-024-55179-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 02/21/2024] [Indexed: 03/06/2024] Open
Abstract
The unculturable nature of intracellular obligate symbionts presents a significant challenge for elucidating gene functionality, necessitating the development of gene manipulation techniques. One of the best-studied obligate symbioses is that between aphids and the bacterial endosymbiont Buchnera aphidicola. Given the extensive genome reduction observed in Buchnera, the remaining genes are crucial for understanding the host-symbiont relationship, but a lack of tools for manipulating gene function in the endosymbiont has significantly impeded the exploration of the molecular mechanisms underlying this mutualism. In this study, we introduced a novel gene manipulation technique employing synthetic single-stranded peptide nucleic acids (PNAs). We targeted the critical Buchnera groEL using specially designed antisense PNAs conjugated to an arginine-rich cell-penetrating peptide (CPP). Within 24 h of PNA administration via microinjection, we observed a significant reduction in groEL expression and Buchnera cell count. Notably, the interference of groEL led to profound morphological malformations in Buchnera, indicative of impaired cellular integrity. The gene knockdown technique developed in this study, involving the microinjection of CPP-conjugated antisense PNAs, provides a potent approach for in vivo gene manipulation of unculturable intracellular symbionts, offering valuable insights into their biology and interactions with hosts.
Collapse
Affiliation(s)
- Kathrine Xin Yee Tan
- Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan
- Laboratory of Evolutionary Genomics, National Institute for Basic Biology, 38 Nishigonaka Myodaiji, Okazaki, Aichi, 444-8585, Japan
| | - Shuji Shigenobu
- Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan.
- Laboratory of Evolutionary Genomics, National Institute for Basic Biology, 38 Nishigonaka Myodaiji, Okazaki, Aichi, 444-8585, Japan.
| |
Collapse
|
8
|
Abstract
Understanding the factors that shape viral evolution is critical for developing effective antiviral strategies, accurately predicting viral evolution, and preventing pandemics. One fundamental determinant of viral evolution is the interplay between viral protein biophysics and the host machineries that regulate protein folding and quality control. Most adaptive mutations in viruses are biophysically deleterious, resulting in a viral protein product with folding defects. In cells, protein folding is assisted by a dynamic system of chaperones and quality control processes known as the proteostasis network. Host proteostasis networks can determine the fates of viral proteins with biophysical defects, either by assisting with folding or by targeting them for degradation. In this review, we discuss and analyze new discoveries revealing that host proteostasis factors can profoundly shape the sequence space accessible to evolving viral proteins. We also discuss the many opportunities for research progress proffered by the proteostasis perspective on viral evolution and adaptation.
Collapse
Affiliation(s)
- Jimin Yoon
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| | - Jessica E Patrick
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| | - C Brandon Ogbunugafor
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA
- Santa Fe Institute, Santa Fe, New Mexico, USA
| | - Matthew D Shoulders
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| |
Collapse
|
9
|
Iyengar BR, Wagner A. Bacterial Hsp90 predominantly buffers but does not potentiate the phenotypic effects of deleterious mutations during fluorescent protein evolution. Genetics 2022; 222:iyac154. [PMID: 36227141 PMCID: PMC9713429 DOI: 10.1093/genetics/iyac154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/26/2022] [Indexed: 12/13/2022] Open
Abstract
Chaperones facilitate the folding of other ("client") proteins and can thus affect the adaptive evolution of these clients. Specifically, chaperones affect the phenotype of proteins via two opposing mechanisms. On the one hand, they can buffer the effects of mutations in proteins and thus help preserve an ancestral, premutation phenotype. On the other hand, they can potentiate the effects of mutations and thus enhance the phenotypic changes caused by a mutation. We study that how the bacterial Hsp90 chaperone (HtpG) affects the evolution of green fluorescent protein. To this end, we performed directed evolution of green fluorescent protein under low and high cellular concentrations of Hsp90. Specifically, we evolved green fluorescent protein under both stabilizing selection for its ancestral (green) phenotype and directional selection toward a new (cyan) phenotype. While Hsp90 did only affect the rate of adaptive evolution transiently, it did affect the phenotypic effects of mutations that occurred during adaptive evolution. Specifically, Hsp90 allowed strongly deleterious mutations to accumulate in evolving populations by buffering their effects. Our observations show that the role of a chaperone for adaptive evolution depends on the organism and the trait being studied.
Collapse
Affiliation(s)
- Bharat Ravi Iyengar
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, 8057 Zurich, Switzerland
- Swiss Institute of Bioinformatics, Quartier Sorge-Batiment Genopode, 1015 Lausanne, Switzerland
- Institute for Evolution and Biodiversity, Westfalian Wilhelms—University of Münster, 48149 Münster, Germany
| | - Andreas Wagner
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, 8057 Zurich, Switzerland
- Swiss Institute of Bioinformatics, Quartier Sorge-Batiment Genopode, 1015 Lausanne, Switzerland
- The Santa Fe Institute, Santa Fe, NM 87501, USA
- Stellenbosch Institute for Advanced Study (STIAS), Wallenberg Research Centre at Stellenbosch University, 7600 Stellenbosch, South Africa
| |
Collapse
|