1
|
Harper JA, Brown GGB, Neale MJ. Spo11: from topoisomerase VI to meiotic recombination initiator. Biochem Soc Trans 2025; 53:BST20253019. [PMID: 40181639 DOI: 10.1042/bst20253019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 03/12/2025] [Indexed: 04/05/2025]
Abstract
Meiotic recombination is required to break up gene linkage and facilitate faithful chromosome segregation during gamete formation. By inducing DNA double-strand breaks, Spo11, a protein that is conserved in all meiotic organisms, initiates the process of recombination. Here, we chart the evolutionary history of Spo11 and compare the protein to its ancestors. Evolving from the A subunit of archaeal topoisomerase VI (Topo VI), a heterotetrameric type II topoisomerase, Spo11 appears to have evolved alongside meiosis and been present in the last eukaryotic common ancestor. There are many differences between Spo11 and TopVIA, particularly in regulation, despite similarities in structure and mechanism of action. Critical to its function as an inducer of recombination, Spo11 has an apparently amputated activity that, unlike topoisomerases, does not re-seal the DNA breaks it creates. We discuss how and why Spo11 has taken its path down the tree of life, considering its regulation and its roles compared with those of its progenitor Topo VI, in both meiotic and non-meiotic species. We find some commonality between different forms and orthologs of Spo11 in different species and touch upon how recent biochemical advances are beginning to finally unlock the molecular secrets hidden within this fundamental yet enigmatic protein.
Collapse
Affiliation(s)
- Jon A Harper
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, U.K
| | - George G B Brown
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, U.K
| | - Matthew J Neale
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, U.K
| |
Collapse
|
2
|
Villain P, Basta T. Regulation of DNA Topology in Archaea: State of the Art and Perspectives. Mol Microbiol 2025; 123:245-264. [PMID: 39709598 PMCID: PMC11894792 DOI: 10.1111/mmi.15328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 12/24/2024]
Abstract
DNA topology is a direct consequence of the double helical nature of DNA and is defined by how the two complementary DNA strands are intertwined. Virtually every reaction involving DNA is influenced by DNA topology or has topological effects. It is therefore of fundamental importance to understand how this phenomenon is controlled in living cells. DNA topoisomerases are the key actors dedicated to the regulation of DNA topology in cells from all domains of life. While significant progress has been made in the last two decades in understanding how these enzymes operate in vivo in Bacteria and Eukaryotes, studies in Archaea have been lagging behind. This review article aims to summarize what is currently known about DNA topology regulation by DNA topoisomerases in main archaeal model organisms. These model archaea exhibit markedly different lifestyles, genome organization and topoisomerase content, thus highlighting the diversity and the complexity of DNA topology regulation mechanisms and their evolution in this domain of life. The recent development of functional genomic assays supported by next-generation sequencing now allows to delve deeper into this timely and exciting, yet still understudied topic.
Collapse
Affiliation(s)
- Paul Villain
- Medical Research Council Laboratory of Medical SciencesLondonUK
- Institute of Clinical Sciences, Faculty of MedicineImperial College LondonLondonUK
| | - Tamara Basta
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC)Université Paris‐SaclayGif‐sur‐YvetteFrance
| |
Collapse
|
3
|
Zheng Z, Zheng L, Arter M, Liu K, Yamada S, Ontoso D, Kim S, Keeney S. Reconstitution of SPO11-dependent double-strand break formation. Nature 2025; 639:784-791. [PMID: 39972129 PMCID: PMC11922745 DOI: 10.1038/s41586-025-08601-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 01/06/2025] [Indexed: 02/21/2025]
Abstract
Meiotic recombination starts with SPO11 generation of DNA double-strand breaks (DSBs)1. SPO11 is critical for meiosis in most species, but it generates dangerous DSBs with mutagenic2 and gametocidal3 potential. Cells must therefore utilize the beneficial functions of SPO11 while minimizing its risks4-how they do so remains poorly understood. Here we report reconstitution of DNA cleavage in vitro with purified recombinant mouse SPO11 bound to TOP6BL. SPO11-TOP6BL complexes are monomeric (1:1) in solution and bind tightly to DNA, but dimeric (2:2) assemblies cleave DNA to form covalent 5' attachments that require SPO11 active-site residues, divalent metal ions and SPO11 dimerization. SPO11 can also reseal DNA that it has nicked. Structure modelling with AlphaFold 3 suggests that DNA is bent prior to cleavage5. In vitro cleavage displays a sequence bias that partially explains DSB site preferences in vivo. Cleavage is inefficient on complex DNA substrates, partly because SPO11 is readily trapped in DSB-incompetent (presumably monomeric) binding states that exchange slowly. However, cleavage is improved with substrates that favour dimer assembly or by artificially dimerizing SPO11. Our results inform a model in which intrinsically weak dimerization restrains SPO11 activity in vivo, making it exquisitely dependent on accessory proteins that focus and control DSB formation.
Collapse
Affiliation(s)
- Zhi Zheng
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lyuqin Zheng
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Meret Arter
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kaixian Liu
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Shintaro Yamada
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- The HAKUBI Center for Advanced Research and Department of Aging Science and Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - David Ontoso
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Soonjoung Kim
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Scott Keeney
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
4
|
Tang X, Hu Z, Ding J, Wu M, Guan P, Song Y, Yin Y, Wu W, Ma J, Huang Y, Tong MH. In vitro reconstitution of meiotic DNA double-strand-break formation. Nature 2025; 639:800-807. [PMID: 39972125 PMCID: PMC11922769 DOI: 10.1038/s41586-024-08551-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 12/19/2024] [Indexed: 02/21/2025]
Abstract
The Spo11 complex catalyses the formation of DNA double-strand breaks (DSBs), initiating meiotic recombination-a process that is essential for fertility and genetic diversity1,2. Although the function of Spo11 has been known for 27 years, previous efforts to reconstitute DSB formation in vitro have been unsuccessful. Here we biochemically characterize the mouse SPO11-TOP6BL protein complex, and show that this complex cleaves DNA and covalently attaches to the 5' terminus of DNA breaks in vitro. Using a point-mutation strategy, we reveal that Mg2+ is essential for the DNA-cleavage activity of this complex in vitro, as confirmed by knock-in mice carrying a point mutation in SPO11 that disrupts its binding to Mg2+, thereby abolishing DSB formation. However, the activity of the SPO11 complex is ATP-independent. We also present evidence that the mouse SPO11 complex is biochemically distinct from the ancestral topoisomerase VI. Our findings establish a mechanistic framework for understanding the first steps of meiotic recombination.
Collapse
Affiliation(s)
- Xinzhe Tang
- Key Laboratory of Multi-Cell Systems, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Zetao Hu
- Shanghai Key Laboratory of Biliary Tract Disease Research, Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Jian Ding
- Key Laboratory of Multi-Cell Systems, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Meixia Wu
- Key Laboratory of Multi-Cell Systems, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Pin Guan
- Key Laboratory of Multi-Cell Systems, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yawei Song
- Key Laboratory of Multi-Cell Systems, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yue Yin
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Wei Wu
- Key Laboratory of Multi-Cell Systems, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Jinbiao Ma
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Ying Huang
- Shanghai Key Laboratory of Biliary Tract Disease Research, Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Ming-Han Tong
- Key Laboratory of Multi-Cell Systems, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
5
|
Yu Y, Wang J, Liu K, Zheng Z, Arter M, Claeys Bouuaert C, Pu S, Patel DJ, Keeney S. Cryo-EM structures of the Spo11 core complex bound to DNA. Nat Struct Mol Biol 2025; 32:113-124. [PMID: 39304764 PMCID: PMC11746154 DOI: 10.1038/s41594-024-01382-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 08/01/2024] [Indexed: 09/22/2024]
Abstract
DNA double-strand breaks that initiate meiotic recombination are formed by the topoisomerase-relative enzyme Spo11, supported by conserved auxiliary factors. Because high-resolution structural data have not been available, many questions remain about the architecture of Spo11 and its partners and how they engage with DNA. We report cryo-electron microscopy structures at up to 3.3-Å resolution of DNA-bound core complexes of Saccharomyces cerevisiae Spo11 with Rec102, Rec104 and Ski8. In these structures, monomeric core complexes make extensive contacts with the DNA backbone and with the recessed 3'-OH and first 5' overhanging nucleotide, establishing the molecular determinants of DNA end-binding specificity and providing insight into DNA cleavage preferences in vivo. The structures of individual subunits and their interfaces, supported by functional data in yeast, provide insight into the role of metal ions in DNA binding and uncover unexpected structural variation in homologs of the Top6BL component of the core complex.
Collapse
Affiliation(s)
- You Yu
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Centre for Infection Immunity and Cancer (IIC), Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, China
| | - Juncheng Wang
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Kaixian Liu
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Zhi Zheng
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Louis V. Gerstner Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Meret Arter
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Corentin Claeys Bouuaert
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-La-Neuve, Belgium
| | - Stephen Pu
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- WaypointBio, New York, NY, USA
| | - Dinshaw J Patel
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Louis V. Gerstner Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Scott Keeney
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Louis V. Gerstner Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
6
|
Rafiei N, Ronceret A. The plant early recombinosome: a high security complex to break DNA during meiosis. PLANT REPRODUCTION 2024; 37:421-440. [PMID: 39331138 PMCID: PMC11511760 DOI: 10.1007/s00497-024-00509-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 08/26/2024] [Indexed: 09/28/2024]
Abstract
KEY MESSAGE The formacion of numerous unpredictable DNA Double Strand Breaks (DSBs) on chromosomes iniciates meiotic recombination. In this perspective, we propose a 'multi-key lock' model to secure the risky but necesary breaks as well as a 'one per pair of cromatids' model for the topoisomerase-like early recombinosome. During meiosis, homologous chromosomes recombine at few sites of crossing-overs (COs) to ensure correct segregation. The initiation of meiotic recombination involves the formation of DNA double strand breaks (DSBs) during prophase I. Too many DSBs are dangerous for genome integrity: if these DSBs are not properly repaired, it could potentially lead to chromosomal fragmentation. Too few DSBs are also problematic: if the obligate CO cannot form between bivalents, catastrophic unequal segregation of univalents lead to the formation of sterile aneuploid spores. Research on the regulation of the formation of these necessary but risky DSBs has recently advanced in yeast, mammals and plants. DNA DSBs are created by the enzymatic activity of the early recombinosome, a topoisomerase-like complex containing SPO11. This opinion paper reviews recent insights on the regulation of the SPO11 cofactors necessary for the introduction of temporally and spatially controlled DSBs. We propose that a 'multi-key-lock' model for each subunit of the early recombinosome complex is required to secure the formation of DSBs. We also discuss the hypothetical implications that the established topoisomerase-like nature of the SPO11 core-complex can have in creating DSB in only one of the two replicated chromatids of early prophase I meiotic chromosomes. This hypothetical 'one per pair of chromatids' DSB formation model could optimize the faithful repair of the self-inflicted DSBs. Each DSB could use three potential intact homologous DNA sequences as repair template: one from the sister chromatid and the two others from the homologous chromosomes.
Collapse
Affiliation(s)
- Nahid Rafiei
- Department of Plant Molecular Biology, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, México
| | - Arnaud Ronceret
- Department of Plant Molecular Biology, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, México.
| |
Collapse
|
7
|
Zheng Z, Zheng L, Arter M, Liu K, Yamada S, Ontoso D, Kim S, Keeney S. Reconstitution of SPO11-dependent double-strand break formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.20.624382. [PMID: 39605552 PMCID: PMC11601517 DOI: 10.1101/2024.11.20.624382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Homologous meiotic recombination starts with DNA double-strand breaks (DSBs) generated by SPO11 protein1. SPO11 is critical for meiosis in most species but the DSBs it makes are also dangerous because of their mutagenic2 and gametocidal3 potential, so cells must foster SPO11's beneficial functions while minimizing its risks4. SPO11 mechanism and regulation remain poorly understood. Here we report reconstitution of DNA cleavage in vitro with purified recombinant mouse SPO11 bound to its essential partner TOP6BL. Similar to their yeast orthologs5,6, SPO11-TOP6BL complexes are monomeric (1:1) in solution and bind tightly to DNA. Unlike in yeast, however, dimeric (2:2) assemblies of mouse SPO11-TOP6BL cleave DNA to form covalent 5´ attachments requiring SPO11 active site residues, divalent metal ions, and SPO11 dimerization. Surprisingly, SPO11 can also manifest topoisomerase activity by relaxing supercoils and resealing DNA that it has nicked. Structure modeling with AlphaFold37 illuminates the protein-DNA interface and suggests that DNA is bent prior to cleavage. Deep sequencing of in vitro cleavage products reveals a rotationally symmetric base composition bias that partially explains DSB site preferences in vivo. Cleavage is inefficient on complex DNA substrates, partly because SPO11 is readily trapped in DSB-incompetent (presumably monomeric) binding states that exchange slowly. However, cleavage is improved by using substrates that favor DSB-competent dimer assembly, or by fusing SPO11 to an artificial dimerization module. Our results inform a model in which intrinsically feeble dimerization restrains SPO11 activity in vivo, making it exquisitely dependent on accessory proteins that focus and control DSB formation so that it happens only at the right time and the right places.
Collapse
Affiliation(s)
- Zhi Zheng
- Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, New York, NY 10065
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Lyuqin Zheng
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Meret Arter
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Kaixian Liu
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Shintaro Yamada
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
- The HAKUBI Center for Advanced Research, and Department of Aging Science and Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - David Ontoso
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Soonjoung Kim
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Scott Keeney
- Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, New York, NY 10065
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| |
Collapse
|
8
|
Diagouraga B, Tambones I, Carivenc C, Bechara C, Nadal M, de Massy B, le Maire A, Robert T. The TOPOVIBL meiotic DSB formation protein: new insights from its biochemical and structural characterization. Nucleic Acids Res 2024; 52:8930-8946. [PMID: 38966985 PMCID: PMC11347134 DOI: 10.1093/nar/gkae587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 06/18/2024] [Accepted: 06/25/2024] [Indexed: 07/06/2024] Open
Abstract
The TOPOVIL complex catalyzes the formation of DNA double strand breaks (DSB) that initiate meiotic homologous recombination, an essential step for chromosome segregation and genetic diversity during gamete production. TOPOVIL is composed of two subunits (SPO11 and TOPOVIBL) and is evolutionarily related to the archaeal TopoVI topoisomerase complex. SPO11 is the TopoVIA subunit orthologue and carries the DSB formation catalytic activity. TOPOVIBL shares homology with the TopoVIB ATPase subunit. TOPOVIBL is essential for meiotic DSB formation, but its molecular function remains elusive, partly due to the lack of biochemical studies. Here, we purified TOPOVIBLΔC25 and characterized its structure and mode of action in vitro. Our structural analysis revealed that TOPOVIBLΔC25 adopts a dynamic conformation in solution and our biochemical study showed that the protein remains monomeric upon incubation with ATP, which correlates with the absence of ATP binding. Moreover, TOPOVIBLΔC25 interacted with DNA, with a preference for some geometries, suggesting that TOPOVIBL senses specific DNA architectures. Altogether, our study identified specific TOPOVIBL features that might help to explain how TOPOVIL function evolved toward a DSB formation activity in meiosis.
Collapse
Affiliation(s)
- Boubou Diagouraga
- Centre de Biologie Structurale (CBS), Univ Montpellier, CNRS, INSERM, 34090 Montpellier, France
| | - Izabella Tambones
- Centre de Biologie Structurale (CBS), Univ Montpellier, CNRS, INSERM, 34090 Montpellier, France
| | - Coralie Carivenc
- Centre de Biologie Structurale (CBS), Univ Montpellier, CNRS, INSERM, 34090 Montpellier, France
| | - Chérine Bechara
- Institut de Génomique Fonctionnelle (IGF), Univ Montpellier, CNRS, INSERM, 34090 Montpellier, France
- Institut Universitaire de France, Paris, France
| | - Marc Nadal
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Paris, France; Department of Life Sciences, Université Paris Cité, Paris, France
| | - Bernard de Massy
- Institut de Génétique Humaine (IGH), Univ Montpellier, CNRS, 34090 Montpellier, France
| | - Albane le Maire
- Centre de Biologie Structurale (CBS), Univ Montpellier, CNRS, INSERM, 34090 Montpellier, France
| | - Thomas Robert
- Centre de Biologie Structurale (CBS), Univ Montpellier, CNRS, INSERM, 34090 Montpellier, France
| |
Collapse
|
9
|
Chen HW, Yeh HY, Chang CC, Kuo WC, Lin SW, Vrielynck N, Grelon M, Chan NL, Chi P. Biochemical characterization of the meiosis-essential yet evolutionarily divergent topoisomerase VIB-like protein MTOPVIB from Arabidopsis thaliana. Nucleic Acids Res 2024; 52:4541-4555. [PMID: 38499490 PMCID: PMC11077084 DOI: 10.1093/nar/gkae181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 02/23/2024] [Accepted: 02/29/2024] [Indexed: 03/20/2024] Open
Abstract
Formation of programmed DNA double-strand breaks is essential for initiating meiotic recombination. Genetic studies on Arabidopsis thaliana and Mus musculus have revealed that assembly of a type IIB topoisomerase VI (Topo VI)-like complex, composed of SPO11 and MTOPVIB, is a prerequisite for generating DNA breaks. However, it remains enigmatic if MTOPVIB resembles its Topo VI subunit B (VIB) ortholog in possessing robust ATPase activity, ability to undergo ATP-dependent dimerization, and activation of SPO11-mediated DNA cleavage. Here, we successfully prepared highly pure A. thaliana MTOPVIB and MTOPVIB-SPO11 complex. Contrary to expectations, our findings highlight that MTOPVIB differs from orthologous Topo VIB by lacking ATP-binding activity and independently forming dimers without ATP. Most significantly, our study reveals that while MTOPVIB lacks the capability to stimulate SPO11-mediated DNA cleavage, it functions as a bona fide DNA-binding protein and plays a substantial role in facilitating the dsDNA binding capacity of the MOTOVIB-SPO11 complex. Thus, we illustrate mechanistic divergence between the MTOPVIB-SPO11 complex and classical type IIB topoisomerases.
Collapse
Affiliation(s)
- Hsin-Wen Chen
- Institute of Biochemical Sciences, National Taiwan University, 10617 Taipei, Taiwan
| | - Hsin-Yi Yeh
- Institute of Biochemical Sciences, National Taiwan University, 10617 Taipei, Taiwan
| | - Chih-Chiang Chang
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, 100233 Taipei, Taiwan
| | - Wei-Chen Kuo
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, 100233 Taipei, Taiwan
| | - Sheng-Wei Lin
- Institute of Biological Chemistry, Academia Sinica, 11529 Taipei, Taiwan
| | - Nathalie Vrielynck
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000,Versailles, France
| | - Mathilde Grelon
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000,Versailles, France
| | - Nei-Li Chan
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, 100233 Taipei, Taiwan
| | - Peter Chi
- Institute of Biochemical Sciences, National Taiwan University, 10617 Taipei, Taiwan
- Institute of Biological Chemistry, Academia Sinica, 11529 Taipei, Taiwan
| |
Collapse
|
10
|
Arter M, Keeney S. Divergence and conservation of the meiotic recombination machinery. Nat Rev Genet 2024; 25:309-325. [PMID: 38036793 DOI: 10.1038/s41576-023-00669-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2023] [Indexed: 12/02/2023]
Abstract
Sexually reproducing eukaryotes use recombination between homologous chromosomes to promote chromosome segregation during meiosis. Meiotic recombination is almost universally conserved in its broad strokes, but specific molecular details often differ considerably between taxa, and the proteins that constitute the recombination machinery show substantial sequence variability. The extent of this variation is becoming increasingly clear because of recent increases in genomic resources and advances in protein structure prediction. We discuss the tension between functional conservation and rapid evolutionary change with a focus on the proteins that are required for the formation and repair of meiotic DNA double-strand breaks. We highlight phylogenetic relationships on different time scales and propose that this remarkable evolutionary plasticity is a fundamental property of meiotic recombination that shapes our understanding of molecular mechanisms in reproductive biology.
Collapse
Affiliation(s)
- Meret Arter
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Scott Keeney
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
11
|
Abstract
The raison d'être of meiosis is shuffling of genetic information via Mendelian segregation and, within individual chromosomes, by DNA crossing-over. These outcomes are enabled by a complex cellular program in which interactions between homologous chromosomes play a central role. We first provide a background regarding the basic principles of this program. We then summarize the current understanding of the DNA events of recombination and of three processes that involve whole chromosomes: homolog pairing, crossover interference, and chiasma maturation. All of these processes are implemented by direct physical interaction of recombination complexes with underlying chromosome structures. Finally, we present convergent lines of evidence that the meiotic program may have evolved by coupling of this interaction to late-stage mitotic chromosome morphogenesis.
Collapse
Affiliation(s)
- Denise Zickler
- Institute for Integrative Biology of the Cell (I2BC), Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Nancy Kleckner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA;
| |
Collapse
|
12
|
Yu Y, Wang J, Liu K, Zheng Z, Arter M, Bouuaert CC, Pu S, Patel DJ, Keeney S. Cryo-EM structure of the Spo11 core complex bound to DNA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.31.564985. [PMID: 37961437 PMCID: PMC10634984 DOI: 10.1101/2023.10.31.564985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The DNA double-strand breaks that initiate meiotic recombination are formed by topoisomerase relative Spo11, supported by conserved auxiliary factors. Because high-resolution structural data are lacking, many questions remain about the architecture of Spo11 and its partners and how they engage with DNA. We report cryo-EM structures at up to 3.3 Å resolution of DNA-bound core complexes of Saccharomyces cerevisiae Spo11 with Rec102, Rec104, and Ski8. In these structures, monomeric core complexes make extensive contacts with the DNA backbone and with the recessed 3'-OH and first 5' overhanging nucleotide, definitively establishing the molecular determinants of DNA end-binding specificity and providing insight into DNA cleavage preferences in vivo. The structures of individual subunits and their interfaces, supported by functional data in yeast, provide insight into the role of metal ions in DNA binding and uncover unexpected structural variation in homologs of the Top6BL component of the core complex.
Collapse
Affiliation(s)
- You Yu
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Juncheng Wang
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Kaixian Liu
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Zhi Zheng
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
- Louis V. Gerstner Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Meret Arter
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Corentin Claeys Bouuaert
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Stephen Pu
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Dinshaw J. Patel
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
- Louis V. Gerstner Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Scott Keeney
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
- Louis V. Gerstner Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| |
Collapse
|
13
|
Laroussi H, Juarez‐Martinez AB, Le Roy A, Boeri Erba E, Gabel F, de Massy B, Kadlec J. Characterization of the REC114-MEI4-IHO1 complex regulating meiotic DNA double-strand break formation. EMBO J 2023; 42:e113866. [PMID: 37431931 PMCID: PMC10425845 DOI: 10.15252/embj.2023113866] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/16/2023] [Accepted: 06/23/2023] [Indexed: 07/12/2023] Open
Abstract
Meiotic recombination is initiated by the formation of DNA double-strand breaks (DSBs), essential for fertility and genetic diversity. In the mouse, DSBs are formed by the catalytic TOPOVIL complex consisting of SPO11 and TOPOVIBL. To preserve genome integrity, the activity of the TOPOVIL complex is finely controlled by several meiotic factors including REC114, MEI4, and IHO1, but the underlying mechanism is poorly understood. Here, we report that mouse REC114 forms homodimers, that it associates with MEI4 as a 2:1 heterotrimer that further dimerizes, and that IHO1 forms coiled-coil-based tetramers. Using AlphaFold2 modeling combined with biochemical characterization, we uncovered the molecular details of these assemblies. Finally, we show that IHO1 directly interacts with the PH domain of REC114 by recognizing the same surface as TOPOVIBL and another meiotic factor ANKRD31. These results provide strong evidence for the existence of a ternary IHO1-REC114-MEI4 complex and suggest that REC114 could act as a potential regulatory platform mediating mutually exclusive interactions with several partners.
Collapse
Affiliation(s)
| | | | - Aline Le Roy
- Université Grenoble Alpes, CNRS, CEA, IBSGrenobleFrance
| | | | - Frank Gabel
- Université Grenoble Alpes, CNRS, CEA, IBSGrenobleFrance
| | - Bernard de Massy
- Institut de Génétique Humaine (IGH), Centre National de la Recherche ScientifiqueUniversity of MontpellierMontpellierFrance
| | - Jan Kadlec
- Université Grenoble Alpes, CNRS, CEA, IBSGrenobleFrance
| |
Collapse
|
14
|
Nore A, Juarez-Martinez AB, Clément J, Brun C, Diagouraga B, Laroussi H, Grey C, Bourbon HM, Kadlec J, Robert T, de Massy B. TOPOVIBL-REC114 interaction regulates meiotic DNA double-strand breaks. Nat Commun 2022; 13:7048. [PMID: 36396648 PMCID: PMC9671922 DOI: 10.1038/s41467-022-34799-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/08/2022] [Indexed: 11/18/2022] Open
Abstract
Meiosis requires the formation of programmed DNA double strand breaks (DSBs), essential for fertility and for generating genetic diversity. DSBs are induced by the catalytic activity of the TOPOVIL complex formed by SPO11 and TOPOVIBL. To ensure genomic integrity, DNA cleavage activity is tightly regulated, and several accessory factors (REC114, MEI4, IHO1, and MEI1) are needed for DSB formation in mice. How and when these proteins act is not understood. Here, we show that REC114 is a direct partner of TOPOVIBL, and identify their conserved interacting domains by structural analysis. We then analyse the role of this interaction by monitoring meiotic DSBs in female and male mice carrying point mutations in TOPOVIBL that decrease or disrupt its binding to REC114. In these mutants, DSB activity is strongly reduced genome-wide in oocytes, and only in sub-telomeric regions in spermatocytes. In addition, in mutant spermatocytes, DSB activity is delayed in autosomes. These results suggest that REC114 is a key member of the TOPOVIL catalytic complex, and that the REC114/TOPOVIBL interaction ensures the efficiency and timing of DSB activity.
Collapse
Affiliation(s)
- Alexandre Nore
- grid.121334.60000 0001 2097 0141Institut de Génétique Humaine (IGH), Centre National de la Recherche Scientifique, Univ Montpellier, Montpellier, France
| | | | - Julie Clément
- grid.121334.60000 0001 2097 0141Institut de Génétique Humaine (IGH), Centre National de la Recherche Scientifique, Univ Montpellier, Montpellier, France
| | - Christine Brun
- grid.121334.60000 0001 2097 0141Institut de Génétique Humaine (IGH), Centre National de la Recherche Scientifique, Univ Montpellier, Montpellier, France
| | - Boubou Diagouraga
- grid.462825.f0000 0004 0639 1954CBS, Univ Montpellier, CNRS, INSERM, Montpellier, France
| | - Hamida Laroussi
- grid.4444.00000 0001 2112 9282Univ. Grenoble Alpes, CNRS, CEA, IBS, F-38000 Grenoble, France
| | - Corinne Grey
- grid.121334.60000 0001 2097 0141Institut de Génétique Humaine (IGH), Centre National de la Recherche Scientifique, Univ Montpellier, Montpellier, France
| | - Henri Marc Bourbon
- grid.508721.9Centre de Biologie Intégrative, CNRS, Université de Toulouse, Toulouse, France
| | - Jan Kadlec
- grid.4444.00000 0001 2112 9282Univ. Grenoble Alpes, CNRS, CEA, IBS, F-38000 Grenoble, France
| | - Thomas Robert
- grid.462825.f0000 0004 0639 1954CBS, Univ Montpellier, CNRS, INSERM, Montpellier, France
| | - Bernard de Massy
- grid.121334.60000 0001 2097 0141Institut de Génétique Humaine (IGH), Centre National de la Recherche Scientifique, Univ Montpellier, Montpellier, France
| |
Collapse
|