1
|
Liang YY, Liu H, Lin QQ, Shi Y, Zhou BF, Wang JS, Chen XY, Shen Z, Qiao LJ, Niu JW, Ling SJ, Luo WJ, Zhao W, Liu JF, Kuang YW, Ingvarsson PK, Guo YL, Wang B. Pan-Genome Analysis Reveals Local Adaptation to Climate Driven by Introgression in Oak Species. Mol Biol Evol 2025; 42:msaf088. [PMID: 40235155 PMCID: PMC12042805 DOI: 10.1093/molbev/msaf088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 04/01/2025] [Accepted: 04/02/2025] [Indexed: 04/17/2025] Open
Abstract
The genetic base of local adaptation has been extensively studied in natural populations. However, a comprehensive genome-wide perspective on the contribution of structural variants (SVs) and adaptive introgression to local adaptation remains limited. In this study, we performed de novo assembly and annotation of 22 representative accessions of Quercus variabilis, identifying a total of 543,372 SVs. These SVs play crucial roles in shaping genomic structure and influencing gene expression. By analyzing range-wide genomic data, we identified both SNPs and SVs associated with local adaptation in Q. variabilis and Quercus acutissima. Notably, SV-outliers exhibit selection signals that did not overlap with SNP-outliers, indicating that SNP-based analyses may not detect the same candidate genes associated with SV-outliers. Remarkably, 29%-37% of candidate SNPs were located in a 250 kb region on chromosome 9, referred to as Chr9-ERF. This region contains 8 duplicated ethylene-responsive factor (ERF) genes, which may have contributed to local adaptation of Q. variabilis and Q. acutissima. We also found that a considerable number of candidate SNPs were shared between Q. variabilis and Q. acutissima in the Chr9-ERF region, suggesting a pattern of repeated selection. We further demonstrated that advantageous variants in this region were introgressed from western populations of Q. acutissima into Q. variabilis, providing compelling evidence that introgression facilitates local adaptation. This study offers a valuable genomic resource for future studies on oak species and highlights the importance of pan-genome analysis in understating mechanism driving adaptation and evolution.
Collapse
Affiliation(s)
- Yi-Ye Liang
- State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Botany and Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Guangzhou, China
| | - Hui Liu
- State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Botany and Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Guangzhou, China
- Department of Ecology and Environmental Science, UPSC, Umeå University, Umeå, Sweden
| | - Qiong-Qiong Lin
- State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Botany and Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Guangzhou, China
| | - Yong Shi
- State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Botany and Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Guangzhou, China
| | - Biao-Feng Zhou
- State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Botany and Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Guangzhou, China
| | - Jing-Shu Wang
- State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Botany and Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Guangzhou, China
| | - Xue-Yan Chen
- State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Botany and Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Guangzhou, China
| | - Zhao Shen
- State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Botany and Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Guangzhou, China
| | - Liang-Jing Qiao
- State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Botany and Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Guangzhou, China
| | - Jing-Wei Niu
- State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Botany and Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Guangzhou, China
| | - Shao-Jun Ling
- State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Botany and Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Guangzhou, China
| | - Wen-Ji Luo
- State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Botany and Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Guangzhou, China
| | - Wei Zhao
- Department of Ecology and Environmental Science, UPSC, Umeå University, Umeå, Sweden
| | - Jian-Feng Liu
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Yuan-Wen Kuang
- Guangdong Provincial Key Laboratory of Applied Botany and Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Guangzhou, China
| | - Pär K Ingvarsson
- Department of Plant Biology, Linnean Center for Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Ya-Long Guo
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Baosheng Wang
- State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Botany and Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Guangzhou, China
| |
Collapse
|
2
|
Guo D, Gong X, Yi W, Cao L, Zhang E. Cryptic diversity, phenotypic congruence, and evolutionary history of the Leptobotia citrauratea complex (Pisces: Botiidae) within subtropical eastern China. BMC Ecol Evol 2025; 25:23. [PMID: 40098077 PMCID: PMC11912635 DOI: 10.1186/s12862-025-02362-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 03/05/2025] [Indexed: 03/19/2025] Open
Abstract
Elucidating the emergence and maintenance of cryptic diversity is a major focus of evolutionary biology. Integrative taxonomy is widely considered as the best practice for delimiting cryptic species and exploring cryptic speciation. This approach is used here to study the Leptobotia citrauratea complex, a group of small-sized loaches so far found in subtropical floodplains and hills of eastern China. A total 170 specimens were collected from 24 sampling sites, encompassing geographical variations and divergent habitas. Six putative species, out of which two are cryptic, were delineated by integrating molecular (two mtDNA and three nuDNA genes) and morphological analyses. These species constituted three ecotypes, exhibiting phenotypic disparities concordant with a habitat transition from high- to low-flow environments. Phenotypic similarities among them were shown to not align with their phylogenetic relationships but closely correlate with habitat utilization. Convergent evolution, driven by similar selective pressure associated with habitat-specific use, likely accounts for the cryptic diversity unveiled in the recently diverging species complex. The diversification of this species complex began in the late Pliocene, coinciding with tectonic activities in the subtropical region of eastern China. Subsequent rapid differentiation during the Pleistocene was possibly driven by regional climate fluctuations. This evolutionary trajectory highlights the crucial roles of geological, climate and ecological factors in shaping biodiversity in this region.
Collapse
Affiliation(s)
- Dongming Guo
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
- Key Laboratory of Ecological Impacts of Hydraulic Projects and Restoration of Aquatic Ecosystem of Ministry of Water Resources, Institute of Hydroecology, Ministry of Water Resources and Chinese Academy of Sciences, Wuhan, Hubei Province, 430079, China
| | - Xiong Gong
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - Wenjing Yi
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - Liang Cao
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - E Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China.
| |
Collapse
|
3
|
Li J, Ai Q, Xie S, Huang C, Qiu F, Fu C, Zhao M, Fu J, Wu H. Contrast and Genomic Characterisation of Ancient and Recent Interspecific Introgression Between Deeply Diverged Moustache Toads (Leptobrachium). Mol Ecol 2024; 33:e17569. [PMID: 39465507 DOI: 10.1111/mec.17569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/03/2024] [Accepted: 10/14/2024] [Indexed: 10/29/2024]
Abstract
Recent genomic analyses have provided new insights into the process of interspecific introgression and its consequences on species evolution. Most recent studies, however, focused on hybridization between recently radiated species, with few examining the genomic outcomes of ancient hybridization across deeply diverged species. Using whole genome data of moustache toads (Leptobrachium), we identified signals of three hybridization events among nine species that diverged at the Eocene. An ancient introgression from L. leishanense to the ancestral branch (C1) of L. liui introduced adaptive variants. The highly introgressed regions include genes with important functions in odorant detection and immune responses. These genes are preserved in all three descendent populations of L. liui_C1, and these regions likely have been positively selected over a long filtering process. A recent introgression occurred from L. huashen to L. tengchongense, with the introgressed regions being mostly neutral. Furthermore, one F1 hybrid individual was detected between sympatric L. ailaonicum and L. promustache. The signals of introgression largely disappeared after removing the hybrid individual, indicating an occasional hybridization but minimal introgression. Further examination of highly divergent but low introgressed genomic regions revealed both pre-mating isolation and genetic incompatibility as potential mechanisms of resisting introgression and maintaining species boundaries. Additionally, no large X-effect was found in these introgression events. Hybridization between deeply diverged amphibian species may be common, but detectable introgressions are likely less so, with recent introgression being mostly neutral and the rare ancient one potentially adaptive. Our findings complement recent genomic work, and together they provide a better understanding of the genomic characteristics of interspecific introgression and its significance in species adaptation and evolution.
Collapse
Affiliation(s)
- Jun Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei, People's Republic of China
| | - Qingbo Ai
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei, People's Republic of China
| | - Siyu Xie
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei, People's Republic of China
| | - Chunhua Huang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei, People's Republic of China
| | - Fuyuan Qiu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei, People's Republic of China
| | - Chao Fu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei, People's Republic of China
| | - Mian Zhao
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei, People's Republic of China
| | - Jinzhong Fu
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Hua Wu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei, People's Republic of China
| |
Collapse
|
4
|
Wang D, Rastas P, Yi X, Löytynoja A, Kivikoski M, Feng X, Reid K, Merilä J. Improved assembly of the Pungitius pungitius reference genome. G3 (BETHESDA, MD.) 2024; 14:jkae126. [PMID: 38861393 PMCID: PMC11304971 DOI: 10.1093/g3journal/jkae126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/23/2024] [Accepted: 05/30/2024] [Indexed: 06/13/2024]
Abstract
The nine-spined stickleback (Pungitius pungitius) has been increasingly used as a model system in studies of local adaptation and sex chromosome evolution but its current reference genome assembly is far from perfect, lacking distinct sex chromosomes. We generated an improved assembly of the nine-spined stickleback reference genome (98.3% BUSCO completeness) with the aid of linked-read mapping. While the new assembly (v8) was of similar size as the earlier version (v7), we were able to assign 4.4 times more contigs to the linkage groups and improve the contiguity of the genome. Moreover, the new assembly contains a ∼22.8 Mb Y-linked scaffold (LG22) consisting mainly of previously assigned X-contigs, putative Y-contigs, putative centromere contigs, and highly repetitive elements. The male individual showed an even mapping depth on LG12 (pseudo X chromosome) and LG22 (Y-linked scaffold) in the segregating sites, suggesting near-pure X and Y representation in the v8 assembly. A total of 26,803 genes were annotated, and about 33% of the assembly was found to consist of repetitive elements. The high proportion of repetitive elements in LG22 (53.10%) suggests it can be difficult to assemble the complete sequence of the species' Y chromosome. Nevertheless, the new assembly is a significant improvement over the previous version and should provide a valuable resource for genomic studies of stickleback fishes.
Collapse
Affiliation(s)
- Dandan Wang
- Area of Ecology and Biodiversity, School of Biological Sciences, The University of Hong Kong, 999077, Hong Kong SAR
| | - Pasi Rastas
- Institute of Biotechnology, University of Helsinki, Helsinki FI-00014, Finland
| | - Xueling Yi
- Area of Ecology and Biodiversity, School of Biological Sciences, The University of Hong Kong, 999077, Hong Kong SAR
| | - Ari Löytynoja
- Institute of Biotechnology, University of Helsinki, Helsinki FI-00014, Finland
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki FI-00014, Finland
| | - Mikko Kivikoski
- Ecological Genetics Research Unit, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki FI-00014, Finland
- Department of Computer Science, University of Helsinki, Helsinki FI-00014, Finland
| | - Xueyun Feng
- Institute of Biotechnology, University of Helsinki, Helsinki FI-00014, Finland
- Ecological Genetics Research Unit, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki FI-00014, Finland
| | - Kerry Reid
- Area of Ecology and Biodiversity, School of Biological Sciences, The University of Hong Kong, 999077, Hong Kong SAR
| | - Juha Merilä
- Area of Ecology and Biodiversity, School of Biological Sciences, The University of Hong Kong, 999077, Hong Kong SAR
- Ecological Genetics Research Unit, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki FI-00014, Finland
| |
Collapse
|
5
|
Feng X, Merilä J, Löytynoja A. Secondary Contact, Introgressive Hybridization, and Genome Stabilization in Sticklebacks. Mol Biol Evol 2024; 41:msae031. [PMID: 38366566 PMCID: PMC10903534 DOI: 10.1093/molbev/msae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/20/2023] [Accepted: 02/09/2024] [Indexed: 02/18/2024] Open
Abstract
Advances in genomic studies have revealed that hybridization in nature is pervasive and raised questions about the dynamics of different genetic and evolutionary factors following the initial hybridization event. While recent research has proposed that the genomic outcomes of hybridization might be predictable to some extent, many uncertainties remain. With comprehensive whole-genome sequence data, we investigated the genetic introgression between 2 divergent lineages of 9-spined sticklebacks (Pungitius pungitius) in the Baltic Sea. We found that the intensity and direction of selection on the introgressed variation has varied across different genomic elements: while functionally important regions displayed reduced rates of introgression, promoter regions showed enrichment. Despite the general trend of negative selection, we identified specific genomic regions that were enriched for introgressed variants, and within these regions, we detected footprints of selection, indicating adaptive introgression. Geographically, we found the selection against the functional changes to be strongest in the vicinity of the secondary contact zone and weaken as a function of distance from the initial contact. Altogether, the results suggest that the stabilization of introgressed variation in the genomes is a complex, multistage process involving both negative and positive selection. In spite of the predominance of negative selection against introgressed variants, we also found evidence for adaptive introgression variants likely associated with adaptation to Baltic Sea environmental conditions.
Collapse
Affiliation(s)
- Xueyun Feng
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki 00014, Finland
- Institute of Biotechnology, University of Helsinki, Helsinki 00014, Finland
| | - Juha Merilä
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki 00014, Finland
- Area of Ecology and Biodiversity, The School of Biological Sciences, Kadoorie Biological Sciences Building, The University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Ari Löytynoja
- Institute of Biotechnology, University of Helsinki, Helsinki 00014, Finland
| |
Collapse
|