1
|
Li Z, Pollet N. Impact of a horizontally transferred Helitron family on genome evolution in Xenopus laevis. Mob DNA 2025; 16:19. [PMID: 40241130 PMCID: PMC12001565 DOI: 10.1186/s13100-025-00356-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 03/26/2025] [Indexed: 04/18/2025] Open
Abstract
BACKGROUND Within eukaryotes, most horizontal transfer of genetic material involves mobile DNA sequences and such events are called horizontal transposable element transfer (HTT). Although thousands of HTT examples have been reported, the transfer mechanisms and their impacts on host genomes remain elusive. RESULTS In this work, we carefully annotated three Helitron families within several Xenopus frog genomes. One of the Helitron family, Heli1Xen1, is recurrently involved in capturing and shuffling Xenopus laevis genes required in early embryonic development. Remarkably, we found that Heli1Xen1 is seemingly expressed in X. laevis and has produced multiple genomic polymorphisms within the X. laevis population. To identify the origin of Heli1Xen1, we searched its consensus sequence against available genome assemblies. We found highly similar copies in the genomes of another 13 vertebrate species from divergent vertebrate lineages, including reptiles, ray-finned fishes and amphibians. Further phylogenetic analysis provides evidence showing that Heli1Xen1 invaded these lineages via HTT quite recently, around 0.58-10.74 million years ago. CONCLUSIONS The frequently Heli1Xen1-involved HTT events among reptiles, fishes and amphibians could provide insights into possible vectors for transfer, such as shared viruses across lineages. Furthermore, we propose that the Heli1Xen1 sequence could be an ideal candidate for studying the mechanism and genomic impact of Helitron transposition.
Collapse
Affiliation(s)
- Zhen Li
- UMR Évolution, Génomes, Comportement et Écologie, Université Paris-Saclay, CNRS, IRD, Gif-sur-Yvette, 91198, France
| | - Nicolas Pollet
- UMR Évolution, Génomes, Comportement et Écologie, Université Paris-Saclay, CNRS, IRD, Gif-sur-Yvette, 91198, France.
| |
Collapse
|
2
|
Tian S, Si J, Zhang L, Zeng J, Zhang X, Huang C, Li G, Lei C, Zhou X, Geng R, Zhou P, Yan H, Rossiter SJ, Zhao H. Comparative genomics provides insights into chromosomal evolution and immunological adaptation in horseshoe bats. Nat Ecol Evol 2025; 9:705-720. [PMID: 39920351 DOI: 10.1038/s41559-025-02638-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 01/08/2025] [Indexed: 02/09/2025]
Abstract
Horseshoe bats are natural hosts of zoonotic viruses, yet the genetic basis of their antiviral immunity is poorly understood. Here we generated two new chromosomal-level genome assemblies for horseshoe bat species (Rhinolophus) and three close relatives, and show that, during their diversification, horseshoe bats underwent extensive chromosomal rearrangements and gene expansions linked to segmental duplications. These expansions have generated new adaptive variations in type I interferons and the interferon-stimulated gene ANXA2R, which potentially enhance antiviral states, as suggested by our functional assays. Genome-wide selection screens, including of candidate introgressed regions, uncover numerous putative molecular adaptations linked to immunity, including in viral receptors. By expanding taxon coverage to ten horseshoe bat species, we identify new variants of the SARS-CoV-2 receptor ACE2, and report convergent functionally important residues that could explain wider patterns of susceptibility across mammals. We conclude that horseshoe bats have numerous signatures of adaptation, including some potentially related to immune response to viruses, in genomic regions with diverse and multiscale mutational changes.
Collapse
Affiliation(s)
- Shilin Tian
- State Key Laboratory of Virology and Biosafety, Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
- Novogene Bioinformatics Institute, Beijing, China
| | - Junyu Si
- State Key Laboratory of Virology and Biosafety, Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Libiao Zhang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Jiaming Zeng
- State Key Laboratory of Virology and Biosafety, Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiangyi Zhang
- State Key Laboratory of Virology and Biosafety, Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Chen Huang
- State Key Laboratory of Virology and Biosafety, Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Gang Li
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Caoqi Lei
- State Key Laboratory of Virology and Biosafety, Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xuming Zhou
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Rong Geng
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, China
| | - Peng Zhou
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, China
| | - Huan Yan
- State Key Laboratory of Virology and Biosafety, Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Stephen J Rossiter
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK.
| | - Huabin Zhao
- State Key Laboratory of Virology and Biosafety, Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China.
| |
Collapse
|
3
|
Mallik R, Wcisel DJ, Near TJ, Yoder JA, Dornburg A. Investigating the Impact of Whole-Genome Duplication on Transposable Element Evolution in Teleost Fishes. Genome Biol Evol 2025; 17:evae272. [PMID: 39715451 PMCID: PMC11785729 DOI: 10.1093/gbe/evae272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 12/08/2024] [Accepted: 12/13/2024] [Indexed: 12/25/2024] Open
Abstract
Transposable elements (TEs) can make up more than 50% of any given vertebrate's genome, with substantial variability in TE composition among lineages. TE variation is often linked to changes in gene regulation, genome size, and speciation. However, the role that genome duplication events have played in generating abrupt shifts in the composition of the mobilome over macroevolutionary timescales remains unclear. We investigated the degree to which the teleost genome duplication (TGD) shaped the diversification trajectory of the teleost mobilome. We integrate a new high coverage genome of Polypterus bichir with data from over 100 publicly available actinopterygian genomes to assess the macroevolutionary implications of genome duplication events on TE evolution in teleosts. Our results provide no evidence for a substantial shift in mobilome composition following the TGD event. Instead, the diversity of the teleost mobilome appears to have been shaped by a history of lineage-specific shifts in composition that are not correlated with commonly evoked drivers of diversification such as body size, water column usage, or latitude. Collectively, these results provide additional evidence for an emerging perspective that TGD did not catalyze bursts of diversification and innovation in the actinopterygian mobilome.
Collapse
Affiliation(s)
- Rittika Mallik
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Dustin J Wcisel
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, USA
| | - Thomas J Near
- Department of Ecology & Evolutionary Biology and Peabody Museum, Yale University, New Haven, CT, USA
| | - Jeffrey A Yoder
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, USA
- Department of Biological Sciences, Genetics and Genomics Academy, and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA
| | - Alex Dornburg
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, USA
| |
Collapse
|
4
|
Fierst JL, Eggers VK. Regulatory logic and transposable element dynamics in nematode worm genomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.15.613132. [PMID: 39345564 PMCID: PMC11429677 DOI: 10.1101/2024.09.15.613132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Genome sequencing has revealed a tremendous diversity of transposable elements (TEs) in eukaryotes but there is little understanding of the evolutionary processes responsible for TE diversity. Non-autonomous TEs have lost the machinery necessary for transposition and rely on closely related autonomous TEs for critical proteins. We studied two mathematical models of TE regulation, one assuming that both autonomous tranposons and their non-autonomous relatives operate under the same regulatory logic, competing for transposition resources, and one assuming that autonomous TEs self-attenuate transposition while non-autonomous transposons continually increase, parasitizing their autonomous relatives. We implemented these models in stochastic simulations and studied how TE regulatory relationships influence transposons and populations. We found that only outcrossing populations evolving with Parasitic TE regulation resulted in stable maintenance of TEs. We tested our model predictions in Caenorhabditis genomes by annotating TEs in two focal families, autonomous LINEs and their non-autonomous SINE relatives and the DNA transposon Mutator. We found broad variation in autonomous - non-autonomous relationships and rapid mutational decay in the sequences that allow non-autonomous TEs to transpose. Together, our results suggest that individual TE families evolve according to disparate regulatory rules that are relevant in the early, acute stages of TE invasion.
Collapse
Affiliation(s)
- Janna L. Fierst
- Biomolecular Sciences Institute and Department of Biological Sciences, Florida International University, 11200 8th Street, 33199, Miami, FL, USA
| | - Victoria K. Eggers
- Biomolecular Sciences Institute and Department of Biological Sciences, Florida International University, 11200 8th Street, 33199, Miami, FL, USA
| |
Collapse
|
5
|
Morales AE, Burbrink FT, Segall M, Meza M, Munegowda C, Webala PW, Patterson BD, Thong VD, Ruedi M, Hiller M, Simmons NB. Distinct Genes with Similar Functions Underlie Convergent Evolution in Myotis Bat Ecomorphs. Mol Biol Evol 2024; 41:msae165. [PMID: 39116340 PMCID: PMC11371419 DOI: 10.1093/molbev/msae165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 07/01/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024] Open
Abstract
Convergence offers an opportunity to explore to what extent evolution can be predictable when genomic composition and environmental triggers are similar. Here, we present an emergent model system to study convergent evolution in nature in a mammalian group, the bat genus Myotis. Three foraging strategies-gleaning, trawling, and aerial hawking, each characterized by different sets of phenotypic features-have evolved independently multiple times in different biogeographic regions in isolation for millions of years. To investigate the genomic basis of convergence and explore the functional genomic changes linked to ecomorphological convergence, we sequenced and annotated 17 new genomes and screened 16,426 genes for positive selection and associations between relative evolutionary rates and foraging strategies across 30 bat species representing all Myotis ecomorphs across geographic regions as well as among sister groups. We identify genomic changes that describe both phylogenetic and ecomorphological trends. We infer that colonization of new environments may have first required changes in genes linked to hearing sensory perception, followed by changes linked to fecundity and development, metabolism of carbohydrates, and heme degradation. These changes may be linked to prey acquisition and digestion and match phylogenetic trends. Our findings also suggest that the repeated evolution of ecomorphs does not always involve changes in the same genes but rather in genes with the same molecular functions such as developmental and cellular processes.
Collapse
Affiliation(s)
- Ariadna E Morales
- Department of Mammalogy, Division of Vertebrate Zoology, American Museum of Natural History, New York, USA
- Department of Herpetology, Division of Vertebrate Zoology, American Museum of Natural History, New York, USA
- Centre for Translational Biodiversity Genomics, Frankfurt am Main, Hessen, Germany
- Senckenberg Research Institute, Frankfurt am Main, Hessen, Germany
- Faculty of Biosciences, Goethe-University, Frankfurt am Main, Hessen, Germany
| | - Frank T Burbrink
- Department of Herpetology, Division of Vertebrate Zoology, American Museum of Natural History, New York, USA
| | - Marion Segall
- Department of Herpetology, Division of Vertebrate Zoology, American Museum of Natural History, New York, USA
- Institut de Systématique, Evolution, Biodiversité (ISYEB), UMR 7205, Muséum National d’Histoire Naturelle, CNRS, SU, EPHE, UA, CP 50, Paris, France
- Department of Life Sciences, The Natural History Museum, London SW7 5BD, UK
| | - Maria Meza
- Department of Mammalogy, Division of Vertebrate Zoology, American Museum of Natural History, New York, USA
- Escuela de Biología, Universidad Industrial de Santander, Bucaramanga, Santander, Colombia
| | - Chetan Munegowda
- Centre for Translational Biodiversity Genomics, Frankfurt am Main, Hessen, Germany
- Senckenberg Research Institute, Frankfurt am Main, Hessen, Germany
- Faculty of Biosciences, Goethe-University, Frankfurt am Main, Hessen, Germany
| | - Paul W Webala
- Department of Forestry and Wildlife Management, Maasai Mara University, Narok 20500, Kenya
| | - Bruce D Patterson
- Negaunee Integrative Research Center, Field Museum of Natural History, Chicago, USA
| | - Vu Dinh Thong
- Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay District, Hanoi, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay District, Hanoi, Vietnam
| | - Manuel Ruedi
- Department of Mammalogy and Ornithology, Natural History Museum of Geneva, Geneva 1208, Switzerland
| | - Michael Hiller
- Centre for Translational Biodiversity Genomics, Frankfurt am Main, Hessen, Germany
- Senckenberg Research Institute, Frankfurt am Main, Hessen, Germany
- Faculty of Biosciences, Goethe-University, Frankfurt am Main, Hessen, Germany
| | - Nancy B Simmons
- Department of Mammalogy, Division of Vertebrate Zoology, American Museum of Natural History, New York, USA
| |
Collapse
|
6
|
Gutiérrez EG, Maldonado JE, Castellanos-Morales G, Eguiarte LE, Martínez-Méndez N, Ortega J. Unraveling genomic features and phylogenomics through the analysis of three Mexican endemic Myotis genomes. PeerJ 2024; 12:e17651. [PMID: 38993980 PMCID: PMC11238727 DOI: 10.7717/peerj.17651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 06/07/2024] [Indexed: 07/13/2024] Open
Abstract
Background Genomic resource development for non-model organisms is rapidly progressing, seeking to uncover molecular mechanisms and evolutionary adaptations enabling thriving in diverse environments. Limited genomic data for bat species hinder insights into their evolutionary processes, particularly within the diverse Myotis genus of the Vespertilionidae family. In Mexico, 15 Myotis species exist, with three-M. vivesi, M. findleyi, and M. planiceps-being endemic and of conservation concern. Methods We obtained samples of Myotis vivesi, M. findleyi, and M. planiceps for genomic analysis. Each of three genomic DNA was extracted, sequenced, and assembled. The scaffolding was carried out utilizing the M. yumanensis genome via a genome-referenced approach within the ntJoin program. GapCloser was employed to fill gaps. Repeat elements were characterized, and gene prediction was done via ab initio and homology methods with MAKER pipeline. Functional annotation involved InterproScan, BLASTp, and KEGG. Non-coding RNAs were annotated with INFERNAL, and tRNAscan-SE. Orthologous genes were clustered using Orthofinder, and a phylogenomic tree was reconstructed using IQ-TREE. Results We present genome assemblies of these endemic species using Illumina NovaSeq 6000, each exceeding 2.0 Gb, with over 90% representing single-copy genes according to BUSCO analyses. Transposable elements, including LINEs and SINEs, constitute over 30% of each genome. Helitrons, consistent with Vespertilionids, were identified. Values around 20,000 genes from each of the three assemblies were derived from gene annotation and their correlation with specific functions. Comparative analysis of orthologs among eight Myotis species revealed 20,820 groups, with 4,789 being single copy orthogroups. Non-coding RNA elements were annotated. Phylogenomic tree analysis supported evolutionary chiropterans' relationships. These resources contribute significantly to understanding gene evolution, diversification patterns, and aiding conservation efforts for these endangered bat species.
Collapse
Affiliation(s)
- Edgar G. Gutiérrez
- Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Jesus E. Maldonado
- Center for Conservation Genomics, Smithsonian’s National Zoo and Conservation Biology Institute, Washington, D.C., United States of America
| | - Gabriela Castellanos-Morales
- Departamento de Conservación de la Biodiversidad, El Colegio de la Frontera Sur, Unidad Villahermosa (ECOSUR-Villahermosa), Villahermosa, Tabasco, Mexico
| | - Luis E. Eguiarte
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Norberto Martínez-Méndez
- Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Jorge Ortega
- Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| |
Collapse
|
7
|
Capel SLR, Hamilton NM, Fraser D, Escalona M, Nguyen O, Sacco S, Sahasrabudhe R, Seligmann W, Vazquez JM, Sudmant PH, Morrison ML, Wayne RK, Buchalski MR. Reference genome of Townsend's big-eared bat, Corynorhinus townsendii. J Hered 2024; 115:203-211. [PMID: 38092381 PMCID: PMC10936552 DOI: 10.1093/jhered/esad078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 12/11/2023] [Indexed: 03/14/2024] Open
Abstract
Townsend's big-eared bat, Corynorhinus townsendii, is a cave- and mine-roosting species found largely in western North America. Considered a species of conservation concern throughout much of its range, protection efforts would greatly benefit from understanding patterns of population structure, genetic diversity, and local adaptation. To facilitate such research, we present the first de novo genome assembly of C. townsendii as part of the California Conservation Genomics Project (CCGP). Pacific Biosciences HiFi long reads and Omni-C chromatin-proximity sequencing technologies were used to produce a de novo genome assembly, consistent with the standard CCGP reference genome protocol. This assembly comprises 391 scaffolds spanning 2.1 Gb, represented by a scaffold N50 of 174.6 Mb, a contig N50 of 23.4 Mb, and a benchmarking universal single-copy ortholog (BUSCO) completeness score of 96.6%. This high-quality genome will be a key tool for informed conservation and management of this vulnerable species in California and across its range.
Collapse
Affiliation(s)
- Samantha L R Capel
- Wildlife Genetics Research Unit, Wildlife Health Laboratory, California Department of Fish and Wildlife, Sacramento, CA, United States
| | - Natalie M Hamilton
- Department of Rangeland Wildlife and Fisheries Management, Texas A&M University, College Station, TX, United States
| | - Devaughn Fraser
- Connecticut Department of Energy and Environmental Protection, Hartford, CT, United States
| | - Merly Escalona
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, United States
| | - Oanh Nguyen
- DNA Technologies and Expression Analysis Core Laboratory, Genome Center, University of California Davis, Davis, CA, United States
| | - Samuel Sacco
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, United States
| | - Ruta Sahasrabudhe
- DNA Technologies and Expression Analysis Core Laboratory, Genome Center, University of California Davis, Davis, CA, United States
| | - William Seligmann
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, United States
| | - Juan M Vazquez
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, United States
| | - Peter H Sudmant
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, United States
| | - Michael L Morrison
- Department of Rangeland Wildlife and Fisheries Management, Texas A&M University, College Station, TX, United States
| | - Robert K Wayne
- Department of Ecology and Evolution, University of California Los Angeles, Los Angeles, CA, United States
| | - Michael R Buchalski
- Wildlife Genetics Research Unit, Wildlife Health Laboratory, California Department of Fish and Wildlife, Sacramento, CA, United States
| |
Collapse
|
8
|
Hua R, Ma YS, Yang L, Hao JJ, Hua QY, Shi LY, Yao XQ, Zhi HY, Liu Z. Experimental evidence for cancer resistance in a bat species. Nat Commun 2024; 15:1401. [PMID: 38360878 PMCID: PMC10869793 DOI: 10.1038/s41467-024-45767-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 02/02/2024] [Indexed: 02/17/2024] Open
Abstract
Mammals exhibit different rates of cancer, with long-lived species generally showing greater resistance. Although bats have been suggested to be resistant to cancer due to their longevity, this has yet to be systematically examined. Here, we investigate cancer resistance across seven bat species by activating oncogenic genes in their primary cells. Both in vitro and in vivo experiments suggest that Myotis pilosus (MPI) is particularly resistant to cancer. The transcriptomic and functional analyses reveal that the downregulation of three genes (HIF1A, COPS5, and RPS3) largely contributes to cancer resistance in MPI. Further, we identify the loss of a potential enhancer containing the HIF1A binding site upstream of COPS5 in MPI, resulting in the downregulation of COPS5. These findings not only provide direct experimental evidence for cancer resistance in a bat species but also offer insights into the natural mechanisms of cancer resistance in mammals.
Collapse
Affiliation(s)
- Rong Hua
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yuan-Shuo Ma
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Lu Yang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Jun-Jun Hao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Qin-Yang Hua
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Lu-Ye Shi
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Xiao-Qing Yao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Hao-Yu Zhi
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Zhen Liu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.
- Yunnan Key Laboratory of Biodiversity Information, Kunming, China.
| |
Collapse
|
9
|
Libertini G. Phenoptosis and the Various Types of Natural Selection. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:2007-2022. [PMID: 38462458 DOI: 10.1134/s0006297923120052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/14/2023] [Accepted: 09/17/2023] [Indexed: 03/12/2024]
Abstract
In the first description of evolution, the fundamental mechanism is the natural selection favoring the individuals best suited for survival and reproduction (selection at the individual level or classical Darwinian selection). However, this is a very reductive description of natural selection that does not consider or explain a long series of known phenomena, including those in which an individual sacrifices or jeopardizes his life on the basis of genetically determined mechanisms (i.e., phenoptosis). In fact, in addition to (i) selection at the individual level, it is essential to consider other types of natural selection such as those concerning: (ii) kin selection and some related forms of group selection; (iii) the interactions between the innumerable species that constitute a holobiont; (iv) the origin of the eukaryotic cell from prokaryotic organisms; (v) the origin of multicellular eukaryotic organisms from unicellular organisms; (vi) eusociality (e.g., in many species of ants, bees, termites); (vii) selection at the level of single genes, or groups of genes; (viii) the interactions between individuals (or more precisely their holobionts) of the innumerable species that make up an ecosystem. These forms of natural selection, which are all effects and not violations of the classical Darwinian selection, also show how concepts as life, species, individual, and phenoptosis are somewhat not entirely defined and somehow arbitrary. Furthermore, the idea of organisms selected on the basis of their survival and reproduction capabilities is intertwined with that of organisms also selected on the basis of their ability to cooperate and interact, even by losing their lives or their distinct identities.
Collapse
Affiliation(s)
- Giacinto Libertini
- Italian Society for Evolutionary Biology (ISEB), Asti, 14100, Italy.
- Department of Translational Medical Sciences, Federico II University of Naples, Naples, 80131, Italy
| |
Collapse
|