1
|
Bartolić P, Voltrová A, Macková L, Šrámková G, Šlenker M, Mandáková T, Padilla García N, Marhold K, Kolář F. Overcoming Ploidy Barriers: The Role of Triploid Bridges in the Genetic Introgression of Cardamine amara. Mol Ecol 2025; 34:e17702. [PMID: 39996298 PMCID: PMC11934083 DOI: 10.1111/mec.17702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 02/07/2025] [Accepted: 02/11/2025] [Indexed: 02/26/2025]
Abstract
Polyploidisation is a significant reproductive barrier, yet genetic evidence indicates that interploidy admixture is more common than previously thought. Theoretical models and controlled crosses support the 'triploid bridge' hypothesis, proposing that hybrids of intermediate ploidy facilitate gene flow. However, comprehensive evidence combining experimental and genetic data from natural mixed-ploidy species is missing. Here, we investigated the rates and directionality of gene flow within a diploid-autotetraploid contact zone of Cardamine amara, a species with abundant natural triploids. We cytotyped over 400 individuals in the field, conducted reciprocal interploidy crosses, and inferred gene flow based on genome-wide sequencing of 84 individuals. Triploids represent a conspicuous entity in mixed-ploidy populations (5%), yet only part of them arose through interploidy hybridisation. Despite being rarely formed, triploid hybrids can backcross with their parental cytotypes, producing viable offspring that are often euploid (in 42% of cases). In correspondence, D-statistics and coalescent simulations documented a significant genome-wide signal of bidirectional gene flow in sympatric but not allopatric populations. Triploids, though rare, thus seem to play a key role in overcoming polyploidy-related reproductive barriers in C. amara. In sum, we present integrative evidence for interploidy gene flow mediated by a triploid bridge in natural populations.
Collapse
Affiliation(s)
- P. Bartolić
- Department of Botany, Faculty of ScienceCharles University in PraguePragueCzechia
| | - A. Voltrová
- Department of Botany, Faculty of ScienceCharles University in PraguePragueCzechia
| | - L. Macková
- Department of Botany, Faculty of ScienceCharles University in PraguePragueCzechia
| | - G. Šrámková
- Department of Botany, Faculty of ScienceCharles University in PraguePragueCzechia
| | - M. Šlenker
- Institute of BotanyPlant Science and Biodiversity Centre, Slovak Academy of SciencesBratislavaSlovakia
| | - T. Mandáková
- Department of Experimental Biology, Faculty of ScienceMasaryk UniversityBrnoCzechia
- Central European Institute of TechnologyMasaryk UniversityBrnoCzechia
| | - N. Padilla García
- Departamento de Botánica y Fisiología VegetalUniversity of SalamancaSalamancaSpain
| | - K. Marhold
- Department of Botany, Faculty of ScienceCharles University in PraguePragueCzechia
- Institute of BotanyPlant Science and Biodiversity Centre, Slovak Academy of SciencesBratislavaSlovakia
| | - F. Kolář
- Department of Botany, Faculty of ScienceCharles University in PraguePragueCzechia
- Institute of Botany of the Czech Academy of SciencesPrůhoniceCzechia
| |
Collapse
|
2
|
Zhao Y, Li G, Zhu Z, Hu M, Jiang D, Chen M, Wang J, Zhang K, Zheng Y, Liao Y, Chen C. Genomic selection and genetic architecture of agronomic traits during modern flowering Chinese cabbage breeding. HORTICULTURE RESEARCH 2025; 12:uhae299. [PMID: 39949876 PMCID: PMC11822411 DOI: 10.1093/hr/uhae299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 10/11/2024] [Indexed: 02/16/2025]
Abstract
Flowering Chinese cabbage is a type of leafy vegetable that belongs to the Brassica genus. Originally native to South China, it is now widely cultivated and consumed across the globe, particularly in Asian countries. The recent cultivation and regional expansion of flowering Chinese cabbage provides a valuable opportunity to elucidate the genomic basis underlying environmental adaptation and desired traits during a short-term artificial selection process. Here, we investigate the genetic variation, population structure, and diversity of a diverse germplasm collection of 403 flowering Chinese cabbage accessions. Our investigation seeks to elucidate the genomic basis that guides the selection of adaptability, yield, and pivotal agronomic traits. We further investigated breeding improvement associated with stem development by integrating transcriptome data. Genome-wide association analysis identified 642 loci and corresponding candidate genes associated with 11 essential agronomic traits, including plant architecture and yield. Furthermore, we uncovered a significant disparity in the allele frequency distribution of nonsynonymous mutations in these candidate genes throughout the improvement stages. Our results shed light on the genetic basis of improvement and crucial agronomic traits in flowering Chinese cabbage, offering invaluable resources for upcoming genomics-assisted breeding endeavors.
Collapse
Affiliation(s)
- Yahui Zhao
- Ministry of Agriculture and Rural Affairs Key Laboratory of South China Horticultural Crop Biology and Germplasm Enhancement, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Guangguang Li
- Guangzhou Institute of Agriculture Science, Guangzhou 510308, China
| | - Zhangsheng Zhu
- Ministry of Agriculture and Rural Affairs Key Laboratory of South China Horticultural Crop Biology and Germplasm Enhancement, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Ming Hu
- Ministry of Agriculture and Rural Affairs Key Laboratory of South China Horticultural Crop Biology and Germplasm Enhancement, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Ding Jiang
- Guangzhou Institute of Agriculture Science, Guangzhou 510308, China
| | - Muxi Chen
- Guangdong Helinong Biological Seed Industry Co., Ltd, Shantou, Guangdong 515800, China
| | - Juantao Wang
- Ministry of Agriculture and Rural Affairs Key Laboratory of South China Horticultural Crop Biology and Germplasm Enhancement, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Kexin Zhang
- Ministry of Agriculture and Rural Affairs Key Laboratory of South China Horticultural Crop Biology and Germplasm Enhancement, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Yansong Zheng
- Guangzhou Institute of Agriculture Science, Guangzhou 510308, China
| | - Yi Liao
- Ministry of Agriculture and Rural Affairs Key Laboratory of South China Horticultural Crop Biology and Germplasm Enhancement, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Changming Chen
- Ministry of Agriculture and Rural Affairs Key Laboratory of South China Horticultural Crop Biology and Germplasm Enhancement, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
3
|
Bartolić P, Morgan EJ, Padilla-García N, Kolář F. Ploidy as a leaky reproductive barrier: mechanisms, rates and evolutionary significance of interploidy gene flow. ANNALS OF BOTANY 2024; 134:537-550. [PMID: 38868992 PMCID: PMC11523636 DOI: 10.1093/aob/mcae096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/12/2024] [Indexed: 06/14/2024]
Abstract
BACKGROUND Whole-genome duplication (polyploidization) is a dominant force in sympatric speciation, particularly in plants. Genome doubling instantly poses a barrier to gene flow owing to the strong crossing incompatibilities between individuals differing in ploidy. The strength of the barrier, however, varies from species to species and recent genetic investigations revealed cases of rampant interploidy introgression in multiple ploidy-variable species. SCOPE Here, we review novel insights into the frequency of interploidy gene flow in natural systems and summarize the underlying mechanisms promoting interploidy gene flow. Field surveys, occasionally complemented by crossing experiments, suggest frequent opportunities for interploidy gene flow, particularly in the direction from diploid to tetraploid, and between (higher) polyploids. However, a scarcity of accompanying population genetic evidence and a virtual lack of integration of these approaches leave the underlying mechanisms and levels of realized interploidy gene flow in nature largely unknown. Finally, we discuss potential consequences of interploidy genome permeability on polyploid speciation and adaptation and highlight novel avenues that have just recently been opened by the very first genomic studies of ploidy-variable species. Standing in stark contrast with rapidly accumulating evidence for evolutionary importance of homoploid introgression, similar cases in ploidy-variable systems are yet to be documented. CONCLUSIONS The genomics era provides novel opportunity to re-evaluate the role of interploidy introgression in speciation and adaptation. To achieve this goal, interdisciplinary studies bordering ecology and population genetics and genomics are needed.
Collapse
Affiliation(s)
- Paolo Bartolić
- Department of Botany, Faculty of Science, Charles University in Prague, Benátská 2, CZ-128 01 Prague, Czech Republic
| | - Emma J Morgan
- Department of Botany, Faculty of Science, Charles University in Prague, Benátská 2, CZ-128 01 Prague, Czech Republic
| | - Nélida Padilla-García
- Department of Botany, Faculty of Science, Charles University in Prague, Benátská 2, CZ-128 01 Prague, Czech Republic
- Departamento de Botánica y Fisiología Vegetal, University of Salamanca, 37007 Salamanca, Spain
| | - Filip Kolář
- Department of Botany, Faculty of Science, Charles University in Prague, Benátská 2, CZ-128 01 Prague, Czech Republic
| |
Collapse
|
4
|
Wang T, van Dijk ADJ, Zhao R, Bonnema G, Wang X. Contribution of homoeologous exchange to domestication of polyploid Brassica. Genome Biol 2024; 25:231. [PMID: 39192349 DOI: 10.1186/s13059-024-03370-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 08/10/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND Polyploidy is widely recognized as a significant evolutionary force in the plant kingdom, contributing to the diversification of plants. One of the notable features of allopolyploidy is the occurrence of homoeologous exchange (HE) events between the subgenomes, causing changes in genomic composition, gene expression, and phenotypic variations. However, the role of HE in plant adaptation and domestication remains unclear. RESULTS Here we analyze the whole-genome resequencing data from Brassica napus accessions representing the different morphotypes and ecotypes, to investigate the role of HE in domestication. Our findings demonstrate frequent occurrence of HEs in Brassica napus, with substantial HE patterns shared across populations, indicating their potential role in promoting crop domestication. HE events are asymmetric, with the A genome more frequently replacing C genome segments. These events show a preference for specific genomic regions and vary among populations. We also identify candidate genes in HE regions specific to certain populations, which likely contribute to flowering-time diversification across diverse morphotypes and ecotypes. In addition, we assemble a new genome of a swede accession, confirming the HE signals on the genome and their potential involvement in root tuber development. By analyzing HE in another allopolyploid species, Brassica juncea, we characterize a potential broader role of HE in allopolyploid crop domestication. CONCLUSIONS Our results provide novel insights into the domestication of polyploid Brassica species and highlight homoeologous exchange as a crucial mechanism for generating variations that are selected for crop improvement in polyploid species.
Collapse
Affiliation(s)
- Tianpeng Wang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- Plant Breeding, Wageningen University and Research, Wageningen, The Netherlands
- Bioinformatics Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Aalt D J van Dijk
- Bioinformatics Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Ranze Zhao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guusje Bonnema
- Plant Breeding, Wageningen University and Research, Wageningen, The Netherlands.
| | - Xiaowu Wang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
5
|
Conover JL, Grover CE, Sharbrough J, Sloan DB, Peterson DG, Wendel JF. Little evidence for homoeologous gene conversion and homoeologous exchange events in Gossypium allopolyploids. AMERICAN JOURNAL OF BOTANY 2024; 111:e16386. [PMID: 39107998 DOI: 10.1002/ajb2.16386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/01/2024] [Accepted: 07/01/2024] [Indexed: 08/24/2024]
Abstract
PREMISE A complicating factor in analyzing allopolyploid genomes is the possibility of physical interactions between homoeologous chromosomes during meiosis, resulting in either crossover (homoeologous exchanges) or non-crossover products (homoeologous gene conversion). Homoeologous gene conversion was first described in cotton by comparing SNP patterns in sequences from two diploid progenitors with those from the allopolyploid subgenomes. These analyses, however, did not explicitly consider other evolutionary scenarios that may give rise to similar SNP patterns as homoeologous gene conversion, creating uncertainties about the reality of the inferred gene conversion events. METHODS Here, we use an expanded phylogenetic sampling of high-quality genome assemblies from seven allopolyploid Gossypium species (all derived from the same polyploidy event), four diploid species (two closely related to each subgenome), and a diploid outgroup to derive a robust method for identifying potential genomic regions of gene conversion and homoeologous exchange. RESULTS We found little evidence for homoeologous gene conversion in allopolyploid cottons, and that only two of the 40 best-supported events were shared by more than one species. We did, however, reveal a single, shared homoeologous exchange event at one end of chromosome 1, which occurred shortly after allopolyploidization but prior to divergence of the descendant species. CONCLUSIONS Overall, our analyses demonstrated that homoeologous gene conversion and homoeologous exchanges are uncommon in Gossypium, affecting between zero and 24 genes per subgenome (0.0-0.065%) across the seven species. More generally, we highlighted the potential problems of using simple four-taxon tests to investigate patterns of homoeologous gene conversion in established allopolyploids.
Collapse
Affiliation(s)
- Justin L Conover
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, 50010, IA, USA
- Ecology and Evolutionary Biology Department, University of Arizona, Tucson, 85718, AZ, USA
- Molecular and Cellular Biology Department, University of Arizona, Tucson, 85718, AZ, USA
| | - Corrinne E Grover
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, 50010, IA, USA
| | - Joel Sharbrough
- Biology Department, New Mexico Institute of Mining and Technology, Socorro, 87801, NM, USA
| | - Daniel B Sloan
- Biology Department, Colorado State University, Fort Collins, 80521, CO, USA
| | - Daniel G Peterson
- Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University, Mississippi State, 39762, MS, USA
| | - Jonathan F Wendel
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, 50010, IA, USA
| |
Collapse
|
6
|
Jeon D, Kim C. Polyploids of Brassicaceae: Genomic Insights and Assembly Strategies. PLANTS (BASEL, SWITZERLAND) 2024; 13:2087. [PMID: 39124204 PMCID: PMC11314605 DOI: 10.3390/plants13152087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024]
Abstract
The Brassicaceae family is distinguished by its inclusion of high-value crops such as cabbage, broccoli, mustard, and wasabi, all noted for their glucosinolates. In this family, many polyploidy species are distributed and shaped by numerous whole-genome duplications, independent genome doublings, and hybridization events. The evolutionary trajectory of the family is marked by enhanced diversification and lineage splitting after paleo- and meso-polyploidization, with discernible remnants of whole-genome duplications within their genomes. The recent neopolyploidization events notably increased the proportion of polyploid species within the family. Although sequencing efforts for the Brassicaceae genome have been robust, accurately distinguishing sub-genomes remains a significant challenge, frequently complicating the assembly process. Assembly strategies include comparative analyses with ancestral species and examining k-mers, long terminal repeat retrotransposons, and pollen sequencing. This review comprehensively explores the unique genomic characteristics of the Brassicaceae family, with a particular emphasis on polyploidization events and the latest strategies for sequencing and assembly. This review will significantly improve our understanding of polyploidy in the Brassicaceae family and assist in future genome assembly methods.
Collapse
Affiliation(s)
- Donghyun Jeon
- Department of Science in Smart Agriculture Systems, Chungnam National University, Daejeon 34134, Republic of Korea;
| | - Changsoo Kim
- Department of Science in Smart Agriculture Systems, Chungnam National University, Daejeon 34134, Republic of Korea;
- Department of Crop Science, Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
7
|
Ning W, Meudt HM, Tate JA. A roadmap of phylogenomic methods for studying polyploid plant genera. APPLICATIONS IN PLANT SCIENCES 2024; 12:e11580. [PMID: 39184196 PMCID: PMC11342234 DOI: 10.1002/aps3.11580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/10/2023] [Accepted: 01/13/2024] [Indexed: 08/27/2024]
Abstract
Phylogenetic inference of polyploid species is the first step towards understanding their patterns of diversification. In this paper, we review the challenges and limitations of inferring species relationships of polyploid plants using traditional phylogenetic sequencing approaches, as well as the mischaracterization of the species tree from single or multiple gene trees. We provide a roadmap to infer interspecific relationships among polyploid lineages by comparing and evaluating the application of current phylogenetic, phylogenomic, transcriptomic, and whole-genome approaches using different sequencing platforms. For polyploid species tree reconstruction, we assess the following criteria: (1) the amount of prior information or tools required to capture the genetic region(s) of interest; (2) the probability of recovering homeologs for polyploid species; and (3) the time efficiency of downstream data analysis. Moreover, we discuss bioinformatic pipelines that can reconstruct networks of polyploid species relationships. In summary, although current phylogenomic approaches have improved our understanding of reticulate species relationships in polyploid-rich genera, the difficulties of recovering reliable orthologous genes and sorting all homeologous copies for allopolyploids remain a challenge. In the future, assembled long-read sequencing data will assist the recovery and identification of multiple gene copies, which can be particularly useful for reconstructing the multiple independent origins of polyploids.
Collapse
Affiliation(s)
- Weixuan Ning
- School of Natural SciencesMassey UniversityPalmerston North4442New Zealand
| | - Heidi M. Meudt
- Museum of New Zealand Te Papa TongarewaWellington6011New Zealand
| | - Jennifer A. Tate
- School of Natural SciencesMassey UniversityPalmerston North4442New Zealand
| |
Collapse
|
8
|
Sun W, Li M, Wang J. Characteristics of duplicated gene expression and DNA methylation regulation in different tissues of allopolyploid Brassica napus. BMC PLANT BIOLOGY 2024; 24:518. [PMID: 38851683 PMCID: PMC11162574 DOI: 10.1186/s12870-024-05245-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/04/2024] [Indexed: 06/10/2024]
Abstract
Plant polyploidization increases the complexity of epigenomes and transcriptional regulation, resulting in genome evolution and enhanced adaptability. However, few studies have been conducted on the relationship between gene expression and epigenetic modification in different plant tissues after allopolyploidization. In this study, we studied gene expression and DNA methylation modification patterns in four tissues (stems, leaves, flowers and siliques) of Brassica napusand its diploid progenitors. On this basis, the alternative splicing patterns and cis-trans regulation patterns of four tissues in B. napus and its diploid progenitors were also analyzed. It can be seen that the number of alternative splicing occurs in the B. napus is higher than that in the diploid progenitors, and the IR type increases the most during allopolyploidy. In addition, we studied the fate changes of duplicated genes after allopolyploidization in B. napus. We found that the fate of most duplicated genes is conserved, but the number of neofunctionalization and specialization is also large. The genetic fate of B. napus was classified according to five replication types (WGD, PD, DSD, TD, TRD). This study also analyzed generational transmission analysis of expression and DNA methylation patterns. Our study provides a reference for the fate differentiation of duplicated genes during allopolyploidization.
Collapse
Affiliation(s)
- Weiqi Sun
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Mengdi Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Jianbo Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
9
|
Brown MR, Abbott RJ, Twyford AD. The emerging importance of cross-ploidy hybridisation and introgression. Mol Ecol 2024; 33:e17315. [PMID: 38501394 DOI: 10.1111/mec.17315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/20/2024]
Abstract
Natural hybridisation is now recognised as pervasive in its occurrence across the Tree of Life. Resurgent interest in natural hybridisation fuelled by developments in genomics has led to an improved understanding of the genetic factors that promote or prevent species cross-mating. Despite this body of work overturning many widely held assumptions about the genetic barriers to hybridisation, it is still widely thought that ploidy differences between species will be an absolute barrier to hybridisation and introgression. Here, we revisit this assumption, reviewing findings from surveys of polyploidy and hybridisation in the wild. In a case study in the British flora, 203 hybrids representing 35% of hybrids with suitable data have formed via cross-ploidy matings, while a wider literature search revealed 59 studies (56 in plants and 3 in animals) in which cross-ploidy hybridisation has been confirmed with genetic data. These results show cross-ploidy hybridisation is readily overlooked, and potentially common in some groups. General findings from these studies include strong directionality of hybridisation, with introgression usually towards the higher ploidy parent, and cross-ploidy hybridisation being more likely to involve allopolyploids than autopolyploids. Evidence for adaptive introgression across a ploidy barrier and cases of cross-ploidy hybrid speciation shows the potential for important evolutionary outcomes.
Collapse
Affiliation(s)
- Max R Brown
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh, UK
- School of Life Sciences, Anglia Ruskin University, Cambridge, UK
| | - Richard J Abbott
- School of Biology, University of St Andrews, St Andrews, Fife, UK
| | - Alex D Twyford
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh, UK
- Royal Botanical Garden Edinburgh, Edinburgh, UK
| |
Collapse
|