1
|
Méndez MJN, Amini SS, Santos JC, Saal J, Wake MH, Ron SR, Tarvin RD. Caecilians maintain a functional long-wavelength-sensitive cone opsin gene despite signatures of relaxed selection and more than 200 million years of fossoriality. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.07.636964. [PMID: 39975400 PMCID: PMC11839130 DOI: 10.1101/2025.02.07.636964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Visual systems are tuned to animals' ecologies, evolving in response to specific light environments and visual needs. Ecological transitions to fossorial lifestyles impose strong selective pressures favoring morphological adaptations for underground life, such as increased skull ossification and reduced eye protrusion. Fossoriality may simultaneously relax constraints on other aspects of vision leading to diminished visual capabilities. Caecilians (Gymnophiona)-specialized, fossorial amphibians-possess reduced eyes covered by skin or bone. For years, these traits, along with the presence of a single photoreceptor expressing one functional opsin gene, have been interpreted as evidence of limited visual capabilities, including an inability to focus or perceive color. Our results challenge these assumptions: we identified the long-wavelength-sensitive (LWS) opsin gene in 11 species of caecilians spanning 8 of 10 recognized families. Molecular evidence indicates that LWS is intact and transcribed in the eye of at least one species (Caecilia orientalis). Anatomical observations from five caecilian families indicate highly organized retinae even in families with vestigial eyes. While the presence of cone cells in our study species remains uncertain, a putatively functional LWS gene suggests that the visual capabilities of caecilians and the role of light perception in their ecology may be underestimated.
Collapse
Affiliation(s)
- Maria José Navarrete Méndez
- Department of Integrative Biology and Museum of Vertebrate Zoology, University of California Berkeley, Berkeley, CA, USA 94720
- Department of Biological Sciences, St John's University, NY, USA 11439
| | - Sina S Amini
- Department of Integrative Biology and Museum of Vertebrate Zoology, University of California Berkeley, Berkeley, CA, USA 94720
| | | | - Jacob Saal
- Department of Integrative Biology and Museum of Vertebrate Zoology, University of California Berkeley, Berkeley, CA, USA 94720
| | - Marvalee H Wake
- Department of Integrative Biology and Museum of Vertebrate Zoology, University of California Berkeley, Berkeley, CA, USA 94720
| | - Santiago R Ron
- Museo de Zoología, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Rebecca D Tarvin
- Department of Integrative Biology and Museum of Vertebrate Zoology, University of California Berkeley, Berkeley, CA, USA 94720
| |
Collapse
|
2
|
Tarvin RD, Coleman JL, Donoso DA, Betancourth-Cundar M, López-Hervas K, Gleason KS, Sanders JR, Smith JM, Ron SR, Santos JC, Sedio BE, Cannatella DC, Fitch RW. Passive accumulation of alkaloids in inconspicuously colored frogs refines the evolutionary paradigm of acquired chemical defenses. eLife 2024; 13:RP100011. [PMID: 39728927 DOI: 10.7554/elife.100011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024] Open
Abstract
Understanding the origins of novel, complex phenotypes is a major goal in evolutionary biology. Poison frogs of the family Dendrobatidae have evolved the novel ability to acquire alkaloids from their diet for chemical defense at least three times. However, taxon sampling for alkaloids has been biased towards colorful species, without similar attention paid to inconspicuous ones that are often assumed to be undefended. As a result, our understanding of how chemical defense evolved in this group is incomplete. Here, we provide new data showing that, in contrast to previous studies, species from each undefended poison frog clade have measurable yet low amounts of alkaloids. We confirm that undefended dendrobatids regularly consume mites and ants, which are known sources of alkaloids. Thus, our data suggest that diet is insufficient to explain the defended phenotype. Our data support the existence of a phenotypic intermediate between toxin consumption and sequestration - passive accumulation - that differs from sequestration in that it involves no derived forms of transport and storage mechanisms yet results in low levels of toxin accumulation. We discuss the concept of passive accumulation and its potential role in the origin of chemical defenses in poison frogs and other toxin-sequestering organisms. In light of ideas from pharmacokinetics, we incorporate new and old data from poison frogs into an evolutionary model that could help explain the origins of acquired chemical defenses in animals and provide insight into the molecular processes that govern the fate of ingested toxins.
Collapse
Affiliation(s)
- Rebecca D Tarvin
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, Berkeley, United States
| | - Jeffrey L Coleman
- Department of Integrative Biology and Biodiversity Collections, University of Texas at Austin, Austin, United States
- Smithsonian Tropical Research Institute, Ancón, Panama
| | - David A Donoso
- Grupo de Investigación en Ecología Evolutiva en los Trópicos (EETROP), Universidad de las Américas, Quito, Ecuador
- Ecological Networks Lab, Technische Universität Darmstadt, Darmstadt, Germany
| | - Mileidy Betancourth-Cundar
- Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá, Colombia
- Department of Biology, Stanford University, Palo Alto, United States
| | | | - Kimberly S Gleason
- Department of Chemistry and Physics, Indiana State University, Terre Haute, United States
| | - J Ryan Sanders
- Department of Chemistry and Physics, Indiana State University, Terre Haute, United States
| | - Jacqueline M Smith
- Department of Chemistry and Physics, Indiana State University, Terre Haute, United States
| | - Santiago R Ron
- Museo de Zoología, Escuela de Biología, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Juan C Santos
- Department of Biological Sciences, St John's University, New York, United States
| | - Brian E Sedio
- Department of Integrative Biology and Biodiversity Collections, University of Texas at Austin, Austin, United States
- Smithsonian Tropical Research Institute, Ancón, Panama
| | - David C Cannatella
- Department of Integrative Biology and Biodiversity Collections, University of Texas at Austin, Austin, United States
| | - Richard W Fitch
- Department of Chemistry and Physics, Indiana State University, Terre Haute, United States
| |
Collapse
|
3
|
Whitcher C, Ron SR, Ayala-Varela F, Crawford AJ, Herrera-Alva V, Castillo-Urbina EF, Grazziotin F, Bowman RM, Lemmon AR, Lemmon EM. Evidence for ecological tuning of anuran biofluorescent signals. Nat Commun 2024; 15:8884. [PMID: 39406728 PMCID: PMC11480117 DOI: 10.1038/s41467-024-53111-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/02/2024] [Indexed: 10/19/2024] Open
Abstract
Although biologists have described biofluorescence in a diversity of taxa, there have been few systematic efforts to document the extent of biofluorescence within a taxonomic group or investigate its general significance. Through a field survey across South America, we discover and document patterns of biofluorescence in tropical amphibians. We more than triple the number of anuran species that have been tested for this trait. We find evidence for ecological tuning (i.e., the specific adaptation of a signal to the environment in which it is received) of the biofluorescent signals. For 56.58% of species tested, the fluorescence excitation peak matches the wavelengths most abundant at twilight, the light environment in which most frogs are active. Additionally, biofluorescence emission spans both wavelengths of low availability in twilight and the peak sensitivity of green-sensitive rods in the anuran eye, likely increasing contrast of this signal for a conspecific receiver. We propose an expanded key for testing the ecological significance of biofluorescence in future studies, providing potential explanations for the other half of fluorescent signals not originally meeting formerly proposed criteria. With evidence of tuning to the ecology and sensory systems of frogs, our results suggest frog biofluorescence is likely functioning in anuran communication.
Collapse
Affiliation(s)
- Courtney Whitcher
- Florida State University, Department of Biological Science, Tallahassee, FL, 32306, USA.
| | - Santiago R Ron
- Museo de Zoología, Pontificia Universidad Católica del Ecuador, Escuela de Ciencias Bioloógicas, Quito, 170143, Ecuador
| | - Fernando Ayala-Varela
- Museo de Zoología, Pontificia Universidad Católica del Ecuador, Escuela de Ciencias Bioloógicas, Quito, 170143, Ecuador
| | - Andrew J Crawford
- Universidad de los Andes, Department of Biological Sciences, Bogotá, 111711, Colombia
| | - Valia Herrera-Alva
- Museo de Historia Natural de la Universidad Nacional Mayor de San Marcos, Departamento de Herpetología, Lima, 15072, Perú
| | | | - Felipe Grazziotin
- Instituto Butantan, Laboratório de Coleções Zoológicas, São Paulo, 05345, Brazil
| | - Randi M Bowman
- Florida State University, Department of Biological Science, Tallahassee, FL, 32306, USA
| | - Alan R Lemmon
- Florida State University, Department of Scientific Computing, Tallahassee, FL, 32306, USA
| | - Emily Moriarty Lemmon
- Florida State University, Department of Biological Science, Tallahassee, FL, 32306, USA
| |
Collapse
|
4
|
Lin JJ, Wang FY, Chung WY, Wang TY. The genomic evolution of visual opsin genes in amphibians. Vision Res 2024; 222:108447. [PMID: 38906036 DOI: 10.1016/j.visres.2024.108447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 06/23/2024]
Abstract
Among tetrapod (terrestrial) vertebrates, amphibians remain more closely tied to an amphibious lifestyle than amniotes, and their visual opsin genes may be adapted to this lifestyle. Previous studies have discussed physiological, morphological, and molecular changes in the evolution of amphibian vision. We predicted the locations of the visual opsin genes, their neighboring genes, and the tuning sites of the visual opsins, in 39 amphibian genomes. We found that all of the examined genomes lacked the Rh2 gene. The caecilian genomes have further lost the SWS1 and SWS2 genes; only the Rh1 and LWS genes were retained. The loss of the SWS1 and SWS2 genes in caecilians may be correlated with their cryptic lifestyles. The opsin gene syntenies were predicted to be highly similar to those of other bony vertebrates. Moreover, dual syntenies were identified in allotetraploid Xenopus laevis and X. borealis. Tuning site analysis showed that only some Caudata species might have UV vision. In addition, the S164A that occurred several times in LWS evolution might either functionally compensate for the Rh2 gene loss or fine-tuning visual adaptation. Our study provides the first genomic evidence for a caecilian LWS gene and a genomic viewpoint of visual opsin genes by reviewing the gains and losses of visual opsin genes, the rearrangement of syntenies, and the alteration of spectral tuning in the course of amphibians' evolution.
Collapse
Affiliation(s)
- Jinn-Jy Lin
- National Center for High-performance Computing, National Applied Research Laboratories, Hsinchu, Taiwan
| | - Feng-Yu Wang
- Taiwan Ocean Research Institute, National Applied Research Laboratories, Kaohsiung, Taiwan
| | - Wen-Yu Chung
- Department of Computer Science and Information Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
| | - Tzi-Yuan Wang
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
5
|
Monteiro JPC, Pröhl H, Lyra ML, Brunetti AE, de Nardin EC, Condez TH, Haddad CFB, Rodríguez A. Expression patterns of melanin-related genes are linked to crypsis and conspicuousness in a pumpkin toadlet. Mol Ecol 2024:e17458. [PMID: 38970414 DOI: 10.1111/mec.17458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 06/14/2024] [Accepted: 06/24/2024] [Indexed: 07/08/2024]
Abstract
Colour signals play pivotal roles in different communication systems, and the evolution of these characters has been associated with behavioural ecology, integumentary production processes and perceptual mechanisms of the species involved. Here, we present the first insight into the molecular and histological basis of skin colour polymorphism within a miniaturized species of pumpkin toadlet, potentially representing the lowest size threshold for colour polytypism in tetrapods. Brachycephalus actaeus exhibits a coloration ranging from cryptic green to conspicuous orange skin, and our findings suggest that colour morphs differ in their capability to be detected by potential predators. We also found that the distribution and abundance of chromatophores are variable in the different colour morphs. The expression pattern of coloration related genes was predominantly associated with melanin synthesis (including dct, edn1, mlana, oca2, pmel, slc24a5, tyrp1 and wnt9a). Up-regulation of melanin genes in grey, green and brown skin was associated with higher melanophore abundance than in orange skin, where xanthophores predominate. Our findings provide a significant foundation for comparing and understanding the diverse pathways that contribute to the evolution of pigment production in the skin of amphibians.
Collapse
Affiliation(s)
- Juliane P C Monteiro
- Post-Graduate Program in Biodiversity, Institute of Biosciences, São Paulo State University (UNESP), Rio Claro, São Paulo, Brazil
- Department of Biodiversity and Aquaculture Center (CAUNESP), Institute of Biosciences, São Paulo State University (UNESP), Rio Claro, São Paulo, Brazil
- Center for Research on Biodiversity Dynamics and Climate Change, Institute of Biosciences, São Paulo State University (UNESP), Rio Claro, São Paulo, Brazil
- Institute of Zoology, University of Veterinary Medicine of Hannover, Hannover, Lower Saxony, Germany
| | - Heike Pröhl
- Institute of Zoology, University of Veterinary Medicine of Hannover, Hannover, Lower Saxony, Germany
| | - Mariana L Lyra
- Center for Research on Biodiversity Dynamics and Climate Change, Institute of Biosciences, São Paulo State University (UNESP), Rio Claro, São Paulo, Brazil
- New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Andrés E Brunetti
- Center for Research on Biodiversity Dynamics and Climate Change, Institute of Biosciences, São Paulo State University (UNESP), Rio Claro, São Paulo, Brazil
- Institute of Subtropical Biology (IBS, UNaM-CONICET), Posadas, Misiones, Argentina
- Department of Insect Symbiosis, Max Planck Institute of Chemical Ecology, Jena, Thuringia, Germany
| | - Eli C de Nardin
- Department of Biodiversity and Aquaculture Center (CAUNESP), Institute of Biosciences, São Paulo State University (UNESP), Rio Claro, São Paulo, Brazil
| | - Thais H Condez
- Center for Research on Biodiversity Dynamics and Climate Change, Institute of Biosciences, São Paulo State University (UNESP), Rio Claro, São Paulo, Brazil
- Department of Earth Sciences, Carleton University, Ottawa, Ontario, Canada
| | - Célio F B Haddad
- Department of Biodiversity and Aquaculture Center (CAUNESP), Institute of Biosciences, São Paulo State University (UNESP), Rio Claro, São Paulo, Brazil
- Center for Research on Biodiversity Dynamics and Climate Change, Institute of Biosciences, São Paulo State University (UNESP), Rio Claro, São Paulo, Brazil
| | - Ariel Rodríguez
- Institute of Zoology, University of Veterinary Medicine of Hannover, Hannover, Lower Saxony, Germany
| |
Collapse
|
6
|
Cervino NG, Elias-Costa AJ, Iglesias PP, Yovanovich CAM, Faivovich J. Insights into the evolution of photoreceptor oil droplets in frogs and toads. Proc Biol Sci 2024; 291:20241388. [PMID: 39079666 PMCID: PMC11288682 DOI: 10.1098/rspb.2024.1388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 06/23/2024] [Accepted: 07/02/2024] [Indexed: 08/03/2024] Open
Abstract
Photoreceptor oil droplets (ODs) are spherical organelles placed most commonly within the inner segment of the cone photoreceptors. Comprising neutral lipids, ODs can be either non-pigmented or pigmented and have been considered optically functional in various studies. Among living amphibians, ODs were only reported to occur in frogs and toads (Anura), while they are absent in salamanders and caecilians. Nonetheless, the limited understanding of their taxonomic distribution in anurans impedes a comprehensive assessment of their evolution and relationship with visual ecology. We studied the retinae of 134 anuran species, extending the knowledge of the distribution of ODs to 46 of the 58 currently recognized families, and providing a new perspective on this group that complements the available information from other vertebrates. The occurrence of ODs in anurans shows a strong phylogenetic signal, and our findings revealed that ODs evolved at least six times during the evolutionary history of the group, independently from other vertebrates. Although no evident correlation was found between OD occurrence, adult habits and diel activity, it is inferred that each independent origin involves distinct scenarios in the evolution of ODs concerning photic habits. Furthermore, our results revealed significant differences in the size of the ODs between nocturnal and arrhythmic anurans relative to the length of the cones' outer segment.
Collapse
Affiliation(s)
- Nadia G. Cervino
- División Herpetología, Museo Argentino de Ciencias Naturales ‘Bernardino Rivadavia’ – CONICET, Av. Ángel Gallardo 470, Buenos AiresC1405DJR, Argentina
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos AiresC1428EGA, Argentina
| | - Agustín J. Elias-Costa
- División Herpetología, Museo Argentino de Ciencias Naturales ‘Bernardino Rivadavia’ – CONICET, Av. Ángel Gallardo 470, Buenos AiresC1405DJR, Argentina
- Museum für Naturkunde – Leibniz Institute for Evolution and Biodiversity Science, Invalidenstraße 43, Berlin10115, Germany
| | - Patricia P. Iglesias
- CONICET--Agencia INTA General Acha, Estación Experimental Anguil, Avellaneda 530 General Acha, La PampaL8200AEL, Argentina
| | - Carola A. M. Yovanovich
- Department of Zoology, Institute of Biosciences, University of São Paulo, Rua do Matão No. 101, São Paulo05508-090, Brazil
- Department of Biology, Lund University, Sölvegatan 35, Lund22362, Sweden
| | - Julián Faivovich
- División Herpetología, Museo Argentino de Ciencias Naturales ‘Bernardino Rivadavia’ – CONICET, Av. Ángel Gallardo 470, Buenos AiresC1405DJR, Argentina
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos AiresC1428EGA, Argentina
| |
Collapse
|
7
|
Schott RK, Fujita MK, Streicher JW, Gower DJ, Thomas KN, Loew ER, Bamba Kaya AG, Bittencourt-Silva GB, Guillherme Becker C, Cisneros-Heredia D, Clulow S, Davila M, Firneno TJ, Haddad CFB, Janssenswillen S, Labisko J, Maddock ST, Mahony M, Martins RA, Michaels CJ, Mitchell NJ, Portik DM, Prates I, Roelants K, Roelke C, Tobi E, Woolfolk M, Bell RC. Diversity and Evolution of Frog Visual Opsins: Spectral Tuning and Adaptation to Distinct Light Environments. Mol Biol Evol 2024; 41:msae049. [PMID: 38573520 PMCID: PMC10994157 DOI: 10.1093/molbev/msae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/07/2024] [Accepted: 02/26/2024] [Indexed: 04/05/2024] Open
Abstract
Visual systems adapt to different light environments through several avenues including optical changes to the eye and neurological changes in how light signals are processed and interpreted. Spectral sensitivity can evolve via changes to visual pigments housed in the retinal photoreceptors through gene duplication and loss, differential and coexpression, and sequence evolution. Frogs provide an excellent, yet understudied, system for visual evolution research due to their diversity of ecologies (including biphasic aquatic-terrestrial life cycles) that we hypothesize imposed different selective pressures leading to adaptive evolution of the visual system, notably the opsins that encode the protein component of the visual pigments responsible for the first step in visual perception. Here, we analyze the diversity and evolution of visual opsin genes from 93 new eye transcriptomes plus published data for a combined dataset spanning 122 frog species and 34 families. We find that most species express the four visual opsins previously identified in frogs but show evidence for gene loss in two lineages. Further, we present evidence of positive selection in three opsins and shifts in selective pressures associated with differences in habitat and life history, but not activity pattern. We identify substantial novel variation in the visual opsins and, using microspectrophotometry, find highly variable spectral sensitivities, expanding known ranges for all frog visual pigments. Mutations at spectral-tuning sites only partially account for this variation, suggesting that frogs have used tuning pathways that are unique among vertebrates. These results support the hypothesis of adaptive evolution in photoreceptor physiology across the frog tree of life in response to varying environmental and ecological factors and further our growing understanding of vertebrate visual evolution.
Collapse
Affiliation(s)
- Ryan K Schott
- Department of Biology and Centre for Vision Research, York University, Toronto, Ontario, Canada
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Matthew K Fujita
- Department of Biology, Amphibian and Reptile Diversity Research Center, The University of Texas at Arlington, Arlington, TX, USA
| | | | | | - Kate N Thomas
- Department of Biology, Amphibian and Reptile Diversity Research Center, The University of Texas at Arlington, Arlington, TX, USA
- Natural History Museum, London, UK
| | - Ellis R Loew
- Department of Biomedical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY, USA
| | | | | | - C Guillherme Becker
- Department of Biology and One Health Microbiome Center, Center for Infectious Disease Dynamics, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Diego Cisneros-Heredia
- Laboratorio de Zoología Terrestre, Instituto de Biodiversidad Tropical IBIOTROP, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Simon Clulow
- Centre for Conservation Ecology and Genomics, Institute for Applied Ecology, University of Canberra, Bruce, ACT, Australia
| | - Mateo Davila
- Laboratorio de Zoología Terrestre, Instituto de Biodiversidad Tropical IBIOTROP, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Thomas J Firneno
- Department of Biological Sciences, University of Denver, Denver, USA
| | - Célio F B Haddad
- Department of Biodiversity and Center of Aquaculture—CAUNESP, I.B., São Paulo State University, Rio Claro, São Paulo, Brazil
| | - Sunita Janssenswillen
- Amphibian Evolution Lab, Biology Department, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jim Labisko
- Natural History Museum, London, UK
- Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and Environment, University College London, London, UK
- Island Biodiversity and Conservation Centre, University of Seychelles, Mahé, Seychelles
| | - Simon T Maddock
- Natural History Museum, London, UK
- Island Biodiversity and Conservation Centre, University of Seychelles, Mahé, Seychelles
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Michael Mahony
- Department of Biological Sciences, The University of Newcastle, Newcastle 2308, Australia
| | - Renato A Martins
- Programa de Pós-graduação em Conservação da Fauna, Universidade Federal de São Carlos, São Carlos, Brazil
| | | | - Nicola J Mitchell
- School of Biological Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Daniel M Portik
- Department of Herpetology, California Academy of Sciences, San Francisco, CA, USA
| | - Ivan Prates
- Department of Biology, Lund University, Lund, Sweden
| | - Kim Roelants
- Amphibian Evolution Lab, Biology Department, Vrije Universiteit Brussel, Brussels, Belgium
| | - Corey Roelke
- Department of Biology, Amphibian and Reptile Diversity Research Center, The University of Texas at Arlington, Arlington, TX, USA
| | - Elie Tobi
- Gabon Biodiversity Program, Center for Conservation and Sustainability, Smithsonian National Zoo and Conservation Biology Institute, Gamba, Gabon
| | - Maya Woolfolk
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
| | - Rayna C Bell
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
- Department of Herpetology, California Academy of Sciences, San Francisco, CA, USA
| |
Collapse
|