1
|
Coronado-Zamora M, González J. Transposons contribute to the functional diversification of the head, gut, and ovary transcriptomes across Drosophila natural strains. Genome Res 2023; 33:1541-1553. [PMID: 37793782 PMCID: PMC10620055 DOI: 10.1101/gr.277565.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 08/08/2023] [Indexed: 10/06/2023]
Abstract
Transcriptomes are dynamic, with cells, tissues, and body parts expressing particular sets of transcripts. Transposable elements (TEs) are a known source of transcriptome diversity; however, studies often focus on a particular type of chimeric transcript, analyze single body parts or cell types, or are based on incomplete TE annotations from a single reference genome. In this work, we have implemented a method based on de novo transcriptome assembly that minimizes the potential sources of errors while identifying a comprehensive set of gene-TE chimeras. We applied this method to the head, gut, and ovary dissected from five Drosophila melanogaster natural strains, with individual reference genomes available. We found that ∼19% of body part-specific transcripts are gene-TE chimeras. Overall, chimeric transcripts contribute a mean of 43% to the total gene expression, and they provide protein domains for DNA binding, catalytic activity, and DNA polymerase activity. Our comprehensive data set is a rich resource for follow-up analysis. Moreover, because TEs are present in virtually all species sequenced to date, their role in spatially restricted transcript expression is likely not exclusive to the species analyzed in this work.
Collapse
Affiliation(s)
| | - Josefa González
- Institute of Evolutionary Biology, CSIC, UPF, Barcelona 08003, Spain
| |
Collapse
|
2
|
Kozeretska I, Serga S, Kovalenko P, Gorobchyshyn V, Convey P. Belgica antarctica (Diptera: Chironomidae): A natural model organism for extreme environments. INSECT SCIENCE 2022; 29:2-20. [PMID: 33913258 DOI: 10.1111/1744-7917.12925] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/17/2021] [Accepted: 03/23/2021] [Indexed: 06/12/2023]
Abstract
Belgica antarctica (Diptera: Chironomidae), a brachypterous midge endemic to the maritime Antarctic, was first described in 1900. Over more than a century of study, a vast amount of information has been compiled on the species (3 750 000 Google search results as of January 10, 2021), encompassing its ecology and biology, life cycle and reproduction, polytene chromosomes, physiology, biochemistry and, increasingly, omics. In 2014, B. antarctica's genome was sequenced, further boosting research. Certain developmental stages can be cultured successfully in the laboratory. Taken together, this wealth of information allows the species to be viewed as a natural model organism for studies of adaptation and function in extreme environments.
Collapse
Affiliation(s)
- Iryna Kozeretska
- National Antarctic Scientific Center of Ukraine, 01601, Taras Shevchenko blv., 16, Kyiv, Ukraine
| | - Svitlana Serga
- National Antarctic Scientific Center of Ukraine, 01601, Taras Shevchenko blv., 16, Kyiv, Ukraine
- Taras Shevchenko National University of Kyiv, Department General and Medical Genetics, 01601, Volodymyrska str., 64/13, Kyiv, Ukraine
| | - Pavlo Kovalenko
- State Institution «Institute for Evolutionary Ecology of the National Academy of Sciences of Ukraine», Department of Population Dynamics, 03143, Lebedeva str., 37, Kyiv, Ukraine
| | - Volodymyr Gorobchyshyn
- State Institution «Institute for Evolutionary Ecology of the National Academy of Sciences of Ukraine», Department of Population Dynamics, 03143, Lebedeva str., 37, Kyiv, Ukraine
| | - Peter Convey
- British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge, CB3 0ET, United Kingdom
| |
Collapse
|
3
|
Jiang X, Tang H, Mohammed Ismail W, Lynch M. A Maximum-Likelihood Approach to Estimating the Insertion Frequencies of Transposable Elements from Population Sequencing Data. Mol Biol Evol 2018; 35:2560-2571. [PMID: 30099533 PMCID: PMC6188571 DOI: 10.1093/molbev/msy152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Transposable elements (TEs) contribute to a large fraction of the expansion of many eukaryotic genomes due to the capability of TEs duplicating themselves through transposition. A first step to understanding the roles of TEs in a eukaryotic genome is to characterize the population-wide variation of TE insertions in the species. Here, we present a maximum-likelihood (ML) method for estimating allele frequencies and detecting selection on TE insertions in a diploid population, based on the genotypes at TE insertion sites detected in multiple individuals sampled from the population using paired-end (PE) sequencing reads. Tests of the method on simulated data show that it can accurately estimate the allele frequencies of TE insertions even when the PE sequencing is conducted at a relatively low coverage (=5X). The method can also detect TE insertions under strong selection, and the detection ability increases with sample size in a population, although a substantial fraction of actual TE insertions under selection may be undetected. Application of the ML method to genomic sequencing data collected from a natural Daphnia pulex population shows that, on the one hand, most (>90%) TE insertions present in the reference D. pulex genome are either fixed or nearly fixed (with allele frequencies >0.95); on the other hand, among the nonreference TE insertions (i.e., those detected in some individuals in the population but absent from the reference genome), the majority (>70%) are still at low frequencies (<0.1). Finally, we detected a substantial fraction (∼9%) of nonreference TE insertions under selection.
Collapse
Affiliation(s)
- Xiaoqian Jiang
- Department of Biology, Indiana University, Bloomington, IN
| | - Haixu Tang
- School of Informatics and Computing, Indiana University, Bloomington, IN
| | | | - Michael Lynch
- Center for Mechanisms of Evolution, Arizona State University, Temple, AZ
| |
Collapse
|
4
|
Carr M, Suga H. The holozoan Capsaspora owczarzaki possesses a diverse complement of active transposable element families. Genome Biol Evol 2015; 6:949-63. [PMID: 24696401 PMCID: PMC4007536 DOI: 10.1093/gbe/evu068] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Capsaspora owczarzaki, a protistan symbiont of the pulmonate snail Biomphalaria glabrata, is the centre of much interest in evolutionary biology due to its close relationship to Metazoa. The whole genome sequence of this protist has revealed new insights into the ancestral genome composition of Metazoa, in particular with regard to gene families involved in the evolution of multicellularity. The draft genome revealed the presence of 23 families of transposable element, made up from DNA transposon as well as long terminal repeat (LTR) and non-LTR retrotransposon families. The phylogenetic analyses presented here show that all of the transposable elements identified in the C. owczarzaki genome have orthologous families in Metazoa, indicating that the ancestral metazoan also had a rich diversity of elements. Molecular evolutionary analyses also show that the majority of families has recently been active within the Capsaspora genome. One family now appears to be inactive and a further five families show no evidence of current transposition. Most individual element copies are evolutionarily young; however, a small proportion of inserts appear to have persisted for longer in the genome. The families present in the genome show contrasting population histories and appear to be in different stages of their life cycles. Transcriptome data have been analyzed from multiple stages in the C. owczarzaki life cycle. Expression levels vary greatly both between families and between different stages of the life cycle, suggesting an unexpectedly complex level of transposable element regulation in a single celled organism.
Collapse
Affiliation(s)
- Martin Carr
- School of Applied Sciences, University of Huddersfield, West Yorkshire, United Kingdom
| | | |
Collapse
|
5
|
Blumenstiel JP, Chen X, He M, Bergman CM. An age-of-allele test of neutrality for transposable element insertions. Genetics 2014; 196:523-38. [PMID: 24336751 PMCID: PMC3914624 DOI: 10.1534/genetics.113.158147] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 12/06/2013] [Indexed: 01/31/2023] Open
Abstract
How natural selection acts to limit the proliferation of transposable elements (TEs) in genomes has been of interest to evolutionary biologists for many years. To describe TE dynamics in populations, previous studies have used models of transposition-selection equilibrium that assume a constant rate of transposition. However, since TE invasions are known to happen in bursts through time, this assumption may not be reasonable. Here we propose a test of neutrality for TE insertions that does not rely on the assumption of a constant transposition rate. We consider the case of TE insertions that have been ascertained from a single haploid reference genome sequence. By conditioning on the age of an individual TE insertion allele (inferred by the number of unique substitutions that have occurred within the particular TE sequence since insertion), we determine the probability distribution of the insertion allele frequency in a population sample under neutrality. Taking models of varying population size into account, we then evaluate predictions of our model against allele frequency data from 190 retrotransposon insertions sampled from North American and African populations of Drosophila melanogaster. Using this nonequilibrium neutral model, we are able to explain ∼ 80% of the variance in TE insertion allele frequencies based on age alone. Controlling for both nonequilibrium dynamics of transposition and host demography, we provide evidence for negative selection acting against most TEs as well as for positive selection acting on a small subset of TEs. Our work establishes a new framework for the analysis of the evolutionary forces governing large insertion mutations like TEs, gene duplications, or other copy number variants.
Collapse
Affiliation(s)
- Justin P. Blumenstiel
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas 66049
| | - Xi Chen
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas 66049
| | - Miaomiao He
- Faculty of Life Sciences, University of Manchester, Manchester M21 0RG, United Kingdom
| | - Casey M. Bergman
- Faculty of Life Sciences, University of Manchester, Manchester M21 0RG, United Kingdom
| |
Collapse
|
6
|
González J, Petrov DA. Evolution of genome content: population dynamics of transposable elements in flies and humans. Methods Mol Biol 2012; 855:361-83. [PMID: 22407716 DOI: 10.1007/978-1-61779-582-4_13] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Recent research is starting to shed light on the factors that influence the population and evolutionary dynamics of transposable elements (TEs) and TE life cycles. Genomes differ sharply in the number of TE copies, in the level of TE activity, in the diversity of TE families and types, and in the proportion of old and young TEs. In this chapter, we focus on two well-studied genomes with strikingly different architectures, humans and Drosophila, which represent two extremes in terms of TE diversity and population dynamics. We argue that some of the answers might lie in (1) the larger population size and consequently more effective selection against new TE insertions due to ectopic recombination in flies compared to humans; and (2) in the faster rate of DNA loss in flies compared to humans leading to much faster removal of fixed TE copies from the fly genome.
Collapse
Affiliation(s)
- Josefa González
- Department of Biology, Stanford University, Stanford, CA, USA.
| | | |
Collapse
|
7
|
Tubio JMC, Tojo M, Bassaganyas L, Escaramis G, Sharakhov IV, Sharakhova MV, Tornador C, Unger MF, Naveira H, Costas J, Besansky NJ. Evolutionary dynamics of the Ty3/gypsy LTR retrotransposons in the genome of Anopheles gambiae. PLoS One 2011; 6:e16328. [PMID: 21283637 PMCID: PMC3026039 DOI: 10.1371/journal.pone.0016328] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Accepted: 12/13/2010] [Indexed: 12/21/2022] Open
Abstract
Ty3/gypsy elements represent one of the most abundant and diverse LTR-retrotransposon (LTRr) groups in the Anopheles gambiae genome, but their evolutionary dynamics have not been explored in detail. Here, we conduct an in silico analysis of the distribution and abundance of the full complement of 1045 copies in the updated AgamP3 assembly. Chromosomal distribution of Ty3/gypsy elements is inversely related to arm length, with densities being greatest on the X, and greater on the short versus long arms of both autosomes. Taking into account the different heterochromatic and euchromatic compartments of the genome, our data suggest that the relative abundance of Ty3/gypsy LTRrs along each chromosome arm is determined mainly by the different proportions of heterochromatin, particularly pericentric heterochromatin, relative to total arm length. Additionally, the breakpoint regions of chromosomal inversion 2La appears to be a haven for LTRrs. These elements are underrepresented more than 7-fold in euchromatin, where 33% of the Ty3/gypsy copies are associated with genes. The euchromatin on chromosome 3R shows a faster turnover rate of Ty3/gypsy elements, characterized by a deficit of proviral sequences and the lowest average sequence divergence of any autosomal region analyzed in this study. This probably reflects a principal role of purifying selection against insertion for the preservation of longer conserved syntenyc blocks with adaptive importance located in 3R. Although some Ty3/gypsy LTRrs show evidence of recent activity, an important fraction are inactive remnants of relatively ancient insertions apparently subject to genetic drift. Consistent with these computational predictions, an analysis of the occupancy rate of putatively older insertions in natural populations suggested that the degenerate copies have been fixed across the species range in this mosquito, and also are shared with the sibling species Anopheles arabiensis.
Collapse
Affiliation(s)
- Jose Manuel C. Tubio
- Genes and Disease Programme, Center for Genomic Regulation, Barcelona, Spain
- Hospital Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - Marta Tojo
- Hospital Universitario de Santiago de Compostela, Santiago de Compostela, Spain
- Centro Nacional de Genotipado (CEGEN), Barcelona, Spain
| | - Laia Bassaganyas
- Genes and Disease Programme, Center for Genomic Regulation, Barcelona, Spain
| | - Georgia Escaramis
- Genes and Disease Programme, Center for Genomic Regulation, Barcelona, Spain
| | - Igor V. Sharakhov
- Department of Entomology, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Maria V. Sharakhova
- Department of Entomology, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Cristian Tornador
- Genes and Disease Programme, Center for Genomic Regulation, Barcelona, Spain
| | - Maria F. Unger
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Horacio Naveira
- Departamento de Biología Celular y Molecular, Universidade da Coruña, A Coruña, Spain
| | - Javier Costas
- Fundación Pública Galega de Medicina Xenómica, Complexo Hospitalario Universitario de Santiago, Santiago de Compostela, Spain
| | - Nora J. Besansky
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
- * E-mail:
| |
Collapse
|
8
|
The role of transposable elements in the evolution of non-mammalian vertebrates and invertebrates. Genome Biol 2010; 11:R59. [PMID: 20525173 PMCID: PMC2911107 DOI: 10.1186/gb-2010-11-6-r59] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Revised: 04/27/2010] [Accepted: 06/02/2010] [Indexed: 01/29/2023] Open
Abstract
Background Transposable elements (TEs) have played an important role in the diversification and enrichment of mammalian transcriptomes through various mechanisms such as exonization and intronization (the birth of new exons/introns from previously intronic/exonic sequences, respectively), and insertion into first and last exons. However, no extensive analysis has compared the effects of TEs on the transcriptomes of mammals, non-mammalian vertebrates and invertebrates. Results We analyzed the influence of TEs on the transcriptomes of five species, three invertebrates and two non-mammalian vertebrates. Compared to previously analyzed mammals, there were lower levels of TE introduction into introns, significantly lower numbers of exonizations originating from TEs and a lower percentage of TE insertion within the first and last exons. Although the transcriptomes of vertebrates exhibit significant levels of exonization of TEs, only anecdotal cases were found in invertebrates. In vertebrates, as in mammals, the exonized TEs are mostly alternatively spliced, indicating that selective pressure maintains the original mRNA product generated from such genes. Conclusions Exonization of TEs is widespread in mammals, less so in non-mammalian vertebrates, and very low in invertebrates. We assume that the exonization process depends on the length of introns. Vertebrates, unlike invertebrates, are characterized by long introns and short internal exons. Our results suggest that there is a direct link between the length of introns and exonization of TEs and that this process became more prevalent following the appearance of mammals.
Collapse
|
9
|
González J, Petrov DA. The adaptive role of transposable elements in the Drosophila genome. Gene 2009; 448:124-33. [PMID: 19555747 DOI: 10.1016/j.gene.2009.06.008] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Revised: 06/11/2009] [Accepted: 06/12/2009] [Indexed: 11/25/2022]
Abstract
Transposable elements (TEs) are short DNA sequences with the capacity to move between different sites in the genome. This ability provides them with the capacity to mutate the genome in many different ways, from subtle regulatory mutations to gross genomic rearrangements. The potential adaptive significance of TEs was recognized by those involved in their initial discovery although it was hotly debated afterwards. For more than two decades, TEs were considered to be intragenomic parasites leading to almost exclusively detrimental effects to the host genome. The sequencing of the Drosophila melanogaster genome provided an unprecedented opportunity to study TEs and led to the identification of the first TE-induced adaptations in this species. These studies were followed by a systematic genome-wide search for adaptive insertions that allowed for the first time to infer that TEs contribute substantially to adaptive evolution. This study also revealed that there are at least twice as many TE-induced adaptations that remain to be identified. To gain a better understanding of the adaptive role of TEs in the genome we clearly need to (i) identify as many adaptive TEs as possible in a range of Drosophila species as well as (ii) carry out in-depth investigations of the effects of adaptive TEs on as many phenotypes as possible.
Collapse
Affiliation(s)
- Josefa González
- Department of Biology, 371 Serra St. Stanford University, Stanford, CA 94305-3020, USA.
| | | |
Collapse
|
10
|
Reininga JM, Nielsen D, Purugganan MD. Functional and geographical differentiation of candidate balanced polymorphisms in Arabidopsis thaliana. Mol Ecol 2009; 18:2844-55. [PMID: 19457201 DOI: 10.1111/j.1365-294x.2009.04206.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Molecular population genetic analysis of three chromosomal regions in Arabidopsis thaliana suggested that balancing selection might operate to maintain variation at three novel candidate adaptive trait genes, including SOLUBLE STARCH SYNTHASE I (SSI), PLASTID TRANSCRIPTIONALLY ACTIVE 7(PTAC7), and BELL-LIKE HOMEODOMAIN 10 (BLH10). If balanced polymorphisms are indeed maintained at these loci, then we would expect to observe functional variation underlying the previously detected signatures of selection. We observe multiple replacement polymorphisms within and in the 32 amino acids just upstream of the protein-protein interacting BELL domain at the BLH10 locus. While no clear protein sequence differences are found between allele types in SSI and PTAC7, these two genes show evidence for allele-specific variation in expression levels. Geographical patterns of allelic differentiation seem consistent with population stratification in this species and a significant longitudinal cline was observed at all three candidate loci. These data support a hypothesis of balancing selection at all three candidate loci and provide a basis for more detailed functional work by identifying possible functional differences that might be selectively maintained.
Collapse
Affiliation(s)
- Jennifer M Reininga
- Department of Genetics, Box 7614, North Carolina State University, Raleigh, NC 27695, USA
| | | | | |
Collapse
|
11
|
Deloger M, Cavalli FMG, Lerat E, Biémont C, Sagot MF, Vieira C. Identification of expressed transposable element insertions in the sequenced genome of Drosophila melanogaster. Gene 2009; 439:55-62. [PMID: 19332112 DOI: 10.1016/j.gene.2009.03.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Revised: 03/12/2009] [Accepted: 03/16/2009] [Indexed: 01/20/2023]
Abstract
Transposable elements (TEs) are major components of most genomes, and their impact on genome evolution is now well documented. However, the way they affect the transcriptome is still not clearly established. Using the sequenced genome of Drosophila melanogaster and EST libraries, we describe here the TE insertions that are unequivocally transcribed, and we have determined their location in the sequenced genome. We show that most TE families are transcribed, and we have specifically identified 69 expressed TE insertions, half of which are located inside genes, mostly within introns and 5'UTRs.
Collapse
Affiliation(s)
- Marc Deloger
- Université de Lyon; Université Lyon 1; INRIA; CNRS; UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, Villeurbanne F-69622, France
| | | | | | | | | | | |
Collapse
|
12
|
González J, Lenkov K, Lipatov M, Macpherson JM, Petrov DA. High rate of recent transposable element-induced adaptation in Drosophila melanogaster. PLoS Biol 2009; 6:e251. [PMID: 18942889 PMCID: PMC2570423 DOI: 10.1371/journal.pbio.0060251] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2008] [Accepted: 09/09/2008] [Indexed: 11/18/2022] Open
Abstract
Although transposable elements (TEs) are known to be potent sources of mutation, their contribution to the generation of recent adaptive changes has never been systematically assessed. In this work, we conduct a genome-wide screen for adaptive TE insertions in Drosophila melanogaster that have taken place during or after the spread of this species out of Africa. We determine population frequencies of 902 of the 1,572 TEs in Release 3 of the D. melanogaster genome and identify a set of 13 putatively adaptive TEs. These 13 TEs increased in population frequency sharply after the spread out of Africa. We argue that many of these TEs are in fact adaptive by demonstrating that the regions flanking five of these TEs display signatures of partial selective sweeps. Furthermore, we show that eight out of the 13 putatively adaptive elements show population frequency heterogeneity consistent with these elements playing a role in adaptation to temperate climates. We conclude that TEs have contributed considerably to recent adaptive evolution (one TE-induced adaptation every 200–1,250 y). The majority of these adaptive insertions are likely to be involved in regulatory changes. Our results also suggest that TE-induced adaptations arise more often from standing variants than from new mutations. Such a high rate of TE-induced adaptation is inconsistent with the number of fixed TEs in the D. melanogaster genome, and we discuss possible explanations for this discrepancy. Transposable elements (TEs) are present in virtually all species and often contribute a substantial fraction of the genome size. Understanding the functional roles, evolution, and population dynamics of TEs is essential to understanding genome evolution and function. Much of our knowledge about TE population dynamics and evolution comes from the studies of TEs in Drosophila. However, the adaptive importance of TEs in the Drosophila genome has never been assessed. In this work, we describe the first comprehensive genome-wide screen for recent adaptive TE insertions in D. melanogaster. Using several independent criteria, we identified a set of 13 adaptive TEs and estimate that 25–50 TEs have played adaptive roles since the migration of D. melanogaster out of Africa. We show that most of these adaptive TEs are likely to be involved in regulatory changes and appear to be involved in adaptation to the temperate climate. We argue that most identified adaptive TEs are destined to be lost from the D. melanogaster population but that they do contribute significantly to local adaptation in this species. Transposable elements contributed substantially to the adaptation ofD. melanogaster to the out-of-Africa environments. The majority of these adaptive insertions are likely to be involved in regulatory changes.
Collapse
Affiliation(s)
- Josefa González
- Department of Biology, Stanford University, Stanford, California, United States of America.
| | | | | | | | | |
Collapse
|
13
|
Population frequencies of transposable elements in selfing and outcrossing Caenorhabditis nematodes. Genet Res (Camb) 2008; 90:317-29. [PMID: 18840306 DOI: 10.1017/s0016672308009440] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Population genetics theory predicts that differences in breeding systems should be an important factor in the dynamics of selfish genetic elements, because of different intensities of selection on both hosts and elements. We examined population frequencies of transposable elements (TEs) in natural populations of the self-fertilizing nematode Caenorhabditis elegans and its outcrossing relative Caenorhabditis remanei. We identified a Tc1-like class of elements in the C. remanei genome with homology to the terminal inverted repeats of the C. elegans Tc1 transposon, which we name mTcre1. We measured levels of insertion polymorphism for all 32 Tc1 elements present in the genome sequence of the C. elegans N2 strain, and 16 mTcre1 elements from the genome sequence of the C. remanei PB4641 strain. We show that transposons are less polymorphic and segregate at higher frequencies in C. elegans compared with C. remanei. Estimates of the intensity of selection based on the population frequencies of polymorphic elements suggest that transposons are selectively neutral in C. elegans, but subject to purifying selection in C. remanei. These results are consistent with a reduced efficacy of natural selection against TEs in selfing populations, but may in part be explained by non-equilibrium TE dynamics.
Collapse
|
14
|
Dooner HK, He L. Maize genome structure variation: interplay between retrotransposon polymorphisms and genic recombination. THE PLANT CELL 2008; 20:249-58. [PMID: 18296625 PMCID: PMC2276454 DOI: 10.1105/tpc.107.057596] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Revised: 02/05/2008] [Accepted: 02/12/2008] [Indexed: 05/18/2023]
Abstract
Although maize (Zea mays) retrotransposons are recombinationally inert, the highly polymorphic structure of maize haplotypes raises questions regarding the local effect of intergenic retrotransposons on recombination. To examine this effect, we compared recombination in the same genetic interval with and without a large retrotransposon cluster. We used three different bz1 locus haplotypes, McC, B73, and W22, in the same genetic background. We analyzed recombination between the bz1 and stc1 markers in heterozygotes that differ by the presence and absence of a 26-kb intergenic retrotransposon cluster. To facilitate the genetic screen, we used Ds and Ac markers that allowed us to identify recombinants by their seed pigmentation. We sequenced 239 recombination junctions and assigned them to a single nucleotide polymorphism-delimited interval in the region. The genetic distance between the markers was twofold smaller in the presence of the retrotransposon cluster. The reduction was seen in bz1 and stc1, but no recombination occurred in the highly polymorphic intergenic region of either heterozygote. Recombination within genes shuffled flanking retrotransposon clusters, creating new chimeric haplotypes and either contracting or expanding the physical distance between markers. Our findings imply that haplotype structure will profoundly affect the correlation between genetic and physical distance for the same interval in maize.
Collapse
Affiliation(s)
- Hugo K Dooner
- Waksman Institute, Rutgers University, Piscataway, New Jersey 08854, USA.
| | | |
Collapse
|
15
|
Ellinghaus D, Kurtz S, Willhoeft U. LTRharvest, an efficient and flexible software for de novo detection of LTR retrotransposons. BMC Bioinformatics 2008; 9:18. [PMID: 18194517 PMCID: PMC2253517 DOI: 10.1186/1471-2105-9-18] [Citation(s) in RCA: 1012] [Impact Index Per Article: 59.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2007] [Accepted: 01/14/2008] [Indexed: 11/23/2022] Open
Abstract
Background Transposable elements are abundant in eukaryotic genomes and it is believed that they have a significant impact on the evolution of gene and chromosome structure. While there are several completed eukaryotic genome projects, there are only few high quality genome wide annotations of transposable elements. Therefore, there is a considerable demand for computational identification of transposable elements. LTR retrotransposons, an important subclass of transposable elements, are well suited for computational identification, as they contain long terminal repeats (LTRs). Results We have developed a software tool LTRharvest for the de novo detection of full length LTR retrotransposons in large sequence sets. LTRharvest efficiently delivers high quality annotations based on known LTR transposon features like length, distance, and sequence motifs. A quality validation of LTRharvest against a gold standard annotation for Saccharomyces cerevisae and Drosophila melanogaster shows a sensitivity of up to 90% and 97% and specificity of 100% and 72%, respectively. This is comparable or slightly better than annotations for previous software tools. The main advantage of LTRharvest over previous tools is (a) its ability to efficiently handle large datasets from finished or unfinished genome projects, (b) its flexibility in incorporating known sequence features into the prediction, and (c) its availability as an open source software. Conclusion LTRharvest is an efficient software tool delivering high quality annotation of LTR retrotransposons. It can, for example, process the largest human chromosome in approx. 8 minutes on a Linux PC with 4 GB of memory. Its flexibility and small space and run-time requirements makes LTRharvest a very competitive candidate for future LTR retrotransposon annotation projects. Moreover, the structured design and implementation and the availability as open source provides an excellent base for incorporating novel concepts to further improve prediction of LTR retrotransposons.
Collapse
Affiliation(s)
- David Ellinghaus
- ZBH - Center for Bioinformatics, University of Hamburg, Bundesstrasse 43, 20146 Hamburg, Germany.
| | | | | |
Collapse
|
16
|
Krom N, Recla J, Ramakrishna W. Analysis of genes associated with retrotransposons in the rice genome. Genetica 2007; 134:297-310. [PMID: 18066688 DOI: 10.1007/s10709-007-9237-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2007] [Accepted: 11/28/2007] [Indexed: 12/24/2022]
Abstract
Retrotransposons comprise a significant fraction of the rice genome. Despite their prevalence, the effects of retrotransposon insertions are not well understood, especially with regard to how they affect the expression of genes. In this study, we identified one-sixth of rice genes as being associated with retrotransposons, with insertions either in the gene itself or within its putative promoter region. Among genes with insertions in the promoter region, the likelihood of the gene being expressed was shown to be directly proportional to the distance of the retrotransposon from the translation start site. In addition, retrotransposon insertions in the transcribed region of the gene were found to be positively correlated with the presence of alternative splicing forms. Furthermore, preferential association of retrotransposon insertions with genes in several functional classes was identified. Some of the retrotransposons that are part of full-length cDNA (fl-cDNA) contribute splice sites and give rise to novel exons. Several interesting trends concerning the effects of retrotransposon insertions on gene expression were identified. Taken together, our data suggests that retrotransposon association with genes have a role in gene regulation. The data presented in this study provides a foundation for experimental studies to determine the role of retrotransposons in gene regulation.
Collapse
Affiliation(s)
- Nicholas Krom
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, USA
| | | | | |
Collapse
|
17
|
Kalyanaraman A, Aluru S. Efficient algorithms and software for detection of full-length LTR retrotransposons. PROCEEDINGS. IEEE COMPUTATIONAL SYSTEMS BIOINFORMATICS CONFERENCE 2007:56-64. [PMID: 16447962 DOI: 10.1109/csb.2005.31] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
LTR retrotransposons constitute one of the most abundant classes of repetitive elements in eukaryotic genomes. In this paper, we present a new algorithm for detection of full-length LTR retrotransposons in genomic sequences. The algorithm identifies regions in a genomic sequence that show structural characteristics of LTR retrotransposons. Three key components distinguish our algorithm from that of current software - (i) a novel method that preprocesses the entire genomic sequence in linear time and produces high quality pairs of LTR candidates in running time that is constant per pair, (ii) a thorough alignment-based evaluation of candidate pairs to ensure high quality prediction, and (iii) a robust parameter set encompassing both structural constraints and quality controls providing users with a high degree of flexibility. Validation of both our serial and parallel implementations of the algorithm against the yeast genome indicates both superior quality and performance results when compared to existing software.
Collapse
|
18
|
Chung H, Bogwitz MR, McCart C, Andrianopoulos A, Ffrench-Constant RH, Batterham P, Daborn PJ. Cis-regulatory elements in the Accord retrotransposon result in tissue-specific expression of the Drosophila melanogaster insecticide resistance gene Cyp6g1. Genetics 2006; 175:1071-7. [PMID: 17179088 PMCID: PMC1840086 DOI: 10.1534/genetics.106.066597] [Citation(s) in RCA: 192] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Transposable elements are a major mutation source and powerful agents of adaptive change. Some transposable element insertions in genomes increase to a high frequency because of the selective advantage the mutant phenotype provides. Cyp6g1-mediated insecticide resistance in Drosophila melanogaster is due to the upregulation of the cytochrome P450 gene Cyp6g1, leading to the resistance to a variety of insecticide classes. The upregulation of Cyp6g1 is correlated with the presence of the long terminal repeat (LTR) of an Accord retrotransposon inserted 291bp upstream of the Cyp6g1 transcription start site. This resistant allele (DDT-R) is currently at a high frequency in D. melanogaster populations around the world. Here, we characterize the spatial expression of Cyp6g1 in insecticide-resistant and -susceptible strains. We show that the Accord LTR insertion is indeed the resistance-associated mutation and demonstrate that the Accord LTR carries regulatory sequences that increase the expression of Cyp6g1 in tissues important for detoxification, the midgut, Malpighian tubules, and the fat body. This study provides a significant example of how changes in tissue-specific gene expression caused by transposable-element insertions can contribute to adaptation.
Collapse
Affiliation(s)
- Henry Chung
- Centre for Environmental and Stress Adaptation Research, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Victoria, Australia
| | | | | | | | | | | | | |
Collapse
|
19
|
Hoffmann AA, Daborn PJ. Towards genetic markers in animal populations as biomonitors for human-induced environmental change. Ecol Lett 2006; 10:63-76. [PMID: 17204118 DOI: 10.1111/j.1461-0248.2006.00985.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Genetic markers provide potentially sensitive indicators of changes in environmental conditions because the genetic constitution of populations is normally altered well before populations become extinct. Genetic indicators in populations include overall genetic diversity, genetic changes in traits measured at the phenotypic level, and evolution at specific loci under selection. While overall genetic diversity has rarely been successfully related to environmental conditions, genetically based changes in traits have now been linked to the presence of toxins and both local and global temperature shifts. Candidate loci for monitoring stressors are emerging from information on how specific genes influence traits, and from screens of random loci across environmental gradients. Drosophila research suggests that chromosomal regions under recent intense selection can be identified from patterns of molecular variation and a high frequency of transposable element insertions. Allele frequency changes at candidate loci have been linked to pesticides, pollutants and climate change. Nevertheless, there are challenges in interpreting allele frequencies in populations, particularly when a large number of loci control a trait and when interactions between alleles influence trait expression. To meet these challenges, population samples should be collected for longitudinal studies, and experimental programmes should be undertaken to link variation at candidate genes to ecological processes.
Collapse
Affiliation(s)
- Ary A Hoffmann
- Department of Genetics, Centre of Environmental Stress and Adaptation Research, The University of Melbourne, Melbourne, Vic. 3010, Australia.
| | | |
Collapse
|
20
|
Kalyanaraman A, Aluru S. Efficient algorithms and software for detection of full-length LTR retrotransposons. J Bioinform Comput Biol 2006; 4:197-216. [PMID: 16819780 DOI: 10.1142/s021972000600203x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2005] [Revised: 12/01/2005] [Accepted: 01/31/2006] [Indexed: 11/18/2022]
Abstract
LTR retrotransposons constitute one of the most abundant classes of repetitive elements in eukaryotic genomes. In this paper, we present a new algorithm for detection of full-length LTR retrotransposons in genomic sequences. The algorithm identifies regions in a genomic sequence that show structural characteristics of LTR retrotransposons. Three key components distinguish our algorithm from that of current software--(i) a novel method that preprocesses the entire genomic sequence in linear time and produces high quality pairs of LTR candidates in run-time that is constant per pair, (ii) a thorough alignment-based evaluation of candidate pairs to ensure high quality prediction, and (iii) a robust parameter set encompassing both structural constraints and quality controls providing users with a high degree of flexibility. We implemented our algorithm into a software program called LTR_par, which can be run on both serial and parallel computers. Validation of our software against the yeast genome indicates superior results in both quality and performance when compared to existing software. Additional validations are presented on rice BACs and chimpanzee genome.
Collapse
|
21
|
Walser JC, Chen B, Feder ME. Heat-shock promoters: targets for evolution by P transposable elements in Drosophila. PLoS Genet 2006; 2:e165. [PMID: 17029562 PMCID: PMC1592238 DOI: 10.1371/journal.pgen.0020165] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2006] [Accepted: 08/17/2006] [Indexed: 11/19/2022] Open
Abstract
Transposable elements are potent agents of genomic change during evolution, but require access to chromatin for insertion—and not all genes provide equivalent access. To test whether the regulatory features of heat-shock genes render their proximal promoters especially susceptible to the insertion of transposable elements in nature, we conducted an unbiased screen of the proximal promoters of 18 heat-shock genes in 48 natural populations of Drosophila. More than 200 distinctive transposable elements had inserted into these promoters; greater than 96% are P elements. By contrast, few or no P element insertions segregate in natural populations in a “negative control” set of proximal promoters lacking the distinctive regulatory features of heat-shock genes. P element transpositions into these same genes during laboratory mutagenesis recapitulate these findings. The natural P element insertions cluster in specific sites in the promoters, with up to eight populations exhibiting P element insertions at the same position; laboratory insertions are into similar sites. By contrast, a “positive control” set of promoters resembling heat-shock promoters in regulatory features harbors few P element insertions in nature, but many insertions after experimental transposition in the laboratory. We conclude that the distinctive regulatory features that typify heat-shock genes (in Drosophila) are especially prone to mutagenesis via P elements in nature. Thus in nature, P elements create significant and distinctive variation in heat-shock genes, upon which evolutionary processes may act. Transposable elements can be a major source of evolutionary change. Their insertion can directly affect the genes into, or next to, which they insert. To insert, however, they must first gain access to the host gene. The authors reasoned that, because the DNA in the promoters (i.e., regulatory regions) of heat-shock genes is unusually accessible, these genes might harbor many transposable elements. With a technique that can detect any insertion into a gene, they discovered more than 200 distinctive transposable elements in the promoter regions of heat-shock genes in fruit flies from the wild—but few or none in the promoter regions of more typical genes. Surprisingly, out of the one hundred kinds of transposable elements in fruit flies, almost all were P elements. P elements are remarkable because they invaded the fruit fly genome only during the last century. These findings imply that the combination of accessible DNA and the recent invasion of P elements have left a distinctive imprint on the promoters of heat-shock genes.
Collapse
Affiliation(s)
- Jean-Claude Walser
- Department of Organismal Biology and Anatomy, The College, The University of Chicago, Chicago, Illinois, United States of America
| | | | | |
Collapse
|
22
|
Du C, Swigoňová Z, Messing J. Retrotranspositions in orthologous regions of closely related grass species. BMC Evol Biol 2006; 6:62. [PMID: 16914031 PMCID: PMC1560396 DOI: 10.1186/1471-2148-6-62] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2006] [Accepted: 08/16/2006] [Indexed: 11/10/2022] Open
Abstract
Background Retrotransposons are commonly occurring eukaryotic transposable elements (TEs). Among these, long terminal repeat (LTR) retrotransposons are the most abundant TEs and can comprise 50–90% of the genome in higher plants. By comparing the orthologous chromosomal regions of closely related species, the effects of TEs on the evolution of plant genomes can be studied in detail. Results Here, we compared the composition and organization of TEs within five orthologous chromosomal regions among three grass species: maize, sorghum, and rice. We identified a total of 132 full or fragmented LTR retrotransposons in these regions. As a percentage of the total cumulative sequence in each species, LTR retrotransposons occupy 45.1% of the maize, 21.1% of the rice, and 3.7% of the sorghum regions. The most common elements in the maize retrotransposon-rich regions are the copia-like retrotransposons with 39% and the gypsy-like retrotransposons with 37%. Using the contiguous sequence of the orthologous regions, we detected 108 retrotransposons with intact target duplication sites and both LTR termini. Here, we show that 74% of these elements inserted into their host genome less than 1 million years ago and that many retroelements expanded in size by the insertion of other sequences. These inserts were predominantly other retroelements, however, several of them were also fragmented genes. Unforeseen was the finding of intact genes embedded within LTR retrotransposons. Conclusion Although the abundance of retroelements between maize and rice is consistent with their different genome sizes of 2,364 and 389 Mb respectively, the content of retrotransposons in sorghum (790 Mb) is surprisingly low. In all three species, retrotransposition is a very recent activity relative to their speciation. While it was known that genes re-insert into non-orthologous positions of plant genomes, they appear to re-insert also within retrotransposons, potentially providing an important role for retrotransposons in the evolution of gene function.
Collapse
Affiliation(s)
- Chunguang Du
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ 08854, USA
- Department of Biology & Molecular Biology, Montclair State University, Montclair, NJ 07043, USA
| | - Zuzana Swigoňová
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ 08854, USA
- Department of Medical Genetics, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Joachim Messing
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
23
|
Shilova VY, Garbuz DG, Myasyankina EN, Chen B, Evgen'ev MB, Feder ME, Zatsepina OG. Remarkable site specificity of local transposition into the Hsp70 promoter of Drosophila melanogaster. Genetics 2006; 173:809-20. [PMID: 16582443 PMCID: PMC1526513 DOI: 10.1534/genetics.105.053959] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Heat-shock genes have numerous features that ought to predispose them to insertional mutagenesis via transposition. To elucidate the evolvability of heat-shock genes via transposition, we have exploited a local transposition technique and Drosophila melanogaster strains with EPgy2 insertions near the Hsp70 gene cluster at 87A7 to produce numerous novel EPgy2 insertions into these Hsp70 genes. More than 50% of 45 independent insertions were made into two adjacent nucleotides in the proximal promoter at positions -96 and -97, and no insertions were into a coding or 3'-flanking sequence. All inserted transposons were in inverse orientation to the starting transposon. The frequent insertion into nucleotides -96 and -97 is consistent with the DNase hypersensitivity, absence of nucleosomes, flanking GAGA-factor-binding sites, and nucleotide sequence of this region. These experimental insertions recapitulated many of the phenotypes of natural transposition into Hsp70: reduced mRNA expression, less Hsp70 protein, and decreased inducible thermotolerance. The results suggest that the distinctive features of heat-shock promoters, which underlie the massive and rapid expression of heat-shock genes upon heat shock, also are a source of evolutionary variation on which natural selection can act.
Collapse
Affiliation(s)
- Victoria Y Shilova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | | | | | | | | | | | | |
Collapse
|
24
|
Ganko EW, Greene CS, Lewis JA, Bhattacharjee V, McDonald JF. LTR retrotransposon-gene associations in Drosophila melanogaster. J Mol Evol 2006; 62:111-20. [PMID: 16408244 DOI: 10.1007/s00239-004-0312-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2004] [Accepted: 09/08/2005] [Indexed: 11/28/2022]
Abstract
Thirty-three percent (228/682) of all long terminal repeat (LTR) retrotransposon sequences (LRSs) present in the sequenced Drosophila melanogaster genome were found to be located in or within 1000 bp of a gene. Recently inserted LTR retrotransposons are significantly more likely to be located in or within genes than are older, fragmented LTR retrotransposon sequences, indicating that most LRS-gene associations are selected against over evolutionary time. LRSs associated with conserved genes (homologenes) are especially prone to negative selection. In contrast, fragmented LRSs that have persisted in the genome over long spans of evolutionary time are preferentially associated with genes involved in signal transduction and other newly evolved functions.
Collapse
Affiliation(s)
- Eric W Ganko
- Department of Genetics, University of Georgia, Athens, GA 30602, USA.
| | | | | | | | | |
Collapse
|
25
|
Lipatov M, Lenkov K, Petrov DA, Bergman CM. Paucity of chimeric gene-transposable element transcripts in the Drosophila melanogaster genome. BMC Biol 2005; 3:24. [PMID: 16283942 PMCID: PMC1308810 DOI: 10.1186/1741-7007-3-24] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2005] [Accepted: 11/12/2005] [Indexed: 11/27/2022] Open
Abstract
Background Recent analysis of the human and mouse genomes has shown that a substantial proportion of protein coding genes and cis-regulatory elements contain transposable element (TE) sequences, implicating TE domestication as a mechanism for the origin of genetic novelty. To understand the general role of TE domestication in eukaryotic genome evolution, it is important to assess the acquisition of functional TE sequences by host genomes in a variety of different species, and to understand in greater depth the population dynamics of these mutational events. Results Using an in silico screen for host genes that contain TE sequences, we identified a set of 63 mature "chimeric" transcripts supported by expressed sequence tag (EST) evidence in the Drosophila melanogaster genome. We found a paucity of chimeric TEs relative to expectations derived from non-chimeric TEs, indicating that the majority (~80%) of TEs that generate chimeric transcripts are deleterious and are not observed in the genome sequence. Using a pooled-PCR strategy to assay the presence of gene-TE chimeras in wild strains, we found that over half of the observed chimeric TE insertions are restricted to the sequenced strain, and ~15% are found at high frequencies in North American D. melanogaster populations. Estimated population frequencies of chimeric TEs did not differ significantly from non-chimeric TEs, suggesting that the distribution of fitness effects for the observed subset of chimeric TEs is indistinguishable from the general set of TEs in the genome sequence. Conclusion In contrast to mammalian genomes, we found that fewer than 1% of Drosophila genes produce mRNAs that include bona fide TE sequences. This observation can be explained by the results of our population genomic analysis, which indicates that most potential chimeric TEs in D. melanogaster are deleterious but that a small proportion may contribute to the evolution of novel gene sequences such as nested or intercalated gene structures. Our results highlight the need to establish the fixity of putative cases of TE domestication identified using genome sequences in order to demonstrate their functional importance, and reveal that the contribution of TE domestication to genome evolution may vary drastically among animal taxa.
Collapse
Affiliation(s)
- Mikhail Lipatov
- Department of Biological Sciences, Stanford University, Stanford, CA 94305, USA
| | - Kapa Lenkov
- Department of Biological Sciences, Stanford University, Stanford, CA 94305, USA
| | - Dmitri A Petrov
- Department of Biological Sciences, Stanford University, Stanford, CA 94305, USA
| | - Casey M Bergman
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
26
|
Marsano RM, Caizzi R, Moschetti R, Junakovic N. Evidence for a functional interaction between the Bari1 transposable element and the cytochrome P450 cyp12a4 gene in Drosophila melanogaster. Gene 2005; 357:122-8. [PMID: 16076534 DOI: 10.1016/j.gene.2005.06.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2005] [Revised: 06/22/2005] [Accepted: 06/23/2005] [Indexed: 11/30/2022]
Abstract
Previous studies of the genomic distribution of the transposon Bari1 in Drosophila melanogaster have revealed an element which is fixed at division 91F in over 90 lab and natural populations. Here we report about the structural and transcriptional features of the insertion site which was studied in sublines isolated from an exceptional Drosophila line polymorphic for the presence/absence of Bari1 at 91F. The insert is located at the 3' end of the cyp12a4 gene that belongs to the cytochrome P450 family. In flies with the insert the transcript of this gene encompasses 18 nucleotides of the transposon, it is shorter and is about tenfold more abundant compared to flies devoid of it. Although the hypothetical selective agent remains unknown, these data are suggestive of a selective advantage brought about by the Bari1 insert and are reminiscent of recent evidence for functional mutagenesis of cyp6g1, another P450 gene, brought about by Accord and Doc transposable elements in D. melanogaster and Drosophila simulans.
Collapse
|
27
|
Cutter AD, Good JM, Pappas CT, Saunders MA, Starrett DM, Wheeler TJ. Transposable element orientation bias in the Drosophila melanogaster genome. J Mol Evol 2005; 61:733-41. [PMID: 16315105 DOI: 10.1007/s00239-004-0243-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2004] [Accepted: 05/26/2005] [Indexed: 10/25/2022]
Abstract
Nonrandom distributions of transposable elements can be generated by a variety of genomic features. Using the full D. melanogaster genome as a model, we characterize the orientations of different classes of transposable elements in relation to the directionality of genes. DNA-mediated transposable elements are more likely to be in the same orientation as neighboring genes when they occur in the nontranscribed region's that flank genes. However, RNA-mediated transposable elements located in an intron are more often oriented in the direction opposite to that of the host gene. These orientation biases are strongest for genes with highly biased codon usage, probably reflecting the ability of such loci to respond to weak positive or negative selection. The leading hypothesis for selection against transposable elements in the coding orientation proposes that transcription termination poly(A) signal motifs within retroelements interfere with normal gene transcription. However, after accounting for differences in base composition between the strands, we find no evidence for global selection against spurious transcription termination signals in introns. We therefore conclude that premature termination of host gene transcription due to the presence of poly(A) signal motifs in retroelements might only partially explain strand-specific detrimental effects in the D. melanogaster genome.
Collapse
Affiliation(s)
- Asher D Cutter
- Department of Ecology & Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA.
| | | | | | | | | | | |
Collapse
|
28
|
Bogwitz MR, Chung H, Magoc L, Rigby S, Wong W, O'Keefe M, McKenzie JA, Batterham P, Daborn PJ. Cyp12a4 confers lufenuron resistance in a natural population of Drosophila melanogaster. Proc Natl Acad Sci U S A 2005; 102:12807-12. [PMID: 16120680 PMCID: PMC1200273 DOI: 10.1073/pnas.0503709102] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2005] [Indexed: 11/18/2022] Open
Abstract
Lufenuron is an insect growth regulator insecticide mainly used for the control of the cat flea. To understand mechanisms of resistance to lufenuron, we have characterized lufenuron resistance in a natural population of Drosophila melanogaster. In this study we have used precise genetic mapping to identify a mechanism of lufenuron resistance: the overexpression of the cytochrome P450 gene Cyp12a4. Cyp12a4 is predicted to encode a mitochondrial cytochrome P450 enzyme. Expression of Cyp12a4 in D. melanogaster third-instar larvae was detected in the midgut and Malpighian tubules of both lufenuron-resistant and wild-type strains. The level of Cyp12a4 expression in the midgut is higher in the lufenuron-resistant strain than in wild-type strains. Driving the expression of Cyp12a4 in the midgut and Malpighian tubules by using the GAL4/UAS gene expression system results in lufenuron resistance, but it does not result in resistance to three other insecticide classes. Transgenic expression of Cyp12a4 in a ubiquitous expression pattern results in late embryonic lethality, suggesting that high-level ectopic expression of Cyp12a4 is detrimental to development.
Collapse
Affiliation(s)
- Michael R Bogwitz
- Centre for Environmental Stress and Adaptation Research, Department of Genetics, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 30 Flemington Road, Parkville, Victoria 3010, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Lerman DN, Feder ME. Naturally occurring transposable elements disrupt hsp70 promoter function in Drosophila melanogaster. Mol Biol Evol 2004; 22:776-83. [PMID: 15574805 DOI: 10.1093/molbev/msi063] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Naturally occurring transposable element (TE) insertions that disrupt Drosophila promoters are correlated with modified promoter function and are posited to play a significant role in regulatory evolution, but their phenotypes have not been established directly. To establish the functional consequences of these TE insertions, we created constructs with either TE-bearing or TE-lacking hsp70 promoters fused to a luciferase reporter gene and assayed luciferase luminescence in transiently transfected Drosophila cells. Each of the four TEs reduces luciferase signal after heat shock and heat inducibility of the hsp70 promoter. To test if the differences in hsp70 promoter activity are TE-sequence dependent, we replaced each of the TEs with multiple intergenic sequences of equal length. These replacement insertions similarly reduced luciferase signal, suggesting that the TEs affect hsp70 promoter function by altering promoter architecture. These results are consistent with differences in Hsp70 expression levels, inducible thermotolerance, and fecundity previously associated with the TEs. That two different varieties of TEs in two different hsp70 genes have common effects suggests that TE insertion represents a general mechanism through which selection manipulates hsp70 gene expression.
Collapse
Affiliation(s)
- Daniel N Lerman
- Committee on Evolutionary Biology and Department of Organismal Biology & Anatomy, The University of Chicago, USA
| | | |
Collapse
|
30
|
Peterson-Burch BD, Nettleton D, Voytas DF. Genomic neighborhoods for Arabidopsis retrotransposons: a role for targeted integration in the distribution of the Metaviridae. Genome Biol 2004; 5:R78. [PMID: 15461796 PMCID: PMC545598 DOI: 10.1186/gb-2004-5-10-r78] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2004] [Revised: 08/03/2004] [Accepted: 09/02/2004] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Retrotransposons are an abundant component of eukaryotic genomes. The high quality of the Arabidopsis thaliana genome sequence makes it possible to comprehensively characterize retroelement populations and explore factors that contribute to their genomic distribution. RESULTS We identified the full complement of A. thaliana long terminal repeat (LTR) retroelements using RetroMap, a software tool that iteratively searches genome sequences for reverse transcriptases and then defines retroelement insertions. Relative ages of full-length elements were estimated by assessing sequence divergence between LTRs: the Pseudoviridae were significantly younger than the Metaviridae. All retroelement insertions were mapped onto the genome sequence and their distribution was distinctly non-uniform. Although both Pseudoviridae and Metaviridae tend to cluster within pericentromeric heterochromatin, this association is significantly more pronounced for all three Metaviridae sublineages (Metavirus, Tat and Athila). Among these, Tat and Athila are strictly associated with pericentromeric heterochromatin. CONCLUSIONS The non-uniform genomic distribution of the Pseudoviridae and the Metaviridae can be explained by a variety of factors including target-site bias, selection against integration into euchromatin and pericentromeric accumulation of elements as a result of suppression of recombination. However, comparisons based on the age of elements and their chromosomal location indicate that integration-site specificity is likely to be the primary factor determining distribution of the Athila and Tat sublineages of the Metaviridae. We predict that, like retroelements in yeast, the Athila and Tat elements target integration to pericentromeric regions by recognizing a specific feature of pericentromeric heterochromatin.
Collapse
Affiliation(s)
| | - Dan Nettleton
- Department of Statistics, 124 Snedecor Hall, Iowa State University, Ames, IA 50011, USA
| | - Daniel F Voytas
- Department of Genetics, Development and Cell Biology, 1035A Roy J. Carver Co-Lab, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|